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There are thousands of rare human disorders caused by a single deleterious, protein-

coding genetic variant 1. However, patients with the same genetic defect can have different 

clinical presentation 2–4, and some individuals carrying known disease-causing variants 

can appear unaffected 5. What explains these differences? Here, we show in a cohort of 

6,987 children with heterogeneous severe neurodevelopmental disorders expected to be 

almost entirely monogenic that 7.7% of variance in risk is attributable to inherited common 

genetic variation. We replicated this genome wide common variant burden by showing that 

it is over-transmitted from parents to children in an independent sample of 728 trios from 

the same cohort. Our common variant signal is significantly positively correlated with 

genetic predisposition to fewer years of schooling, decreased intelligence, and risk of 

schizophrenia. We found that common variant risk was not significantly different between 

individuals with and without a known protein-coding diagnostic variant, suggesting that 

common variant risk is not confined to patients without a monogenic diagnosis. In 

addition, previously published common variant scores for autism, height, birth weight, and 

intracranial volume were all correlated with those traits within our cohort, suggesting that 

phenotypic expression in individuals with monogenic disorders is affected by the same 

variants as the general population. Our results demonstrate that common genetic variation 

affects both overall risk and clinical presentation in disorders typically considered to be 

monogenic.  

 

We carried out a genome-wide association study (GWAS) in 6,987 patients with severe 

neurodevelopmental disorders and 9,270 ancestry-matched controls, using common variants with 

a minor allele frequency ≥5% (Figure 1, Extended Data Figure 1, Supplementary Tables 1-2 and 

Methods). The patients were recruited in the UK and Ireland as part of the Deciphering 

Developmental Disorders (DDD) study 6,7, by senior clinical geneticists who had assessed their 

developmental disorder was of sufficient severity that it was likely monogenic. In addition to 
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neurodevelopmental defects (e.g. global developmental delay, intellectual disability, cognitive 

impairment or learning disabilities in 86%, autism spectrum disorders in 16%, Figure 2a), 88% 

also had abnormalities in at least one other organ system (Figure 2b and Extended Data Table 

1).  

 

We did not find any single variant associations at genome-wide significance (Extended Data 

Figure 2a), which was unsurprising given the heterogeneity of our clinical phenotype and the 

presumption that these disorders are monogenic. We did, however, observe a modest inflation in 

the test statistics (λ=1.097, Extended Data Figure 2b), which could indicate either residual bias 

between cases and controls, or evidence of a polygenic contribution of common variants to 

disease risk. We therefore estimated common variant heritability using LD score regression8, 

which can differentiate between these two possibilities, and found that 7.7% (SE=2.1%) of 

variance in risk (on the liability scale) for neurodevelopmental disorders in our sample was 

attributable to common genetic variants, when assuming a population prevalence of 1% 

(Methods). This common variant heritability estimate (h2) is similar to what has been reported for 

common disorders such as autism (h2=11.8%, SE=1.0%) 9 and major depressive disorder 

(h2=8.9%, SE=0.4%) 10. To replicate this signal, we analysed an independent set of 728 parent-

child trios recruited as part of the same study, but who were not in the initial GWAS. We calculated 

polygenic scores for each individual by summing the genetic effects across all independent 

variants from our discovery GWAS (Figure 1 and Methods). We then performed a polygenic 

transmission disequilibrium test11, which compares the mean parental polygenic scores to those 

of the affected children. We found that our neurodevelopmental disorder risk score was over-

transmitted in these trios (P=0.0035, t=2.48, df=727, one-sided t-test), confirming that common 

variants contribute to risk of disorders widely presumed to be monogenic.  
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Figure 1. Outline of our analysis exploring the contribution of common variants to risk of 

severe developmental disorders. We do this by first conducting a discovery GWAS in a large 

dataset of neurodevelopmental disorder patients, and we validate our findings through analysis 

of polygenic transmission in independent trios from the same cohort. We then investigate how 

polygenic risk for neurodevelopmental disorders compares to published studies in 

neuropsychiatric and other traits via genetic correlation, and further replication in an independent 

Australian cohort. Finally, we explore how polygenic effects are distributed in our cohort and their 

contribution to specific phenotypes.  
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Figure 2. Patients recruited to the DDD study have diverse phenotypes. A. Examples of 

specific phenotypes affecting different organ systems, observed in the full DDD cohort and the 

neurodevelopmental subset of patients. B. Distribution of the number of distinct organ systems 

affected in the set of 6,987 patients with neurodevelopmental abnormalities (Methods).  

