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Abstract 15 

Background: Root crown phenotyping has linked root properties to shoot mass, nutrient uptake, and 16 

yield in the field, which increases the understanding of soil resource acquisition and presents 17 

opportunities for breeding. The original methods using manual measurements have been largely 18 

supplanted by image-based approaches. However, most image-based systems have been limited to one 19 

or two perspectives and rely on segmentation from grayscale images. An efficient high-throughput root 20 

crown phenotyping system is introduced that takes images from five perspectives simultaneously, 21 

constituting the Multi-Perspective Imaging Platform (M-PIP). A segmentation procedure using the 22 

Expectation-Maximization Gaussian Mixture Model (EM-GMM) algorithm was developed to 23 

distinguish plant root pixels from background pixels in color images and using hardware acceleration 24 

(CPU and GPU). Phenes were extracted using MatLab scripts. Placement of excavated root crowns for 25 

image acquisition was standardized and is ergonomic. The M-PIP was tested on 24 soybean [Glycine 26 

max (L.) Merr.] cultivars released between 1930 and 2005 . 27 

Results: Relative to previous reports of imaging throughput, this system provides greater throughput 28 

with sustained rates of 1.66 root crowns min-1. The EM-GMM segmentation algorithm with hardware 29 

acceleration was able to segment images in 10 s, faster than previous methods, and the output images 30 

were consistently better connected with less loss of fine detail. Image-based phenes had similar 31 

heritabilities as manual measures with the greatest effect sizes observed for Maximum Radius and Fine 32 

Radius Frequency. Correlations were also noted, especially among the manual Complexity score and 33 

phenes such as number of roots and Total Root Length. Averaging phenes across perspectives 34 
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generally increased heritability, and no single perspective consistently performed better than others. 35 

Angle-based phenes, Fineness Index, Maximum Width, Holes, Solidity and Width-to-Depth Ratio were 36 

the most sensitive to perspective with decreased correlations among perspectives. 37 

Conclusion: The substantial heritabilities measured for many phenes suggest that they are potentially 38 

useful for breeding. Multiple perspectives together often produced the greatest heritabilities, and no 39 

single perspective consistently performed better than others. Thus, as illustrated here for soybean, 40 

multiple perspectives may be beneficial for root crown phenotyping systems. This system can 41 

contribute to breeding efforts that incorporate under-utilized root phenotypes to increase food security 42 

and sustainability.  43 

Keywords: Multi-camera, High-throughput phenotyping, root architecture, water use, fertilizer 44 

Background 45 

The global population is expected to increase to nine billion people by 2050 which necessitates an 46 

increase in global food production of at least 60%, but likely as much as 100% due to increased 47 

livestock production (Grafton et al. 2015). Soybean [Glycine max (L.) Merr.] is one of the major crops 48 

with a total global production of 351.32 million tons in 2016 (USDA 2018). Roots are crucial for plant 49 

productivity by foraging in soil for water and nutrients (Lynch 1995), yet have not been major targets 50 

of breeding efforts because a significant knowledge gap remains about specific relationships of root 51 

form and function with yield. Improving research capacity to measure root phenes, or elemental units 52 

of phenotype [1], could have major effects on breeding targets in soybean and other crops. 53 
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Advances in imaging and computing technologies have allowed efficient analysis of plant root images 54 

(Pound et al. 2013; Lobet et al. 2011). These methods use algorithms ranging from the more complex 55 

such as the EM-GMM algorithm (Dempster et al. 1977; Bilmes 1998) to simpler procedures to generate 56 

segmented images such as intensity thresholding (Colombi et al. 2015; Bucksch et al. 2014; Yugan and 57 

Xuecheng 2010; Huang et al. 1992). The segmented image may then be analyzed to extract root 58 

phenes. For example, Janusch et al. (2014) proposed to identify root topology using Reeb graphs, 59 

which depicts the topological structure of the root shape as the connectivity of level sets. Chen et al. 60 

(2006) described a method to determine the branching structure in wheat using Markov chains, where 61 

the lateral root branching probability was found using the locations of the lateral roots along the main 62 

root. However, these methods need relatively simple root systems to extract properties with accuracy. 63 

Mairhofer et al. (2012) and Zhou et al. (2014) described methods to perform 3D reconstructions from 64 

X-ray computed tomography by scanning the image stack vertically. Ying et al. (2011) performed 65 

reconstruction on RGB images using the regularized visual hull algorithm. Although complex root 66 

system architectures were successfully identified by the tool, the procedure is still computationally 67 

intensive and the image acquisition methods are not high-throughput. Plant roots grown in a gel 68 

medium were imaged while revolving on a turntable, yielding 3D phenotypes (Iyer-Pascuzzi et al. 69 

2010; Clark et al. 2011). Pantalone et al. (1996) showed a relationship between drought tolerance and 70 

the level of complexity (fibrousness) of the root system. This work also tried to assign a root score to 71 

various root systems depending upon several factors such as the amount of fibrous root, and the size 72 
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and number of root nodules. Topp et al. (2013) imaged rice root systems grown in clear gellan gum 73 

over a full rotation in order to reconstruct 3D models and extracted both 2D and 3D phenes.  74 

