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Abstract

Motivation: Whole-genome alignment methods show insufficient scalability towards the generation
of large-scale whole-genome alignments (WGAs). Profile alignment-based approaches revolutionized
the fields of multiple sequence alignment construction methods by significantly reducing computational
complexity and runtime. However, WGAs need to consider genomic rearrangements between genomes,
which makes the profile-based extension of several whole-genomes challenging. Currently, none of the
available methods offer the possibility to align or extend WGA profiles.
Results: Here, we present GPA, an approach that aligns the profiles of WGAs and is capable of producing
large-scale WGAs many folds faster than conventional methods. Our concept relies on already available
whole-genome aligners, which are used to compute several smaller sets of aligned genomes that are
combined to a full WGA with a divide and conquer approach. We make use of the SuperGenome data
structure, which features a bidirectional mapping between individual sequence and alignment coordinates.
This data structure is used to efficiently to transfer different coordinate system into a common one based on
the principles of profiles alignments. The approach allows the computation of a WGA where alignments are
subsequently merged along a guide tree. The current implementation uses progressiveMauve (Darling
et al., 2010) and offers the possibility for parallel computation of independent genome alignments. Our
results based on data sets up to 326 genomes show that we can reduce the runtime from months to hours
with a quality that is negligibly worse than the WGA computed with the conventional progressiveMauve
tool.
Availability: GPA is freely available at https://lambda.informatik.uni-tuebingen.de/

gitlab/ahennig/SuperGenome. GPA is implemented in Java 8, uses progressiveMauve and
offers a parallel computation of WGAs.

Contact: andre.hennig@uni-tuebingen.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Whole-genome sequencing (WGS) has become increasingly affordable
through the continuous developments of next-generation sequencing
(NGS) technologies. WGS for example is now routinely conducted in
a clinical context to monitor pandemic bacterial outbreaks based on
the sequencing of different isolates. Single nucleotide variations (SNV)
between isolates and a reference genome can help to understand and
reconstruct transmission chains (Bryant et al., 2013; Sabat et al., 2013).
The disadvantage using a single reference to compare different individuals
is that features missing from the reference cannot be detected. Especially
in the absence of a closely related reference genome, such an approach is
not appropriate (Abdelbary et al., 2018). To overcome this problem, an

increasing number of studies incorporate the pan-genome of the species
into the analysis of different isolates. Here, gene content and genomic
rearrangements such as insertions, deletions, translocations, and inversions
are used to explain the manifestation of phenotypic traits like antibiotic
resistance (Medini et al., 2005). One approach to compute a pan-genome
is based on whole-genome alignments (WGAs). In comparison to a
BLAST-based approach or variants of it which are employed to compute
orthologous gene groups, the WGA-based approach has the advantage
that for the identification of orthologous genes gene neighbourhood is
taken into account. In addition, the pan-genome based on a WGA can
be generalized to take also non-genic features into account. Further
applications of WGAs encompass the identification of pathogenic genomic
islands or reconstruction of phylogenomic trees (Chan and Ragan, 2013).
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Runtimes of current state-of-the-art aligners that are capable of
modeling genomic rearrangements, such as progressiveMauve

(Darling et al., 2010), are at least quadratic in the number of genomes.
Thus, computation of WGAs of hundreds or thousands of even closely
related bacterial genomes with state-of-the-art tools are prohibitive.
Currently only Parsnp (Treangen et al., 2014) is able to compute large-
scale alignments with hundreds or even thousands of genomes within
hours. However, it computes only a core-genome alignment. While
Parsnp is a highly valuable tool for the identification of SNPs from
the core pan-genome, it does not allow for the detection of genomic
rearrangements and pathogenic islands for example. Recent advances
in the field of whole-genome alignment methods were made with the
introduction of seq-seq-pan (Jandrasits et al., 2018), which offers the
efficient extension of existing WGA by new genomes. Through a pairwise
iterative alignment process, new genomic sequences are aligned against the
consensus sequence of the alignment, which shows a substantial runtime
decrease while achieving comparably high-quality alignments.