 

 

Previous studies have shown that risk of more common neuropsychiatric disorders (e.g. 

schizophrenia and bipolar disorder 12,13) and variation in other brain-related traits, including 

educational attainment, 13,14 is driven in part by shared common genetic effects. We therefore 

used the LD score method 15 to test for genetic correlation between our neurodevelopmental 

disorder GWAS and available GWAS data for common neuropsychiatric disorders, cognitive and 

educational traits, anthropometric traits, and negative control diseases that have well powered 

GWAS but are not related to neurodevelopment. We found that genetic risk for 
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neurodevelopmental disorders was significantly negatively correlated with genetic predisposition 

to higher educational attainment (rg=-0.49, SE=0.079, P=5.1x10-10) 16 and intelligence 17 (as 

measured by  Spearman’s g) (rg=-0.44, SE=0.104, P=2.2x10-5), and positively correlated with 

genetic risk of schizophrenia (rg=0.29, SE=0.071,  P=5.9x10-5) (Figure 3 and Extended Data Table 

2). None of the anthropometric traits, nor the negative control traits, were significantly genetically 

correlated with our data, after accounting for multiple testing. We also used partitioned LD score 

regression 18 to show that heritability of neurodevelopmental disorders was nominally significantly 

enriched in cells of the central nervous system (P=0.02) (Extended Data Table 3), and in 

mammalian constrained regions 19 (P=0.009) (Supplementary Table 3), consistent with similar 

analyses for other neuropsychiatric and cognitive traits. Together, these results suggest that 

thousands of common variants have individually small effects on brain development or function, 

which in turn influences neuropsychiatric disease risk, cognitive traits, and risk for severe 

neurodevelopmental disorders. 
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Figure 3. Genetic correlations between neurodevelopmental disorder risk and a range of 

traits.  Cognitive/psychiatric traits (purple), anthropometric traits (orange) and negative control 

traits (green). Genetic correlation is calculated using bivariate LD score correlation 15, with the 

bars representing 95% confidence intervals (standard error) before correction for multiple testing. 

Traits annotated with a P-value pass Bonferroni correction for 19 traits.   

 

 

We next investigated how general our genetic correlation findings were, by attempting to replicate 

them in another neurodevelopmental disorder cohort (Figure 1). We obtained GWAS data for 

1,270 developmental disorder cases from Australia and 1,688 ancestry-matched Australian 
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controls. Because this sample is too small to do direct genetic discovery, we tested common 

variant polygenic scores using summary statistics from our discovery GWAS and the published 

GWAS, including educational attainment 16  and intelligence 17. We replicated our observation of 

lower genetic scores for educational attainment and intelligence in the neurodevelopmental 

disorder cases compared to controls (P=1.4x10-8 and P=7.6x10-4 respectively), and found that 

cases had a nominally significantly increased score for schizophrenia (P=0.014) (Methods and 

Extended Data Table 4). We did not see a significant difference between cases and controls for 

the score constructed from our own discovery GWAS, which may be because our GWAS is 

relatively underpowered, due in part to much smaller sample sizes, compared to the GWAS 

studies of cognition, educational attainment and schizophrenia.  