Software exist that analyze root growth such as KineRoot (Basu et al. 2007) and ArchiSimple (Pagès et 75 

al. 2014) and using displacement vector fields (Kirchgessner et al. 2001). Balestri et al. (2015) 76 

discussed the changes in the root topology when a seagrass was grown in different soil conditions 77 

quantitatively. Further studies include modeling of roots (Jia et al. 2010), analysis of growth of roots in 78 

time series (Fang et al. 2009), imaging the roots by parts and stitching them (Kun et al. 2011) and 79 

estimation of root system architecture by modeling root length or number of roots per unit volume or 80 

root density (Dupuy et al. 2005).  81 

Recently, two novel strategies were proposed for high-throughput phenotyping of plant roots, Digital 82 

Imaging of Root Traits (DIRT) (Bucksch et al. 2014) and Root Estimator for Shovelomics Traits 83 

(REST) (Colombi et al. 2015). The procedures consist of a root imaging standard methodology for 84 

excavated root crowns followed by image processing, phene extraction and analysis of the extracted 85 

phenes. The DIRT platform was meant to be robust enough to analyze images from various imaging 86 

methods and light conditions, while REST used an optimized imaging system using a blackout tent and 87 

flash lighting to produce easily segmentable images. These systems built on the recent innovations of 88 

manually scoring root crowns, sometimes called ‘shovelomics’ (Trachsel et al. 2011).  In general 89 

botanical terminology, root crown refers to the site where the root system transitions to the shoot 90 

(Beentje 2010), and in the root phenotyping context root crown has generally been accepted to refer to 91 
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both the crown itself and the entirety of attached roots following excavation. That is, the root crown is 92 

the top portion of the root system that remains after excavation and removal of soil by washing or other 93 

means. Root crown properties have been linked to crop performance, such as nodal root number 94 

(Saengwilai et al. 2014; York et al. 2013; York and Lynch 2015) and growth angle (Trachsel et al. 95 

2013; York et al. 2015). The application of root crown phenotyping for legumes has recently been 96 

accomplished in common bean, soybean, and cowpea (Burridge et al. 2016a; Burridge et al. 2016b; 97 

Fenta et al. 2014). The use of these root crown phenotyping tools has led to the discovery of multiple 98 

phenes (fundamental units of phenotype, York et al., 2013) that impact plant growth in the field. 99 

The primary goal of this study was to create a high-throughput system that can extract image-based 100 

phenes from the photographed images of plant root crowns using custom hardware and software to 101 

optimize the throughput of image acquisition and analysis. Generally, root crowns have been imaged 102 

from a single perspective, however legume root crowns are much more asymmetric relative to cereal 103 

root crowns. Therefore, imaging from multiple perspectives may better reflect three dimensional 104 

aspects of soybean roots. Thus, a system combining a blackout box, internal lighting, image acquisition 105 

software, and five consumer cameras was developed and constitutes the Multi-Perspective Imaging 106 

Platform (M-PIP). In order to validate extracted phenes from the images, they were compared to 107 

manually measured or scored properties. Unlike phenotyping systems that take multiple images using a 108 

turntable (Iyer-Pascuzzi et al. 2010; Clark et al. 2011), the images were taken from multiple cameras in 109 

order to maximize throughput (no waiting for turntable revolution). Further, the new algorithm for 110 

segmentation advanced the state-of-the-art in root phenotyping by making use of hardware acceleration 111 
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and working on color (RGB) images rather than grayscale. We show that with this combined setup, we 112 

can capture and process thousands of images per day.  113 

Methods 114 

Field experiment and root excavation 115 

A field experiment including 24 maturity group IV soybean varieties released between 1930 and 2005 116 

was conducted in 2016 in Columbia, MO, USA.  The soil at the site is a Haymond silt loam (course-117 

silty, mixed, superactive, mesic Dystric Flueventic Eutrudepts) and the field was disked to 118 

approximately 0.15 m prior to planting.  Soybean were planted at a density of 34 seeds m-2 on 7 May, 119 

2016 in 3.05-m long four-row plots with 0.76 m distance between rows.  The varieties were arranged in 120 

a randomized complete block design with four replications.  Pre-emergence herbicide application and 121 

manual weeding were used to control weeds.  At beginning seed (R5) (Fehr and Caviness 1977) five 122 

plants from one of the middle rows of each plot were cut 10 to 15 cm above the soil surface. To extract 123 

the roots from the soil, a circle with a radius of approximately 0.1 m centered on the stem was cut with 124 

a shovel and roots were excavated to a depth of 0.2 m. Soil attached to the roots was removed by 125 

shaking. 126 

Imaging protocol 127 

The M-PIP was designed for acquiring images of the same plant root crown from different angles for 128 

phene extraction. The M-PIP consists of an imaging box designed for easy operability and 129 

transportability. The imaging box measures 137.2 cm (54 inch) wide, 101.6 cm (40 inch) tall, and 121.9 130 
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cm (48 inch) in depth and consists of a frame of T-slotted aluminum extrusion bars and three sides, a 131 

bottom and a top of thin plywood were attached to exclude light and block wind (Figure 1 A). The front 132 

side of the box was covered with black cloth that was moved aside to access the interior of the box with 133 

the cameras. An opening of 0.6 by 0.4 m was cut into the top of the imaging box and was used to insert 134 

the root crowns in the correct position for imaging. To this end, two lids were built to fit the opening in 135 

the top of the box and were fitted with a PVC pipe (1” and 0.34 m in length) mounted perpendicular to 136 

the plane of the lid and in the center of the lid. Plant stems were placed into the pipe and held in place 137 