seq-seq-pan makes use of the profile of a pairwise alignment (and
deduces a consensus sequence) for extension by new sequences. Using a
profile as a representation for an alignment is a popular concept used to
compute multiple sequence alignments (MSA) and was first introduced by
Hogeweg and Hesper (1984) in their progressive alignment heuristic. The
idea to progressively compute MSAs along a guide tree, where at each
node either a pairwise alignment between sequences, sequence-profile or
profiles are conducted, reduces the runtime significantly in contrast to
the construction of an optimal alignment that maximizes the sum of pairs
score. Especially the profile-profile alignment offers a fast and efficient
way to combine two separate alignments. Recent advances in this field
have been made by Liu and Warnow (2014) with the idea of a divide and
conquer approach to compute smaller subsets of alignments which are
merged through a profile-profile alignment. The parallel computation of
the subset alignments further reduces the computational runtime, while
still achieving highly accurate results.
However, currently such a profile-alignment based approach is missing
in state-of-the-art alignment tools such as progressiveMauve. Since
WGAs need to consider genomic rearrangements, such as translocations
and inversions, between the individual genomes, a profile alignment of
two or more WGAs is more difficult than a profile alignment of MSAs.
Here, we introduce our concept for the first profile-profile alignment of
WGAs. The profile-based merging of WGAs is conducted with the help of
our SuperGenome data structure (Herbig et al., 2012), which can be used
to transfer different WGA-coordinate system into a common one.
Based on this profile-based alignment approach, we implemented GPA

(Genome Profile Alignment), a software that can align hundreds to
thousands of genomes in a fast and efficient manner. The goals of our
whole-genome alignment construction strategy were to adopt the advances
from the field of profile-based MSA tools, and therefore significantly
reduce computational time and still achieving highly accurate WGAs.
Our intention was not to develop a new genome alignment algorithm.
Therefore, GPA relies on other whole-genome aligners but using a divide
and conquer strategy to merge subsets of alignments along a guide tree. In
our current release, we have combined progressiveMauve with our
profile-based approach.
The article is organized as follows: In the method section, we first present
the SuperGenome data structure and the algorithmic principles that allows
an efficient merging of several alignments. The critical aspect is the
transfer of different coordinate systems into a common one, which is
supported by the SuperGenome. We explain in detail the extension of
a given WGA by other genomes or other WGAs. Based on this we then
explain how to compute large-scale WGAs from scratch in a fast and
parallelized manner. The section concludes with a description of statistics
that we used to compare and evaluate our approach with the original

progressiveMauve. The results section presents the evaluation of the
WGAs computed for the different data set by progressiveMauve and
GPA. This evaluation is focused on the runtime needed and the achieved
quality of the WGA by both approaches. Finally, we conclude this article
with a critical discussion of our results and propose future improvements
of our approach.

2 Methods

SuperGenome data structure and construction

The SuperGenome is a data structure, which makes use of a whole-
genome alignment (WGA) and features a bidirectional mapping between
the alignment coordinates and the original coordinates of each individual
genome in the WGA (Herbig et al., 2012). In comparison to multiple
sequence alignment, where the order of nucleotides within each sequence
is assumed to be preserved, aligning whole-genomes has to consider
the occurrence of rearrangements, such as translocations as well as
inversions. Regions shared by two or more genomes that do not contain
any rearrangements of homologous sequences are called locally collinear
blocks (LCBs), and a WGA is typically then represented by a set of
such LCBs. Programs computing WGAs of this form are for example
Mauve (Darling et al., 2004), progressiveMauve (Darling et al.,
2010), Mugsy (Angiuoli and Salzberg, 2010) and TBA (Blanchette et al.,
2004). The main advantage of the SuperGenome data structure is that it
provides an unambiguous coordinate system and is independent of any
pre-chosen reference genome.

We will first introduce some formal terminology before we then
describe the algorithm to compute large-scale WGAs to decrease
computational runtime using a profile-based approach together with the
SuperGenome data structures derived from the profiles.

Given are n genomes gi, i = 1, . . . , n and a WGA A on these
n genomes. We define a pair of integer arrays Gi and SGi, which
provides the bidirectional mapping between the positions of gi and A.
Both arrays cover either all genomic or alignment positions and are zero-
based numbered. In addition, the arrays have a leading entry, that is used
to represent the absence of the sequence and are due to that one position
longer than either the length of the genome or the alignment. This simplifies
the mapping of the coordinate systems since the j-th index represents the
j-th position in the genome or the alignment.
Let us assume that the j-th base of gi is aligned at the k-th position in A.
Thus, Gi, representing the mapping of gi to A, contains the value k at
entry j. In the case that the base was aligned as its reverse complement
(i.e., representing an inversion), the value of k is negative:

Gi[j] =

{
k, if base j is aligned in forward orientation

−k, if base j is aligned as reverse complement
(1)

The respective SuperGenome array SGi represents the mapping of the
aligned sequence of genome gi in A and is analogous to Gi, in addition,
it also accounts for gaps. In case at position k in A no base of gi was
aligned the entry is set to zero.

SGi[k] =


j, if base j is aligned in forward orientation

−j, if base j is aligned as reverse complement
0, if no base of gi aligns at that position

(2)

In addition to the coordinate mapping, the SuperGenome takes the local
collinear block (LCB) structure into account, as for example, computed
by progressiveMauve and stored in XMFA-format, by also tracking
the start and stop positions of all LCBs.