 

These findings could mean that common variants entirely explain a subset of patients with 

neurodevelopmental disorders, and are not relevant in the remainder, or that all patients’ 

disorders have both rare and common variant contributions (Figure 1). We have exome 

sequenced our cohort of patients, as well as their parents, and have previously reported a variety 

of both de novo and inherited diagnostic variants 20,21. We therefore compared polygenic scores 

for cognitive traits and neuropsychiatric disorders between patients for whom we had identified 

diagnostic or probably diagnostic variants in a known developmental disorder gene 22 (N=1,127) 

and those who had no candidate diagnostic variant (N=2,479), but we found no significant 

differences for any polygenic score we tested after controlling for multiple testing (Extended Data 

Table 5 and Methods). We showed by simulations that if the “diagnosed” cases had the same 

distribution of the educational attainment polygenic score as controls we would have had sufficient 

power to detect a difference between them and the undiagnosed cases (Methods). This is 

consistent with a previous study in autism 11 that similarly found no evidence for a difference in 

polygenic risk scores between autism cases with a de novo diagnostic mutation compared to 

those without. This suggests that both common and rare variants are contributing in many 
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neurodevelopmental disorder patients. However, as the DDD project continues to identify new 

diagnoses, we anticipate that the increase in power may show that monogenic and polygenic 

contributions are not purely additive. 

 

In addition to showing that common variation affects overall risk of severe neurodevelopmental 

disorders, we sought to determine if it can also affect individual presentation of symptoms. We 

identified four phenotypes measured in our neurodevelopmental disorder cohort for which 

independent GWAS data are available: autism (16% of cohort), birth weight, height, and 

intracranial volume. On average, our neurodevelopmental patients had a head circumference 

1.20 standard deviations (SD) smaller, they were 0.72 SD shorter than, and weighed 0.15 SD 

less than the age and sex-adjusted population average. We constructed common variant 

polygenic scores for the four phenotypes as described above, and tested for association between 

the relevant score and phenotype in our cohort. In all four cases, there was significant association 

(Table 1 and Extended Data Table 6), demonstrating that common variation contributes to the 

expression of these traits in our study. We next tested for association between the educational 

attainment polygenic score and severity of overall neurodevelopmental phenotype. We found that 

patients with severe intellectual disability or developmental delay (N=911, Methods) had higher 

scores (i.e. greater educational attainment, proxy for higher cognitive function, P=0.003, Table 1) 

than those with mild or moderate disability or delay (N=1,902). This finding, which might seem 

initially counter-intuitive, is consistent with epidemiological studies 23 which found that the siblings 

of patients with severe intellectual disability showed a normal distribution of IQ, whereas siblings 

of patients with milder intellectual disability had lower IQ than average, implying that mild 

intellectual disability represents the tail-end of the distribution of polygenic effects on intelligence 

and severe intellectual disability has a different etiology.  
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Table 1. Polygenic score analyses in the DDD Study.  

 

*Linear or logistic regression of measured traits in the DDD Study against the respective polygenic 

score, including ten ancestry principal components as covariates. † Severe cases were labelled 

as 1 in the logistic regression. ‡ Nagelkerke R2 

 

The study of human disease genetics has often been segregated into rare, single gene disorders, 

and common complex disorders. There is abundant evidence that rare variants in individual genes 

can cause phenotypes seen much more commonly in individuals without a monogenic cause, 

including genes for maturity onset diabetes of the young 24, familial Parkinson’s disease 25, and 

breast cancer in carriers of BRCA1 or BRCA2 mutations. Here we have shown that the same 

interplay between rare and common variation exists even in severe neurodevelopmental 

disorders typically presumed to be monogenic. Previous studies have shown that the penetrance 

and expression of these disorders are affected by which specific missense variant is carried 26 

and the presence of mutations in secondary modifier genes 27. Here, we have demonstrated that 

they are also modified by common variants that influence neurodevelopmental traits in the general 

population. This suggests that fully understanding the genetic architecture of these disorders will 

require considering the full spectrum of alleles from those unique to an individual to those shared 

across continents. 
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Methods 

 

DDD cohort phenotypes 

 

Recruitment and phenotyping of DDD patients is described in detail elsewhere 6,7. The DDD study 

has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South 

Research Ethics Committee and GEN/284/12, granted by the Republic of Ireland Research Ethics 

Committee). Families gave informed consent for participation. Briefly, the DDD study recruited 

patients with a previously undiagnosed developmental disorder, in the UK and Ireland. Patient 

phenotypes were systematically recorded by clinical geneticists using Human Phenotype 

Ontology (HPO) terms in a central database, DECIPHER 22.  