with a piece of foam pipe insulation when needed, but often the curvature of the stem was sufficient to 138 

lock the root in place. This top-loading configuration of root crowns allowed ergonomic and rapid 139 

placement of root crowns in a defined location for repeatable imaging. The innovation further allowed 140 

high-throughput imaging by use of two lids, such that one root crown was being replaced while another 141 

was imaged.  142 
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 143 

Figure 1 A. An imaging station was constructed from T-slotted aluminum extrusion and thin plywood. Internal lighting illuminated a 144 
suspended root crown against a blue-painted background. Root crowns were affixed to a PVC pipe painted the same as the background 145 
mounted to a top panel that could be placed over the hole in the back top surface of the imaging box in order to suspend the root crown in 146 
the focal position of the five cameras. B. Five cameras were placed at equal distances along a 90 degree arc. For clarity, the background 147 
has been deleted from the photo of the 5 cameras. The five root crown images are the five actual perspectives acquired by each camera. 148 

 149 

The lid with the attached root crown was placed on the opening in the top of the imaging box, thus 150 

positioning the center of the root crown approximately 0.3 m from the plane of the background side.  151 

Images were taken from five cameras mounted on a wooden board inside the imaging box. The five 152 
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cameras were placed along a circular arc equidistant (radius = 0.61 m) from the center of the plant root. 153 

The entire arc subtended an angle of 90° at the suspended plant root, and the cameras were placed at 154 

equal angles along this arc. When placing the roots in the M-PIP setup box, the perspective having the 155 

subjectively maximum spread was placed directly toward the central camera. This was to allow the 156 

cameras to capture the entire root structure, to keep consistency among root crowns, and to make sure 157 

the roots did not touch background. The cameras in the M-PIP system were configured to acquire 158 

images that optimized contrast of the roots with the blue background. 159 

The background of the imaging box was painted with light blue to aid with image processing.  160 

Additionally, four daylight hued flood lamps (10W, Warmoon, Lightrace Technology Co., Ltd.) were 161 

installed to illuminate the root system suspended from the lid. To minimize shadows due to lighting, 162 

the illumination was adjusted to achieve diffuse light by the time it reached the background. Initially, 163 

aluminum foil was placed on the inside of the black curtain behind the cameras to reflect light and the 164 

cameras were placed closer to the background.  As part of the optimization process aimed at facilitating 165 

image processing, the lights were moved farther away from the background, and the aluminum foil was 166 

replaced with a white shower curtain fabric.  167 

The M-PIP system was powered by a generator in the field. The power was fed through AC to DC 168 

adaptors for each camera instead of batteries, which allowed continual use of the imaging system. All 169 

cameras were connected to a USB hub which was in turn connected to a PC. Canon Hacker 170 

Development Kit (CHDK) was installed on the SD cards inserted into the cameras. The CHDK was 171 
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used to programmatically control the camera functions by sending commands from USB using Picture 172 

Transfer Protocol (PTP). The commands included changing the optical zoom, aperture, exposure time, 173 

ISO speed, capturing images and downloading the images to the PC over the USB connection. A client 174 

program was used to send commands to the Canon cameras from the PC. In this implementation for 175 

camera control, the cameras used were two Canon G1X cameras and three Canon S110 cameras. The 176 

Canon S110 cameras were placed at the middle and at either ends of the wooden board and the two 177 

G1X cameras were placed in between the S110 cameras, allowing visual comparison between the 178 

images at different angles because these images were obtained by cameras with the same image 179 

sensors. The Canon G1X cameras were operated at a focal length of 35 mm and the Canon S110 180 

cameras at a focal length of 13.6 mm. The aperture was set to f/8.0 and the ISO speed was set at 800 181 

for all cameras, and the exposure time was set to 1/40 seconds for Canon G1X cameras and 1/100 182 

seconds for Canon S110 cameras. Once the images were taken, they were downloaded to the PC and 183 

segmentation was performed. In total, 480 (24 varieties x 4 replications x 5 roots per plot) soybean root 184 

crowns were imaged using the M-PIP. Given the five cameras used, 2400 images in total were 185 

acquired. 186 

Image segmentation 187 

Image segmentation is needed to extract phenes from the plant root pixels located in the image. The 188 

images were first manually cropped to only background and the plant root pixels before performing 189 

segmentation. This involved cropping the clip or pipe used to hold the plant root at the time of imaging. 190 

The segmentation was performed using the Expectation Maximization - Gaussian Mixture Models 191 
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(EM-GMM) algorithm (Dempster et al. 1977; Bishop 2006), by modeling the pixels as originating from 192 

two 3D Gaussian distributions. One Gaussian distribution models the background (blue color) pixels 193 

whereas the other distribution models the plant root pixels. The cropped image was passed to the EM-194 

GMM algorithm to generate a segmented image. The largest connected component using flood-fill 195 

algorithm from the MATLAB Image Processing toolbox was selected from the segmented image to 196 

remove miss-classifications due to noise in the image and saved as the final segmented image. 197 

The EM-GMM algorithm was implemented in C/C++ and accelerated through the use of NVIDIA 198 

Quadro K600 GPU with Compute Capability 3.0. Using our implementation on Intel E3-1271 v3 199 

processor having quad-core CPU, which supports for Intel's Advanced Vector Extensions 2.0 (AVX2) 200 

and Fused Multiply and Add (FMA) instruction sets, the program takes 25 seconds to segment a 4000 x 201 