For a given WGA of n genomes, the generation of the data structure is
straightforward. For each genome, the pair of arrays Gi and SGi is first
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initialized with the corresponding lengths of gi and A, respectively, and
filled with zeros. Through an iteration over every alignment position, the
arrays are filled, resulting in a total of 2×n arrays with a space requirement
of n× length of the alignment and the sum of all genome lengths. From
the SuperGenome data structure, the WGA can be derived from the arrays
SGi, where each aligned sequence of gi can be reconstructed iteratively
back from the genomic positions of the entries. Here, inversions (negative
values) and gaps (zeroes) have to be taken into account.

Extending an existing WGA

We now first describe how a new genome is added to an existing WGA onn
genomes using the SuperGenome approach. Then we show how to extend
this principle to merging two WGAs on n and m genomes, respectively,
into a WGA on n + m genomes. This step can then be generalized to
several alignments and genomes that are combined into a WGA of all
involved genomes. The general idea is that at each extension step only a
pairwise alignment is computed.

A common approach to make use of an existing alignment A is a
profile alignment, which preserves all prior aligned positions. The profile
of A is represented by a consensus sequence, which is derived from
the SuperGenome data structure through a majority call on all alignment
positions of A. For the integration of a new genome gn+1 into A, unique
regions of gn+1 and homologous regions of gn+1 and the profile have to
be computed in order to extend A by the new genome. This is achieved
by computing a pairwise alignment of the profile consensus sequence and
the genomic sequence gn+1. This pairwise alignment serves as a guiding
alignment to extend the given alignment A by the new genome. Again
we use the SuperGenome data structure for this step (see Figure 1B-D
for an illustration of this procedure). For this, the SuperGenome data
structure of the pairwise alignment is computed, which includes the
array SGcons with all positions of the profile consensus sequence and
SGn+1, the SG array of genome gn+1. The extension of A comprises
the transfer of the coordinates of SGi and Gi for the n genomes into the
common coordinate system ofSGcons andSGn+1. The new bidirectional
coordinate mappings SG′i and G′i for genome gi are derived by

SG′i[j] = SGi[SGcons[j]] and G′i[SG
′
i[j]] = j (3)

whereSGcons[j] is the index of the consensus sequence, which is aligned
at position j in the pairwise alignment, and SGi[SGcons[j]] the index of
the base of gi that was aligned in A.
This coordinate transfer restores all columns of alignment A. The arrays
SGn+1 and Gn+1 do not have to be updated since they are already
consistent with the coordinate system of the guiding alignment. Based
on the updated SuperGenome data structure on n + 1 genomes, the new
alignment can now be easily derived and written into the alignment format
as described above.

The procedure for adding one genome to a WGA is easily extended
to merge the profiles of two WGAs on n > 1 and m > 1 genomes,
respectively. Again, we compute a pairwise alignment, now on the
two respective consensus sequences, derive the respective SuperGenome,
which together with the SuperGenome of the input WGAs to update the
bidirectional mappings (see equation (1)) the two WGAs. A consequence
of this merging procedure of two WGAs is that prior aligned bases appear
consistently in the merged WGA.

Finally, it is straightforward to generalize the pairwise approach
to combining more than 2 WGAs or WGAs with individual genome
sequences. Rather than aligning only two sequences, we compute the
multiple genome alignment of all consensus sequences derived from the
k > 2 individual WGAs as well as possible single genome sequences. The
generalized workflow of merging several WGAs into a common WGA can
be summarized in the following 6 steps (see also Figure 2):
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Fig. 1. (A) Based on the three genomic sequence g1 , g2 and g3 and their alignment
A(g1, g2, g3), a SuperGenome data structure (union of the SG and G arrays) is
computed. In addition, a consensus sequence from the alignment is deducted. (B) A new
genomic sequence g4 is combined with A(g1, g2, g3). For this a pairwise alignment
A(cons, g4) is computed and again a SuperGenome data structure is deduced. (C) Update
of A by g4: for every position j in A(cons, g4), (1) array SGcons[j] (orange) contains
the index of the aligned consensus sequence positions, which is used to determine the
original genomic positions SG1[SGcons[j]] (example shown in blue). (2) This allows
a coordinate transfer SG′

1[j] = SG1[SGcons[j]] and G′
1[SG′

1[j]] = j (red) into a
common coordinate system of A(cons, g4). (D) From the updated SuperGenome data
structure the new alignment A(g1, g2, g3, g4) is easily deduced.

1. Construct SuperGenome data structure for every input alignment.
2. For every SuperGenome compute a consensus sequence (output in

FASTA format).
3. Align consensus sequences as well as possible individual

genome sequences with whole-genome aligner (e.g., using
progressiveMauve).