 

The DDD cohort is very heterogeneous in terms of patient phenotypes, and so we narrowed our 

analyses to singleton patients and trios where the proband had at least one of the following HPO 

terms or daughter terms of: abnormal metabolic brain imaging by MRS (HP:0012705), abnormal 

brain positron emission tomography (HP:0012657), abnormal synaptic transmission 

(HP:0012535), abnormal nervous system electrophysiology (HP:0001311), behavioural 

abnormality (HP:0000708), seizures (HP:0001250), encephalopathy (HP:001298), abnormality of 

higher mental function (HP:0011446), neurodevelopmental abnormality (HP:0012759), 

abnormality of the nervous system morphology (HP:0012639). This “neurodevelopmental” subset 

included both individuals who have since recruitment to the DDD study been found to carry 

diagnostic exome mutations in protein-coding genes 6,20,21,28, and individuals who are awaiting 

diagnosis. We therefore define our main phenotype, “neurodevelopmental disorder risk”, as the 

risk of having a previously undiagnosed developmental disorder and being included in the DDD 

study, and having at least one neurodevelopmental HPO. In addition to HPOs, some DDD 
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patients also had a clinical record of growth measurements such as height, birth weight and head 

circumference. 

 

We counted the proportion of DDD patients with particular medically relevant HPOs, displayed in 

Figure 2a. Individuals with the HPO were counted using a word search of the particular HPO and 

it’s daughter nodes. When counting the number of distinct organ systems affected in each DDD 

patient (Figure 2b), we faced the issue that some HPOs fell under multiple organ systems, as for 

example, microcephaly which is a common term in the cohort falls under three categories: 

"nervous system", "head or neck" and "skeletal system". In order to assign each HPO into only 

one organ system, we first ranked organ systems based on the number of raw counts of 

individuals with at least one term under that system (Extended Data Table 1) in the full DDD 

cohort. We then looked for individuals with at least one HPO under the organ system ranked most 

commonly affected, and assigned these individuals an organ system count of one. We then 

removed these HPOs from the patients’ lists, before continuing to identify individuals with at least 

one HPO in the organ system ranked second most prevalently affected. We continued to count 

organs and remove HPOs until we had assigned all individuals a count of organs systems affected 

out of 19 non-overlapping systems.   

 

Australian DD cohort phenotypes 

We obtained a replication cohort of 1,270 developmental disorder cases from South Australia, 

originally genotyped (using the Illumina Infinium CytoSNP-850k BeadChip) as part of routine 

clinical care to ascertain pathogenic copy number variants. The majority (>95%) were under 18 

years old. 50-60% were recruited through clinical genetics units, and the rest through 

neurologists, neonatologists,  paediatricians and cardiologists. Based on reviewing information 

on the request forms, the majority of patients had developmental delay/intellectual disability and 
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malformations involving at least one organ (e.g. brain, heart, and kidney). 15-20% were recruited 

as neonates with multiple malformations involving brain, heart and/or other organs, and were too 

young to be diagnosed with developmental delay/intellectual disability. 

 

Datasets and Quality Control 

  

We genotyped 11,304 patients and 930 full trios recruited to the DDD study, on Illumina 

HumanCoreExome and HumanOmniExpress chips, respectively. Genotyping was carried out by 

the Wellcome Trust Sanger Institute genotyping facility. As controls for the discovery GWAS, we 

used genotype data for 10,484 individuals from the UK-based Understanding Society 

(UKHLS)29,30. Recruitment to this study was carried out through UK-wide household longitudinal 

survey. For replication, we obtained GWAS data from a cohort of developmental disorder cases 

from South Australia and population-matched controls from the Brisbane Longitudinal Twin Study 

(Queensland Institute of Medical Research 31,32). All data were on GRCh37, and detailed 

information of genotyping chips is shown in Supplementary Table 1.  