3000 pixel image. Whereas on NVIDIA Quadro K600 GPU, consisting of 192 CUDA cores, our GPU 202 

implementation takes only 10 seconds to segment the same image. 203 

The multivariate EM-GMM algorithm was implemented such that the means of the two 3D Gaussian 204 

distributions were initialized from the peaks of the histograms of the red, green and blue channels of 205 

the image. Since, the images obtained from the cameras had a light blue background, the pixels that had 206 

a peak at a greater intensity in all the color channels were initially classified as background pixels. The 207 

remaining pixels were taken as the foreground or root pixels. Unlike most of the earlier works 208 

(Bucksch et al. 2014; Colombi et al. 2015) based on greyscale thresholding to separate root pixels from 209 

background, this EM algorithm auto-tunes the mean and the covariance parameters based on each 210 
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image so that the likelihood of the pixels is maximized. Also, the algorithm segments an RGB image 211 

by estimating the full covariance matrix. 212 

Image-based Phene Extraction 213 

Phenes were extracted from the segmented images to be used in statistical analysis later. The border 214 

pixels from the segmented image were identified and counted for perimeter. The segmented image was 215 

also skeletonized and counted to determine total root length. Figure 2 illustrates how the phenes were 216 

extracted from the segmented image. Table 1 lists all extracted phenes and their descriptions. For 217 

further analysis, the image phenes were aggregated from all perspectives creating four more phenes. 218 

The Max. Max. Width is the maximum among the Maximum Widths of the plant root across all 219 

perspectives. The Min. Max. Width is the minimum among Maximum Widths of the plant root across 220 

all perspectives. The Eccentricity is defined as the ratio of Max. Max. Width to Min. Max. Width. The 221 

Max. Max. Width to Avg. Depth Ratio is the ratio of the Maximum Width from all perspectives to the 222 

average Depth from all perspectives. This phene is similar to Width-to-Depth Ratio but takes into 223 

account all the perspectives. 224 
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225 

Figure 2   The EM-GMM algorithm generated a binary image with the root crown as a foreground object (black). Image analysi226 
MATLAB generated features such as the convex hull (blue line surrounding crown), the skeleton and length (green lines inside 227 
segmented root crown), the perimeter of the root crown (red line along edge of root crown, see insert), and the number and siz228 
disconnected components (multi-colored regions surrounded by the root crown edges). 229 
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A total of 12 characteristics of the excavated root systems were manually measured or scored as 230 

described in Dhanapal et al. (under review), including Overall Complexity, Taproot prominence, Upper 231 

Primary Lateral Root Number, Upper Secondary Lateral Root Density, Upper Primary Lateral Root 232 

Angle Average, Upper Primary Lateral Angle Range, Lower Primary Lateral Root Number, Lower 233 

Secondary Lateral Root Density, Lower Primary Root Angle Average, and Lower Primary Lateral 234 

Angle Range, Total Number of Primary Lateral Roots, and Average Lateral Density.  Additionally, 235 

Stem (1 cm above soil surface) and Tap Root Diameter (at 5 cm below uppermost primary lateral root), 236 

and Nodule Size (Average diameter of overall nodules compared to a scale of 1- 5 mm) were measured 237 

and Nodule Density was scored (scale from 0 = no nodules to 5 = high Nodule Density).   238 

Statistical Analysis 239 

Correlation analysis was performed among image phenes and manual phenes to explore the relation of 240 

automatically extracted phenes to manual phenes using data from individual root crowns (not averaged 241 

for plot). Correlation analysis was also performed for image phenes among different camera 242 

perspectives to check the validity of the phenes across perspectives. ANOVA was performed by taking 243 

the genotypes and perspectives as factors to test for significant effect sizes using data averaged within 244 

each plot. Using this analysis, the phenes that have large effect size for perspective factor may be 245 

identified as perspective-sensitive phenes. Finally, heritability calculations and MANOVA analysis for 246 

genotype partial effect size was performed on the extracted image phenes from all perspectives and 247 

manual phenes. Statistical analyses were performed in R (version 3.4). The functions cor, mean and sd 248 

were used for computing correlations, means of correlations and standard deviations (SD) of 249 
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correlations respectively, where mean and standard deviation are given for data averaged within each 250 

plot. Similarly, lm, anova and manova were used to make linear models, perform ANOVA and 251 

MANOVA, respectively. In this study, linear models were used without any interactions. 252 

Some phenes of roots may change as the perspective changes for the same plant root. For example, a 253 

root crown may have a smaller width when viewed from one angle compared to another angle (i.e., the 254 

root crown is approximately flat). In such a case, the extracted phenes from some perspectives may not 255 

correlate well with the manually acquired properties. To address this, the mean of the extracted phenes 256 

across all cameras was computed. Phenes were converted from pixel units to physical units before 257 

averaging the phenes, using camera sensor sizes and focal lengths. 258 

To establish whether genotypes can be separated based on extracted phenotypes, ANOVA was 259 

performed on the phenotype data extracted from all five perspectives independently, the average 260 

phenotypes derived from the five perspectives, and the manual measures or scores. In total, 480 261 

excavated roots were imaged for this study.  For each of the 24 genotypes, roots of five plants were 262 

imaged from each plot (4 replications) and the plot averages of these five sub-samples were determined 263 