4. Construct SuperGenome data structure for new genome alignment.
5. For every genome i, update SGi and Gi according to equation (3).
6. Output new alignment derived from updated SG′ and G′ (output in

XMFA-format).

s If the merged WGA should account for LCB structures, start and
stop positions of all LCBs have to be transferred and added to the once
introduced by the guiding alignment. Note that the new LCBs of the merged
WGA are defined between every consecutive pair of LCB positions in the
SuperGenome.

Genome Profile Alignment - GPA

We have implemented the described approach how to efficiently merge
several whole-genome alignments or extend a given WGA by new genomes
using our SuperGenome data structure in the tool which we call GPA. Our
tool is written in Java 8 and can be run on any machine with a Java VM
installed. For the computation of the WGAs, we currently make use of
progressiveMauve, which needs to be installed independently.

GPA can be applied in two ways: it can align genome sequences from
scratch, or it can be used to extend an existing WGA by new genomes.
In the first case, the input data are the genome sequences that need to be
provided in FASTA-format. Since the general idea of our approach is to
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Fig. 2. Workflow of computing a large WGA from several subsets and genomes using the
SuperGenome data structure. The workflow consists of 5 steps: 1. Build SuperGenome for
every alignment, 2. Compute SuperGenome consensus sequence, 3. Align all consensus and
genome sequences, 4. Build SuperGenome of guiding alignment, 5. Merge all alignments
and genomes via Coordinates Transfer, 6. Output alignment of all sequences inXMFA-format
derived from updated SuperGenome data structure of SG′

combine smaller sets of aligned genomes to a full WGA, these smaller
sets first have to be defined. For this, we either make use of a guide tree,
which determines the individual merging steps, or all genome sequences
are randomly distributed into subsets, where the size of the subsets has
to be predefined by the user. The guide tree needs to be provided by the
user in Newick tree format and can, for example, be the one as computed
by progressiveMauve. As most guide trees are binary and only two
sequences are aligned at each node, the provided input tree is further
modified, to control the number of sequences/WGAs that is aligned in each
step. With a user-defined maximum number of sequences aligned in each
step, the nodes of the guide tree (representing the set of sequences which
will be aligned) are propagated from the leaves (representing the genomes)
towards the root (representing the final WGA) until another propagation to
the next node of the tree would exceed the maximum. This modified guide
tree is used to compute an internal guide tree structure. In the next step, after
the internal guide tree structure has been built, GPA automatically creates
a folder structure, which serves to save the WGAs from the intermediate
steps in XMFA-format. The computation of the WGAs follows the typical
process of progressive alignments, starting at the leaves of the guide tree
and the root represents the full WGA. If no guide tree has been provided,
GPA merges all WGAs of the individual subsets into a common WGA in
one step. To decrease the runtime, GPA provides the possibility to compute
the independent subalignments in parallel.

The second case to extend an existing WGA,GPA can be provided with
an arbitrary number of WGAs and single genomes. Here, the respective
profiles or genomic sequences are aligned in one step. The final WGA
then contains all new genomes as well as those which where contained in
the input WGAs. Note that in fact the second case is used throughout the
computation of a WGA from scratch when using our approach in GPA.

Table 1. The data sets, which were used for the WGA computations as obtained
from the NCBI FTP server. All statistics including the median genome length
and median GC content have been derived from NCBI.

Organism # Strains Median Genome
Length (Mb)

GC content

Bacillus cereus 13 5.760 35.1%

Listeria monocytogenes 30 2.975 37.9%

Chlamydia trachomatis 72 1.046 41.3%

Mycobacterium tuberculosis 128 4.385 65.6%

Klebsiella pneumoniae 166 5.590 57.2%

Staphyloccus aureus 176 2.847 32.8%

Bordetella pertussis 326 4.100 67.7%

Experimental setup

Datasets
To explore the performance of GPA, we applied our approach to a large
number of complete single chromosome bacterial genomes from the same
species which we derived from NCBI (ftp://ftp.ncbi.nlm.nih.
gov/genomes). The various data sets reflect different genome lengths
and sizes as well as diversities of genomes within a species to explore the
performance of GPA. Currently, GPA can only handle single sequences per
species. We therefore had to remove all possible plasmids prior to the WGA
computation. All data sets used in this work are listed in Table 1 together
with the total number of genomes as well as the average genome length and
average GC content (Source https://www.ncbi.nlm.nih.gov/).

Evaluation Criteria
Besides runtime assessment, we used three different statistics to compare
the whole-genome alignment computed using our guide-tree based
SuperGenome approach with the whole-genome alignment computed by
applying progressiveMauve to all genomes at once: pairwise consistency
score, total column score, and F-score.

The pairwise consistency score reflects how much the WGA agrees
with all possible pairwise alignments, which concept was first described
by Gotoh (1990) and adapted in T-COFFEE (Notredame et al., 2000). For
this, we compute for each pair of genomes in the WGA the percentage
of bases that are consistently aligned in the WGA and in the respective
pairwise genome alignment. For a given WGA of n genomes, we then
report the average pairwise consistency score from all

(n
2

)
scores.