 

We performed variant and sample quality control for each dataset separately. Briefly, we removed 

variants and samples with high data missingness, samples with high or low heterozygosity to 

control for admixture and inbreeding, and removed sample duplicates (steps described in detail 

in Supplementary Table 2). We defined sample ancestry based on a projection principal 

component (PCA) analysis using PLINK with 1000 Genomes Phase 3 populations, using variants 

with a minor allele frequency (MAF) of ≥10%. For the HumanCoreExome data and the Australian 

data, we removed rare variants MAF≤0.5% before imputation. For analyses described in this 

paper, we carried forward individuals of European ancestry, defined by selecting samples 

clustering around the 1000 Genomes Great British (GBR) samples in the PCA (Extended Data 

Figure 1). We then removed one individual from pairs of related individuals (alleles identical by 
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descent >12%, using PLINK) from the case-control cohorts. Individuals in the discovery cohort 

were not related to the independent DDD trios.    

  

Phasing and imputation 

  

After sample and variant quality control, we imputed all datasets in order to boost the coverage 

of the genome for association testing and to increase overlap of datasets genotyped on different 

chips. The discovery GWAS cohorts genotyped on the HumanCoreExome backbone were 

phased and imputed together using variants that intersected between the different versions of the 

chip. Trios were phased and imputed in a second batch, due to the small number of overlapping 

variants between the HumanOmniExpress and the HumanCoreExome chips. We phased and 

imputed the Australian GWAS data in a third batch, using variants that intersected between the 

CytoSNP-850K chip and the Illumina 610K chip. We used the Sanger Institute Imputation Service 

33 to carry out phasing and imputation, using Eagle2 (v2.0.5) 34 and PBWT 35 respectively, 

selecting the Haplotype Reference Consortium as the reference panel (release 1.1, chr1-22, X) 

33. 

  

Discovery GWAS of developmental disorder risk 

 

We carried out genome-wide association study for developmental disorder risk in the discovery 

neurodevelopmental set of 6,987 cases and 9,270 controls of European ancestry-only, using 

BOLT linear mixed models 36 with sex as a covariate. We included in our analysis genotyped 

variants or high-confidence imputed variants (INFO≥0.9) with a MAF of ≥5%.  
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SNP heritability  

 

From the discovery GWAS summary statistics, we removed the MHC region (chromosome 6 

region 26-34MB), and estimated trait heritability using LDSC 8 in LD Hub 37. Given the 

ascertainment of the DDD neurodevelopmental cases in this study, estimating the true population 

prevalence was not feasible. We therefore estimated single nucleotide polymorphism (SNP) 

heritability for our discovery GWAS  on the liability scale for a range of prevalences between 0.2% 

and 2%, and found that SNP heritability varies from 5.5% (SE=1.5%) to 9.1% (SE=2.5%). We 

report heritability assuming a prevalence of 1% in the population. Heritability on the observed 

scale in our discovery GWAS was 13.8% (SE=3.7%).  

 

pTDT 

 

We used the pTDT method, described in 11, to investigate transmission disequilibrium of effect 

alleles for traits within DDD trios, using imputed genotype data. Briefly, the test compares the 

means of two polygenic score distributions: one comprising of scores of the probands, and the 

other of the average parent-pair scores. The test is equivalent to a one-sample t-test, assessing 

whether the mean of score distribution in probands deviates from the mean of parent-pair score 

average. We report a one-sided p-value for over-transmission. 

 

Genetic correlation  

 

We carried out genetic correlation of the developmental disorder risk discovery GWAS against 

multiple published traits using bivariate LDSC 15. For traits included in LD Hub we used the online 

server, and for traits not included in LD Hub we used the LDSC software. For genetic correlation 

with developmental disorder risk, we pre-selected a range of different types of traits and diseases: 
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traits relating to cognitive performance, education, psychiatric traits and diseases, anthropometric 

traits and non-brain related traits and diseases. Ninety-five percent confidence intervals in Figure 

3 are shown before correction for multiple testing. We set the significance threshold to p<0.0026 

(0.05/19 tests).    