for each phene. Broad-sense heritability was calculated based on [2] as: 264 

�� �
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The variables ��
�, ��

�, and � represent the variance of the genotype effect, variance of the environment 265 

effect, and the number of replicates (here, 4), respectively. The variances were obtained by fitting a 266 

mixed model including genotype as a random effect and replicate as a fixed effect using the lme4 267 

package.  268 

Further, MANOVA was performed for each phene using all perspectives’ values as five response 269 

variables (Figure 8). The effect sizes in terms of partial eta squared was computed for each image 270 

phene using the following equation: 271 

��
� �

������

������	���
                           (2) 272 

where dfg is the degrees of freedom for the genotype factor, Fg is the f-statistic for genotype factor and 273 

the dfe is the degree of freedom for residual error. 274 

Results 275 

Twenty-five phenes were determined from image analysis of soybean root crowns excavated from the 276 

field (Table 1, Figure 2). The suite of image-based phenes covered various measures of size, length, 277 

radius distribution, branchiness, and angles. Phenes were also measured manually for comparison, as 278 

described in Dhanapal et al. (submitted). In total, 480 root crowns were imaged with five perspectives, 279 

yielding 2400 analyzed images. 280 

Substantial variation in the population and field replicates existed for all measured phenes (Supp Table 281 

1). Comparing means for each phene from each perspective and the averages across perspectives led to 282 
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interesting patterns (Figure 3). As would be expected, the mean of Maximum Width was greatest for 283 

the center camera, while the other 4 perspectives were similar. The Depth was greatest for the farthest 284 

perspectives (Left 2 and Right 2), but smallest for the central perspective (V pattern). Lower Root Area 285 

means were relatively equal across perspectives (flat pattern). For many phenes, the mean of the central 286 

camera was most similar to the farther perspectives (W or M patterns). 287 
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288 

Figure 3  Means and standard deviations are given for the 25 image-based phenes, which are defined with respective physical uni289 
Table 1. For each phene, mean +- SD is given for each camera perspective, Left 2 (L2), Left 1 (L1), Center (C), Right 1 (R1), and Rig290 
(R2), all shown with black circles. Black triangles are the average (AV) and SD of each phene across the five perspectives. 291 
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Correlation with the manually acquired properties 292 

For each root, a total of 25 phenes were extracted from each image acquired by each camera. 293 

Correlation analysis was performed between image phenes and the manual phenes for each sample. 294 

The Pearson correlation coefficients and corresponding P-values were computed for each combination 295 

of the different image phenes and manual measures (Figure 4). The correlation analyses were 296 

performed (i) for each perspective (camera) separately, and (ii) based on the averages of the phenes 297 

obtained from the five perspectives. In addition, an average correlation coefficient was calculated based 298 

on the five single-perspective correlation coefficients. The maximum correlation for phenes averaged 299 

across the 5 perspectives was 0.67 for the image phene, Total Root Length, and the manual phene, 300 

Overall Complexity. The maximum correlation for individual perspectives (single camera) compared to 301 

manual measures was found to be 0.65, also for Total Root Length versus Overall Complexity. 302 

Similarly, the averaged image phenes across perspectives such as the Network Area, Perimeter, Lower 303 

Root Area and Computational Time correlated well with Overall Complexity with correlation 304 

coefficients of 0.65, 0.64, 0.61 and 0.63 respectively. The perspectives corresponding to the maximum 305 

correlations for each phene combination have no consistent pattern. Overall, there are correlations 306 

among image-based and manual phenes, yet it is not clear which should be most relevant as ground 307 

truth data.  308 
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 309 

Figure 4  Pearson correlations calculated among digital and manual phenes. A. Correlations of phenes averaged across the 310 
perspectives before correlational analysis with manual phenes. B. Averages of the five correlations from the five perspectives of e311 
digital phene with manual phenes. C. Maximums of the five correlations from the five perspectives of each digital phene with man312 
phenes D. A map depicting which camera perspectives yielded the maximum correlations given in panel C. 313 

he five 
f each 
anual 
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In order to test whether averaging multiple perspectives was beneficial for predicting manual 314 

measurements, two operations were performed using the correlation tables described above. In Figure 315 

5, the maximum correlations derived from individual perspectives were subtracted from the 316 

correlations of the average phene across 5 perspectives against manual phenes. In Figure 6, the 317 

averages of correlations derived from individual perspectives were subtracted from the correlations of 318 

the average phene across 5 perspectives against manual phenes. In both cases, positive numbers 319 

indicate the correlations from averaging phenes across 5 perspectives before correlational analysis with 320 

manual phenes performed better than the alternative. The averaged phenes did not correlate better than 321 

the maximum correlation values across all perspectives for most phene combinations (Figure 5), yet no 322 

single perspective had consistently greater correlations than averaging all perspectives (Figure 4). 323 

Averaging phenes across 5 perspectives before correlational analysis always performed better than the 324 

average correlations across multiple perspectives for phene combinations that are statistically 325 

significant (Figure 6). Since no single perspective consistently correlates better to manual phenes, and 326 

the best perspective is hard to predict a priori, averaging phenes across 5 perspectives before 327 

correlational analysis is recommended. 328 
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329 

Figure 5  A. A heat map of the differences in correlations when the maximums of the five correlations from the five perspectives of e330 
digital phene with manual phenes (Fig 3B) are subtracted from the correlations of phenes averaged across the five perspectives be331 
correlational analysis with manual phenes (Fig 3A). B. Thresholded map demonstrating which differences of correlations indi332 
greater (better) correlations for averaging phenes across 5 perspectives before correlational analysis (only significant correlat333 
shown). 334 