The total column score, first introduced in BaliBase (Thompson
et al., 2005), equals the percentage of identically aligned columns in a
given alignment when compared to a so-called reference alignment.

The third statistic, the F -score is the harmonic mean of precision
and recall for identical pairwise aligned bases. The F -score was used in
the Alignathon competition (https://compbio.soe.ucsc.edu/
alignathon/) for the comparison of two WGAs (Earl et al., 2014),
where one of the two WGA served as a reference. In our case, we
considered the WGA generated by the original progressiveMauve-
approach as the reference.

All three statistics have been widely used to evaluate multiple sequence
alignment methods. The total column score is very conservative and prone
to small changes in the alignment, and therefore even the best multiple
sequence alignment methods may achieve only low TC scores. On the
other hand, a comparable PC between a computed and reference alignment,
as well as high TC and F-score, are reliable indicators for the similarity
of the two alignments. For the calculation of all scores when comparing
two WGAs, one needs to take care of possible inversions and translations.
Again, the SuperGenome data structure serves extremely useful for this,
and therefore we also used it for the calculation of these scores.
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Computational Platform
We ran all WGAs on a Linux server with four Intel(R) 197 Xeon(R) CPU
E5-4610 v2 @ 2.30GHz and 500 GB of memory. We measured the runtime
with the GNU time command. During all WGA computations, GPA used
the maximal number of threads needed to ensure that all independent subset
alignments could be computed in parallel.

3 Results
With GPA we have extended progressiveMauve by the possibility
to provide an existing sequence alignment in XMFA-format and align
it to other sequences or alignments. Traditionally, profile alignment is
conducted on a pairwise level, however with GPA a multiple profile
alignment can be computed in one step. With this feature, a progressive
alignment strategy that is typically performed along a binary guide tree
can now be generalized to non-binary trees with fewer internal nodes. GPA
provides a parameter k, that controls the maximal degree of multifurcation
of every internal node and therefore how many genomes and/or profiles are
merged at each step. Our overall intention for this strategy was to multiply
align up to hundreds or more bacterial genomes with a significantly reduced
runtime and at the same time achieve highly qualitative WGAs.

Runtime Evaluation

In the current implementation, we use progressiveMauve as
underlying multiple genome alignment method. Therefore, our evaluation
focuses on the direct comparison between the WGA produced by applying
progressiveMauve to all genomes at once and the WGA computed
using our iterative merging approach implemented in GPA. To compare
the runtimes for the WGA construction of both progressiveMauve

and GPA, all WGAs are computed from scratch. In addition, for data
sets with less than 100 genomes we chose to split these into randomly
distributed groups that were of equal size if possible. For all other data sets
we used the guide tree produced by progressiveMauve, to determine
the individual merging steps.
The results (see Table 2) show a general significant runtime decrease
for the WGA construction of GPA compared to progressiveMauve,
independent of the data set. As it can be seen from the results and Figure 3,
the runtime of progressiveMauve increases at least quadratically with
the number of aligned genomes, while for GPA the increase shows a linear
dependency. This impact can mainly be seen for the WGAs with over 150
strains. None of the WGAs computed by progressiveMauve finished
after 1650 hours (more than two months) of computing time, where the
choice was made to not further wait for the result. Furthermore, the WGA
with 80 strains of K. pneumonia did not finish after 350 hours, therefore
the respective results are also not stated and compared. In contrast to this,
GPA could compute all WGA computations within a range of hours to
maximally days. For example for the WGA of 176 S. aureus strains GPA
needed 92 minutes, while progressiveMauve ran more than 1650
hours without reporting a result, thus in this case GPA was at least 1000
times faster.

Independent from the used WGA construction method, the runtime
comparison between the data sets of the species show differences as well.
Here, an essential factor is the average genomic length. The computation
time needed for WGAs with the same number of aligned genomes was
less for the shorter genomes of S. aureus than for M. tuberculosis and
B. pertussis, which show comparable average genome lengths as well as
runtimes. The WGAs for K. pneumonia that has on average the longest
genomes also needed the longest absolute runtime. When comparing the
results of M. tuberculosis and B. pertussis, which have a similar length, the
diversity of the genomes within a data set (reflected by a smaller overall
pairwise consistency score) does not affect the runtime as much as the

Table 2. Runtime comparison between the WGA construction using the
original progressiveMauve (PM) method and our SuperGenome-
based iterative profile alignment approach of GPA. The results are divided
into two distinct groups, whether for GPA a guide tree (guide tree) was
used or not (random). In addition, the number of LCBs for the respective
WGAs is reported.