 

Partitioned heritability 

 

We used partitioned LDSC 18 to look for enrichment of heritability in cell type groups and functional 

genomic categories. To do this we used the baseline model LD scores and regression weights 

available online. For cell type groups and functional categories we set the significance threshold 

to P<0.005 (0.05/10 tests) and P<9.6x10-4 (0.05/52 tests), respectively.  

 

Polygenic scores  

 

We constructed polygenic scores using summary statistics from our developmental disorder risk 

GWAS and seven published GWAS (educational attainment 16, intelligence 17, schizophrenia 38, 

autism 9, intracranial volume 39, height 40 and birth weight 41). For all traits, we included only 

variants that had a MAF≥5% and were directly genotyped or imputed with high confidence 

(INFO≥0.9) in the respective study cohort (discovery case-control, trios or Australians). To 

construct the polygenic scores for individuals, we then multiplied the variant effects (betas) with 

the individual’s allele counts. For imputed variants, we used genotype probabilities rather than 

hard-called allele counts. To find independent variants for our scores, we pruned variants 

intersecting the original study summary statistics and our GWAS data using PLINK, by taking the 

top variant and removing variants within 500kb and that have r2≥0.1 with the top variant. We then 

repeated the process until no variant had a P-value below a pre-defined threshold, which we 

based on prior knowledge of variance in the phenotype explained. For developmental disorder 
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risk score, we chose a P-value threshold which resulted in a score that was most strongly 

associated with case/control status in an independent subset of DDD patients. Specifically, we 

repeated our developmental disorder risk GWAS having removed a random subset of 20% of 

cases and controls, then calculated a score in this leave-out subset, and performed a logistic 

regression to assess association of case-control status with the score. The threshold P<1 

performed best in two independent permutations. When deciding the P-value thresholds for 

published GWAS, we used the threshold that had been found to explain the most variation in 

other published studies for the trait (years in education P<1 14, intelligence 17, schizophrenia 

P<0.05 38, autism P<0.1 11) . For traits which we had phenotype data for in the DDD, we used 

thresholds that explained the most variation in DDD cases (intracranial volume P<1, birth weight 

P<0.01, height P<0.005). Thresholds and the number of variants used for each score are shown 

in Extended Data Tables 4-6. All scores were normalised to a mean of 0 and variance of 1. To 

test for association between trait and score, we used R (version 1.90b3) to perform logistic 

regression for binary traits and linear regression for quantitative traits, including the first ten 

principal components from the ancestry PCA to control for possible population stratification.  

 

In order to assess power for detecting differences in scores between diagnosed and undiagnosed 

patients, we tested the hypothesis that diagnosed patients were effectively a random sample of 

controls with respect to their polygenic scores. Specifically, we randomly sampled 1,127 controls 

(i.e. the same number as we had diagnosed patients) and compared the polygenic scores 

between them and the undiagnosed patients using logistic regression. We repeated this 10,000 

times and determined the proportion of times we detected a significant difference P<0.007 

(P<0.05/7 correcting for seven polygenic scores) as proxy for power. For educational attainment, 

this was 99.1% of simulations, 93.6% for schizophrenia, and 61.2% for intelligence.  
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The schizophrenia PGC-CLOZUK study included some controls from the Australian cohort used 

in our study, and therefore we ran polygenic score analyses in the Australians using summary 

statistics from PGC-CLOZUK (obtained through personal communication from A. Pardinas) after 

these samples had been removed.    

 

Subsetting the DDD cohort 

We defined a set of patients with an exonic diagnosis and a set with no likely diagnostic variants. 

This was based on the clinical filtering procedure described in 6, which focuses on identifying rare, 

damaging variants in a set of genes known to cause developmental disorders 

(https://www.ebi.ac.uk/gene2phenotype/), that fit an appropriate inheritance mode. Variants that 

pass clinical filtering are uploaded to DECIPHER, where the patients’ clinicians classify them as 