 335 
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336 

Figure 6  A. A heat map of the differences in correlations when the averages of the five correlations from the five perspectives of e337 
digital phene with manual phenes (Fig 3C) are subtracted from the correlations of phenes averaged across the five perspectives be338 
correlational analysis with manual phenes (Fig 3A). B. Thresholded map demonstrating which differences of correlations indi339 
greater (better) correlations for averaging features across 5 perspectives before correlational analysis (only significant correlat340 
shown). 341 

Inter-perspective correlations 342 

The correlations among the five perspectives for each image phene were computed (Figure 7). T343 

maximum average inter-camera correlation was observed for network area, at 0.949±0.021 (mean±S344 

followed by surface area (0.933±0.013) and volume (0.932±0.016). These substantial correlatio345 

indicate that even if the phene values are different from all the perspectives (slopes not equal to 1), 346 

phene values change predictably across samples. The fineness index has the lowest average int347 

camera correlation of 0.488±0.271, possibly a function of differential fine root occlusion amo348 

perspectives. 349 
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350 

Figure 7  Averages and standard deviations for all pairwise correlations among the five perspectives for each image-based fea351 
(n=10). Pearson correlations were calculated for all 25 pairs of perspectives before being averaged and the standard devia352 
calculated. 353 

 354 

Analysis of Variance Due to Perspective 355 

Since the data was collected from five different perspectives for 24 soybean varieties, ANOVA w356 

performed to partition variation created by the multiple factors in this experiment using eta-squar357 

The camera perspectives were also considered as a factor as the plant roots were oriented with 358 

plane of maximum spread perpendicular to the central camera. Figure 8 shows the effect sizes359 

genotype, block in the field, and image perspective, as well as the residual of each image phe360 
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Genotype, block, and perspective effects were significant (P<0.001) for all phenes, except for the 361 

perspective effects for Volume, Surface Area, Lower Root Area, Fineness Index and Steep Angle 362 

Frequency (ns).  The genotype effect size ranged from a low (13%) for Holes to a maximum (55%) for 363 

Maximum Radius.  Thus, the Maximum Radius was particularly well suited for genotype separation. 364 

The phenes with the greatest effect sizes due to different perspectives were Average Radius, Holes, 365 

Computation and Depth. For the fineness index factor, the lower effect size associated with perspective 366 

agrees well with the large SD of the inter-camera correlations for the same phene in Figure 7. 367 
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368 

Figure 8  Effect sizes of all the factors for each phene extracted from the images. For each effect size, the percentage is shown 369 
contributes to the total variation. Each effect size is marked with the significance of that factor (except for the residual error) based o370 
values obtained. ‘*’ was given for p-value < 0.05, ‘**’ for p-value < 0.01 and ‘***’ for p-value < 0.001. 371 

Heritabilities of image-based and manual phenes 372 

Broad-sense heritability is an important metric for how suitable a new phene would be for breed373 

programs, assuming some phene states have beneficial effects on crop performance. The averag374 

phenes across perspectives generally had greater genotype heritability than phenes from individ375 

perspectives (Figure 9). The greatest heritability for averaged image phenes was Maximum Radius w376 

a heritability of 0.837 and the greatest heritability for manual phenes was Overall Complexity w377 
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heritability of 0.823. For comparing to the results of MANOVA, partial eta-squared was calculat378 

which is not directly comparable to heritability, but useful for looking at the differences among ima379 

based phenes for separating genotypes using raw data from all 5 perspectives directly with380 

averaging. The largest genotype effect size from MANOVA analysis of image phenes was 0.358 381 

Volume. The greatest heritability of derived phenes was observed fir Min. Max. Width with 382 

heritability value of 0.693. 383 

384 

Figure 9  The broad-sense heritablities are plotted for individual camera perspectives (colored circles), using the average ac385 
perspectives (black squares), and with manual phenes draw win a black ‘x’ enclosed in a square. Effect-sizes for MANOVA (b386 
triangles) using all five perspectives for each feature are displayed for comparison. 387 
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 388 

Throughput of root crown imaging, segmentation, and phene extraction 389 

The M-PIP system was tested for performance and compared to the existing systems such as DIRT 390 

(Bucksch et al. 2014) and REST (Colombi et al. 2015). The average imaging speeds of the M-PIP 391 

system was 1.66 root crowns min-1 whereas the imaging speed given for REST system was 1.5 root 392 

crowns min-1. Table 2 shows the segmentation time for various algorithms implemented for M-PIP, 393 

where the EM algorithm used here with GPU acceleration took 10 seconds to segment color images, 394 

while the DIRT implementation of Otsu’s thresholding took 22 seconds. On average the new feature 395 

extraction program, which was implemented in MATLAB, required 26 seconds for phene extraction on 396 

a PC with an Intel Xeon E3-1271 v3 processor (3.6 GHz) having 4 cores and 16 GB of RAM. An 397 

average of 860 seconds was required for phene extraction when the DIRT system was run in multi-398 

threaded mode on PC running Ubuntu Linux with Intel Core i5-3440 processor (3.3 GHz) having 4 399 

cores and 16 GB RAM. 400 

Discussion 401 

Image acquisition using the Multi-Perspective Imaging Platform (M-PIP) was faster than existing 402 

methods with regards to simultaneous imaging of the root crown from multiple perspectives, 403 

transferring the image data from each camera to the computer, and the time to place and replace root 404 

crowns. The setup box was operated by two persons, one sending commands to cameras to take 405 

pictures and the other replacing the plant roots after imaging. The two person team was able to keep up 406 
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with the root crowns passed by a group of six (three teams with two people each) conducting manual 407 

measurements. Since, the setup box was designed to be invariant from external lighting conditions, the 408 

images had high contrast of root crown to background, leading to excellent segmentation outputs. 409 