Data set Runtime [min] # LCBs
Organism # Strains PM GPA PM GPA

ra
nd

om

B. cereus 13 225 61 380 214
(5.760Mb)

L. monocytogenes 30 628 28 293 254
(2.975Mb)

C. trachomatis 72 351 14 4 80
(1.046Mb)

10 27 10 3 3
20 98 22 16 34

M. tuberculosis 40 475 66 230 118
(4.385Mb) 80 1665 241 852 313

128 ∗ 343 - 312

10 55 28 177 200
20 691 66 784 1341

K. pneumoniae 40 9401 101 3369 3149

gu
id

e
tr

ee (5.590Mb) 80 ∗ 170 - 8121
166 ∗∗ 1620 - 21149

10 16 5 221 119
20 64 12 415 665

S. aureus 40 552 20 1222 1140
(2.847Mb) 80 5213 57 2492 4650

176 ∗∗ 92 - 9239

10 24 7 64 82
20 99 25 88 120

B. pertussis 40 503 68 165 324
(4.100Mb) 80 1683 113 314 644

326 ∗ 278 - 3838

computation aborted after: ∗ 350 hours, ∗∗ 1650 hours

genome length.
The number of LCBs, which represent genomic architectural differences
between the genomes, differ a lot between the organisms analysed here. For
example, WGAs of M. tuberculosis and B. pertussis with similar genome
lengths have vastly different number of LCBs. On the other hand, as can
be seen from Table 2 with increasing number of aligned genomes from the
same organism also the number of LCBs always increases, independent
whether the WGA was computed using progressiveMauve or GPA.
When comparing progressiveMauve and GPA for a given set of
genomes, the number of LCBs is largely of similar order of magnitude,
though in most cases (but not all) the WGA computed with GPA

had more LCBs than those for the WGA computed with the original
progressiveMauve.

Qualitative Comparison of WGAs

In order to compare the WGA computed using GPAwith the one computed
by the original approach of progressiveMauve, we applied three
evaluation criteria (see Methods section). For each data set, we calculated
the average pairwise consistency (PC) score, total column (TC) score and
F -score (see Table 3).

For each dataset, independent of the number of aligned strains
per species, the average PC score is very similar between the
progressiveMauve- and GPA-derived WGAs. The largest difference
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r²=0.97

r²=0.99

Fig. 3. Comparison of the measured computational runtime needed for the construction of the WGA depending on the number of genomes for the data sets of S. aureus (left) and B. pertussis
(right). In addition to the direct comparison between progressiveMauve (orange) and GPA, the upper left section only shows the runtime of GPA (blue) and GPA CPU time (green),
together with the r2 values for the linear regression.

of less than 4% is observed for the alignment of 80 strains of B. pertussis.
Overall, the pairwise consistency only slightly decreases within a species
when adding more genomes to the alignment. The largest difference was
observed for the WGAs computed for B. pertussis: here the average
PC score dropped from 57.9% for 10 genomes down to 37.7% when
326 genomes were aligned. An exception has been observed for the K.
pneumoniae WGAs. Here the average PC score of the WGA built from
10 genomes was smaller than for the WGAs with 20 and 40 genomes.
Generally, the PC score differs most strongly when comparing different
bacteria. While the WGAs of M. tuberculosis and C. trachomatis have
average PC scores greater than 90%, the WGAs of K. pneumoniae achieve
a maximum of 41%.

The TC score, which represents the fraction of identically aligned
columns, compares the WGAs computed by GPA with the one derived
with the original progressiveMauve. Overall the TC score is above
60% in most cases, indicating that GPA aligns a majority of all columns
identically to the original progressiveMauve even for larger WGAs
with up to 80 genomes. Also, none of the WGAs of our test data sets
shows a TC score below 30%. Similar to the PC score the TC score differs
between different organisms though here the biggest differences are seen
when increasing the number of genomes within a species. Interestingly, the
PC and TC scores do not necessarily correlate a lot, i.e., WGAs with similar
PC scores do not necessarily have similar TC scores. For example, WGAs
with low PC scores (as seen for example in the case of B. pertussis) may
have higher TC scores than WGAs with high PC scores (e.g. S. aureus).

Another indicator of the high similarity of the WGAs computed with
GPA and those computed with progressiveMauve is the F -score.
Independent of the organism as well as the number of genomes the value
is in most cases above 0.97, and never drops below 0.93. Here, in general
the precision score is higher than the recall for the resulting F -score (data
not shown). We observed that WGAs with a high TC score also have a
high F -score. On the other hand, increasing the number of genomes for a
WGA generally leads to a significant decrease of the TC score, while this
behavior is not observed for the F -score. An example is S. aureus, where
the lowest TC score in all comparisons was achieved, while the F -score
is still above 0.95.