“definitely pathogenic”, “likely pathogenic”, “uncertain”, “likely benign” or “benign”. This process of 

clinical classification is necessarily dynamic as new disorders are identified and patients manifest 

new phenotypes. Our “diagnosed” set consists of 1,127 patients who fulfilled one of these criteria: 

a) amongst the diagnosed set in a recent reanalysis of the first 1,133 trios 42, or b) had at least 

one variant (or pair of compound heterozygous variants) rated as “definitely pathogenic” or “likely 

pathogenic” by a clinician, or c) had at least one variant (or pair of compound heterozygous 

variants) in a class with a high positive predictive value that passed clinical filtering but had not 

yet been rated by clinicians. We considered de novo or compound heterozygous loss-of-function 

(LoF) variants to have high positive predictive value, since of the ones that had been rated 

clinicians, 100% of compound heterozygous LoFs and 94.% of de novo LoFs had been classed 

as “definitely” or “likely pathogenic”. Our “undiagnosed” set consists of 2,479 patients who had no 

variants that passed our clinical filtering, or in whom the variants that had passed clinical filtering 

had all been rated as “likely benign” or “benign” by clinicians, or who were amongst the 

“undiagnosed” set in the first 1,133 trios that have previously been extensively clinically reviewed 

6. Note that our diagnosed versus undiagnosed analysis excludes 3,375 patients who had one or 
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more variants that passed clinical filtering in a class with a relatively low positive predictive value, 

but that have not yet been rated by clinicians. 

 

We defined patients to present with autistic behaviour if their phenotype included autistic 

behaviour (HP:0000729) or any of its daughter nodes. We defined patients as having 

“mild/moderate intellectual disability or delay” if their HPO phenotypes included borderline, mild 

or moderate intellectual disability (HP:0006889, HP:0001256, HP:0002342) and/or mild or 

moderate global developmental delay (HP:0011342, HP:0011343). Patients were included in the 

“severe ID or delay” set if they had severe or profound intellectual disability (HP:0010864, 

HP:0002187) and/or severe or profound global developmental delay (HP:0011344, HP:0012736). 

We excluded patients with ID or global developmental delay of undefined severity.  
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Extended Data Figures 

 

 

Extended Data Figure 1. Ancestry principal components analysis of discovery GWAS 

cases and controls. a. Reference samples from 1000 Genomes Phase 3, coloured by the five 

super populations. b. Principal component projection of DDD patients, parents and UKHLS 

controls on 1000 Genomes samples. All DDD individuals with genotype data are plotted on top of 

UKHLS controls. Dotted lines show the cutoffs used to exclude East Asian and African ancestry 

samples before imputation. Samples in the upper right-hand square were carried forward for 

imputation.  c. DDD patients and UKHLS controls that were selected for analyses based on 

proximity to 1000 Genomes GBR samples. Grey samples were excluded from further analyses. 
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Extended Data Figure 2. Discovery GWAS of developmental disorder risk. a. Manhattan plot 

of developmental disorder discovery GWAS, with 6,987 DDD cases (GBR ancestry) and 9,270 

ancestry-matched UKHLS controls, including 4,733,931 variants MAF≥5%. Red line = threshold 

for genome-wide significance (P=5x10-8). b. Quantile-quantile plot of developmental disorder 

discovery GWAS. Red line = expected values under the null.  

 

 

Extended Data Tables 

 

Extended Data Table 1. Proportions of DD patients who have at least one HPO term 

belonging to a particular organ system category.  

Extended Data Table 2. Genetic correlations between neurodevelopmental disorder risk 

and a range of traits. 
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Extended Data Table 3. Enrichment of developmental disorder risk heritability in different 

cell type groups.  

Extended Data Table 4. Polygenic score analyses comparing 1,266 Australian intellectual 

disability cases and 1,688 controls.   

Extended Data Table 5. Polygenic score analyses comparing DDD patients with an exome 

diagnosis (N=1,127) against undiagnosed patients (N=2,479).  

Extended Data Table 6. Polygenic score analyses in the DDD study. 

 

Supplementary Tables 

Supplementary Table 1. Summary information for samples and variants genotyped on 

different DNA chips. 

Supplementary Table 2. Summary of sample and variant quality control parameters used.  

Supplementary Table 3. Enrichment of developmental disorder risk heritability in 

overlapping functional categories.  
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