The EM algorithm used to segment the color images from the cameras provided more connected root 410 

pixels in the segmentation results compared to the segmentation by conventional thresholding 411 

algorithms on grayscale images. In this study, a blue-colored background was found to contrast best 412 

with roots and allowed the use of multi-dimensional color channel information to better segment roots 413 

from the background. This made the color channels in each image to store information for segmenting 414 

the images and hence lead to better results. The segmentation and phene extraction for the M-PIP was 415 

performed on a PC with an Intel Xeon E3-1271 v3 processor having 4 cores and 16 GB of RAM. The 416 

PC has a NVIDIA Quadro K600 GPU with 192 CUDA cores having Compute Capability 3.0 (a 417 

performance standard from NVIDIA). Optimization was achieved further by applying hardware 418 

acceleration techniques for CPU and GPU, making this program suitable for online segmentation of 419 

images.  This direct segmentation of the images in the field enables immediate control of image quality 420 

and system performance, providing operator peace of mind and the ability to make adjustments if 421 

needed. 422 

Correlation with the manual phenes 423 

The maximum correlation was increased after averaging phenes across the perspectives to 0.67 from 424 

the maximum correlation for individual perspectives of 0.65, for the feature combination of the image 425 
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phene Total Root Length and the manual phene Overall Complexity. The overall complexity is scored 426 

manually based on apparent secondary and tertiary roots leading to more or less bushy structures. This 427 

means that a majority of the phenes extracted from the images are useful in predicting the complexity 428 

of the plant root automatically, and may allow complexity to be deconstructed to more basic properties. 429 

While the angle phenes extracted manually did not correlate significantly to the image phenes, the 430 

number of lower roots and the stem diameter correlated well. Since manual angles were measured on 431 

primary laterals whereas image-based angles were calculated for every pixel in the skeleton, including 432 

the taproot, secondary roots, and tertiary roots, the manual and image-based measures are 433 

fundamentally different.  Additionally, angles may not be same as seen from various imaging 434 

perspectives and manual root angles were measured using a protractor in a perspective where the roots 435 

are spread widely, similar to the central camera. Additionally, occlusion of roots by other roots when 436 

viewed from particular perspectives may have contributed to the lack of significant correlations 437 

between manually measured angles and imaged based phene. The greatest negative correlations can be 438 

observed with the number of medium and coarse roots in a root crown with the overall complexity. 439 

This indicates that investment into large radii roots may decrease length and branching, leading to a 440 

decrease in overall complexity. The manual phenes Nodule Size and Nodule Density had minimal 441 

effect on overall complexity. Both manual and image-based measures may have relevance for 442 

agronomic performance, a focus of future work. 443 

The camera perspectives of phenes that led to maximum correlations with the manual phenes were 444 

distributed with no obvious pattern (Fig. 3D), indicating that no single perspective consistently 445 
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performed better than any other perspective. Although the average phenes across all perspectives did 446 

not perform as well as the maximum correlations selected from among the five perspectives (Fig. 4), 447 

the best performing perspective could not be predicted a priori. Hence, if the phenes from all the 448 

perspectives were averaged, an overall improvement in the correlation may be observed because the 449 

average of these phenes reduces the effect of the outliers that were present when the root crown was 450 

imaged from multiple perspectives. The average of the phenes from all the perspectives always out-451 

performed the average correlations across all the perspectives. Therefore, averaging features across all 452 

five perspectives before analysis is recommended. 453 

Inter-camera correlations 454 

The image phenes from various perspectives generally correlated well, except for a few phenes that 455 

significantly vary among perspectives. For example, finer roots easily can be blocked by coarse roots 456 

which may lead to a large variance in their numbers from different perspectives. This is shown in the 457 

Figure 7, where Fineness Index and holes had greater SD in correlations across all perspectives. Also, 458 

the orientation of the root either increases or decreases as a function of perspective. This may lead to 459 

misidentification of some shallow and medium angle roots as steep angle roots in some perspectives. 460 

While the SD for correlations of Maximum Width was reasonable because the phene varies with the 461 

change in perspective, a similar SD for correlations of Depth was curious. However, this may be 462 

attributed to the Depth of some roots exceeding the dimensions of the image in some perspectives 463 

which may be caused by non-precise alignment angles at which the cameras were mounted. Greater SD 464 

was also observed for phenes such as Convex Area and Solidity, which is reasonable as Maximum 465 
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Width also had greater SD as perspective changed. The phenes with large inter-camera correlations and 466 

small SD such as network area, volume, and surface area etc. may be considered perspective 467 

insensitive. Hence, these phenes may be particularly well-suited and reliable when the root crowns are 468 

imaged from a single perspective. Greater SD for a phene correlation may imply that the perspectives 469 

may hold more information about the root crown such as the information needed for genotype 470 

separability. 471 

Factor separability of image-based phenes 472 

Among image-based phenes, the absolute and relative effect sizes of the genotype, block, perspective, 473 

and residual error vary greatly (Figure 8). The phenes Average Radius, Holes, Computation and Depth 474 

have relatively larger perspective effect sizes. This was due to the larger width roots occluding the finer 475 

roots. As the perspectives changed the Average Radius and Holes changed and hence the 476 