Impact of compressing the guide tree

Next, we analysed the impact of the multifurcation parameter k, which
is used to compress the input guide tree. This parameter k reflects the

Table 3. The WGA generated by progressiveMauve (PM) and GPA were
evaluated with respect to their average pairwise consistency (PC), the total
column (TC) score (% of identical aligned columns in PM) and F -score. Both,
for the calculation of the TC and F -score, PM is used as the reference. GPA was
run with several different parameters k for the merge size, reported for each data
set is the one with the highest PC score.

Data set PC Score TC Score F -Score
Organism # Strains PM GPA GPA in PM

ra
nd

om

B. cereus 13 60.00% 60.63% 62.40% 0.977
(5.760Mb)

L. monocytogenes 30 73.41% 73.92% 61.50% 0.989
(2.975Mb)

C. trachomatis 72 98.35% 98.36% 86.68% 0.995
(1.046Mb)

10 97.90% 97.81% 93.79% 0.998
20 96.83% 96.83% 87.74% 0.990

M. tuberculosis 40 96.00% 95.80% 84.93% 0.990
(4.385Mb) 80 92.36% 91.35% 72.45% 0.983

128 - 89.27% - -

10 38.77% 38.86% 72.83% 0.989
20 41.31% 41.07% 65.95% 0.982

K. pneumoniae 40 39.32% 40.81% 42.49% 0.951

gu
id

e
tr

ee (5.590Mb) 80 - 40.32% - -
166 - 35.80% - -

10 82.45% 81.50% 72.77% 0.981
20 81.58% 80.00% 69.18% 0.979

S. aureus 40 76.33% 74.78% 58.17% 0.972
(2.847Mb) 80 73.02% 71.96% 30.76% 0.959

176 - 69.12% - -

10 58.77% 57.88% 94.15% 0.989
20 58.56% 56.94% 82.81% 0.968

B. pertussis 40 57.65% 55.44% 69.45% 0.959
(4.100Mb) 80 58.69% 54.74% 61.85% 0.934

326 - 37.65% - -

maximal degree of each internal node of the guide tree, which represents
the maximal number of profiles or sequences that are merged in a
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Table 4. Evaluation of GPA-derived WGAs with respect to the maximal
number of sequences merged at a time for the M. tuberculosis data set.

max. degree Runtime PC TC F -Score
#Strains k [min.] score score #LCB

10 3 6 97.11% 92.64% 17 0.997
10 5 8 97.65% 93.76% 3 0.997
10 7 10 97.81% 93.79% 3 0.998

20 3 9 96.76% 86.61% 47 0.986
20 5 13 96.42% 86.83% 36 0.989
20 7 15 96.67% 86.06% 8 0.986
20 9 22 96.83% 87.74% 34 0.990

40 7 32 94.85% 82.33% 191 0.987
40 9 36 95.30% 83.32% 159 0.989
40 12 66 95.80% 84.93% 118 0.990

80 12 78 91.22% 71.65% 220 0.982
80 17 101 91.13% 72.02% 284 0.982
80 22 241 91.35% 72.45% 313 0.983

128 17 177 88.77% - 524 -
128 22 343 89.27% - 312 -

single step during the WGA computation. Clearly, as can be seen from
Table 2, the runtime of progressiveMauve increases significantly
with increasing genomes. At the same time, the WGAs computed with
progressiveMauve have in most cases a higher PC score. Thus, a
trade-off between the number of genomes aligned at a time and runtime
needs to be considered when choosing k.

For this purpose, for a given initial guide tree on a given set of genomes,
we computed WGAs with GPA using different k. For each k we reported
the runtime, PC, TC as well as the F-score. As expected larger k result
in larger runtimes (see Table 4 for the case of M. tuberculosis). On the
other hand, the PC and TC score, as well as the F-score, are not greatly
affected by the choice of k, while the number of LCBs varies, though
a clear pattern cannot be deduced. Similar observations have also been
made for the other data sets of S. aureus, K. pneumoniae and B. pertussis
(data not shown). Furthermore, the analysis of the WGAs, where no
guide tree was provided for GPA, and therefore equally sized groups were
merged, shows that at least for smaller sized WGAs highly similar results
to progressiveMauve can be achieved as well (see upper parts of
Table 2 and 3).

4 Discussion
In this paper we introduced GPA, a tool which extends the whole-genome
alignment method progressiveMauve (Darling et al., 2010) by the
possibility to align individual genomes or whole-genome alignments to a
given profile genome alignment. The challenge in the case of profile-based
WGA is that genomic rearrangements like translocations and inversions
have to be considered and therefore the profile of genome alignments
cannot be as easily derived as in typical multiple sequence alignments.
Each individual genome as well as whole-genome alignment represents its
own coordinate system, and one challenge when merging a given WGA
with individual genomes or another WGA is the transfer of the individual
coordinate systems into a common one. With our SuperGenome data
structure we have introduced a novel concept that allows the extension
of a given WGA by further genomes or other WGAs, through a coordinate
transfer along a guiding alignment of their profiles. Currently, we use
progressiveMauve together with GPA and guarantee to adhere also
to the locally collinear blocks computed by progressiveMauve.

Clearly, progressiveMauve has been shown to be among the best
methods for the alignment of bacterial genomes because of its ability to

consider rearrangements between the genomes. However, the runtime
of progressiveMauve which was shown to be at least quadratic
(Darling et al., 2010), as well as lack of parallelization, prevent the
computation of WGAs of hundreds or even thousands of genomes. Thus
the second goal of this paper was to significantly reduce the runtime of
progressiveMauve.

Though by definition the SuperGenome can be derived from whole-
genome alignments of arbitrary species, we have restricted our analyses
to closely related prokaryotic genomes, i.e., aligning different strains
from the same species. For our largest dataset of B. pertussis with 326
genomes, we could show that GPA needed less than 7 hours, while a sole
progressiveMauve-based alignment was not finished after 350 hours.
A linear regression analysis showed a clear linear relationship between
runtime and genomes (see Figure 3) and based on the coefficients of the
regression the computation of a WGA with 1000 B. pertussis genomes
would need around 14 hours.

One central feature of progressiveMauve is a binary guide tree
and a WGA that is progressively computed along this tree. The key
algorithmic ingredient inGPA is the use of a compressed rather than strictly
binary guide tree and the adaptation of our introduced profile WGA to the
alignment of several profiles in one step. The compressed guide tree leads
to a significant reduction of internal nodes and therefore subalignments
that are merged at a time. Using our SuperGenome based profile alignment
approach together with a compressed guide tree, we could show that GPA
is orders of magnitude faster than the original progressiveMauve.

The results of GPA depend on the guide tree and the number of profiles
that are merged at each node, our parameterk. As the guide tree determines
the order in which the genomes are subsequently added, it is only plausible
that the quality of the final WGA decreases if the tree does not reflect their
phylogenetic relationship.

The comparison of progressiveMauve and GPA shows that as a
trade-off for the reduced runtime of GPA the quality of the WGAs is in most
of the cases slightly worse. However, the small differences of the pairwise
consistency scores by only a few percents together with the high TC and
F -scores show that the WGAs computed with GPA are highly similar to
those computed using the original progressiveMauve approach.

We also showed that there is a trade-off between runtime and quality
when deciding how many profiles are merged at the same time. The
parameter k controls the maximal number of profiles aligned at a time
with progressiveMauve. On the other hand, larger k lead to higher
PC scores, runtime. Since the results of progressiveMauve show
that the computation time needed for WGAs with less than 20 genomes
is in most cases below 2 hours, a k between 10 and 20 is currently our
default and recommended value. In addition, the generation of WGAs with
thousands of genomes by GPA benefits from the usage of large cluster
systems, because the independent alignments can now be computed in
parallel.

Currently, GPA makes use of progressiveMauve as the
underlying whole-genome alignment method, however, the modular
implementation allows in principle the support of other whole-genome
alignment methods. Since the SuperGenome data structure requires a one-
to-one mapping between the nucleotides of the genomes, only methods
are feasible that generate alignments with this feature. The disadvantage
of these type of methods, which include progressiveMauve, is that
duplicated regions cannot be aligned.

In the current version memory consumption is an issue of GPA, since
the complete SuperGenome data structure is kept in memory to speed up
computation. For example, for the alignment of 326 B. pertussis strains,
GPA needed more than 300 GB RAM. In future, we will address this issue
to enable even larger WGAs with significantly less memory requirements.

The current version of GPA and the SuperGenome data structure uses
the consensus sequence derived from the profiles of WGAs, which we
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used as a simple solution to efficiently align several profiles. Apparently,
this is not an optimal solution, and therefore other methods that use a more
sophisticated representation of the profiles for the merging step will be
considered as possibly improved solutions in a future release.

A possible application of GPA can be seen from comparative genome
analyses that rely on a WGA. An example is AureoWiki (Fuchs et al., 2017)
(http://aureowiki.med.uni-greifswald.de/), a database
of 32 different S. aureus strains that has been built from the results of
a WGA-based pan-genome computation. To incorporate new S. aureus
strains into the database, would require a WGA with the new genomic
sequences. Computing this WGA from scratch could introduce changes
that are not consistent with prior results. Here, the profile-based extension
of the WGA by GPA preserves the former WGA and allows the addition
of new strains without the necessity to completely rebuild the database.

As a conclusion, GPA introduces a time efficient computation of large-
scale WGAs through the usage of WGA-profile alignments and adds
further utility by the possibility to extend existing WGAs.
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