Computational time also changed. Here, the Computational time may be approximately considered as 477 

proportional to the complexity of the root crown. When the perspective is changed the root may be 478 

recorded as smaller or larger size or having small or large number of Holes. If the root crown is large in 479 

size and the larger number of Holes, the Computational time increases. On the other hand, if the root 480 

crown is large in size and bushy such that the Holes are not visible, the Computational time decreases. 481 

This explains the similar perspective effect size of Computational time with Holes and the smaller 482 

genotype effect size of this phene, even though this phene correlates well with the manual phene 483 

Overall Complexity.  484 
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Frequency-based phenes had smaller effect sizes for the perspectives factor. This was attributed to the 485 

roots contain a majority of finer roots than coarse roots, thus counting of coarse roots from multiple 486 

perspectives may lead to similar values, thereby decreasing the effect size and significance. In case of 487 

Fine and Medium Radius Frequencies, the effects of occlusion, made the phenes less significant. In the 488 

Angle Frequencies, change in the perspectives also changes the angle of the roots. This substantial 489 

dependency on the change in perspective coupled with the problems due to occlusion resulted in a 490 

smaller effect size of Frequency phenes for the perspective factor. 491 

The genotype factor generally had a larger effect than perspective and block. Interestingly, the phenes 492 

that were most susceptible to change in perspective were not well-suited to separate genotypes. On the 493 

other hand, many of the phenes that were susceptible to perspective yielded greater partial effect sizes 494 

when performing MANOVA using phenes from all the perspectives to test for genotype separability 495 

(Figure 9).  496 

Heritabilities of image-based and manual phenes 497 

Heritability and MANOVA results revealed that the image phene maximum radius had a greater 498 

heritability than the manually scored Overall Complexity (Figure 9). For genotype separation, the 499 

averaged phenes from all camera perspectives generally perform better than the phenes from individual 500 

perspectives. This shows that imaging roots from multiple perspectives may provide information which 501 

may otherwise be lost or limited due to occlusion of roots and changes in angle based on perspective. 502 

To examine the influence of multiple perspectives for genotype separability, MANOVA was performed 503 
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by taking the phene values from across all the perspectives. The Volume and Solidity phenes had the 504 

greatest MANOVA partial effect-sizes compared to the remaining phenes. Interestingly, the phenes 505 

having larger effect-sizes for the perspective factor did not have higher MANOVA partial effect size 506 

(from Figure 9). This indicates that effect-sizes in perspective factors for these phenes did not contain 507 

information for genotype separability. On the other hand, the phenes Volume and Solidity have larger 508 

effect-sizes in MANOVA analysis than using phenes from single perspectives for heritability. This 509 

shows that including each perspective in the analysis for these phenes can increase genotype 510 

separability using MANOVA.  The phenes for the Angle Frequencies had smaller heritabilities and 511 

MANOVA partial effect sizes. This may be attributed to the change in orientation of the roots as the 512 

perspective changed. Also, both Volume and Solidity are susceptible to occlusion, likely contributing 513 

to smaller partial effect-sizes in MANOVA analysis. In the aggregated features combined from the 514 

phenes from all the perspectives, the phene Min. Max. Width had a greater heritability than the 515 

Maximum Width, and that of the phene Max. Max. Width had smaller heritability. While these 516 

aggregated phenes have very similar heritabilities, more studies are needed to conclude that these 517 

aggregated phenes can be used reliably in root crown phenotyping. 518 

The similarity of heritabilities of image phenes and those of manual phenes indicates that the image 519 

phenes can be used reliably. The image phenes can be investigated further to better understand their 520 

role or importance for plant growth and performance in different environments. The phenes with the 521 

greatest heritabilities may be the most useful for breeding, but more needs to be known about their 522 

relation to crop performance. 523 
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Conclusions 524 

The Multi-Perspective Imaging Platform described here is capable of imaging hundreds of root crowns 525 

a day from five perspectives. A reliable segmentation algorithm which can efficiently retrieve the root 526 

structure from color images was implemented. The segmentation program utilized hardware 527 

acceleration leveraging CPU and GPU resources present on the PC to achieve faster segmentation rates 528 

without compromising on the quality of the segmentation process. A variety of root phenes were 529 

extracted, some are based on the size and appearance of the plant root, while other phenes were 530 

intended to extract hidden structures or additional information about the roots. Image acquisition in the 531 

field was faster than documented for the REST platform, and image analysis was faster than DIRT but 532 

slower than REST (which used greyscale thresholding).  Finally, using phenes across perspectives 533 

allowed both greater correlations to manual phenes and greater heritabilities relative to only using 534 

individual perspectives.  535 

Future improvements in image phene extraction include implementation of new phenes such as root 536 

angles from each root class and novel ways of merging phenes from multiple perspectives instead of 537 

using the mean across all camera perspectives. Such advances may result in greater precision when 538 

used for genetic mapping and thus more reliable genetic markers for breeding purposes. Furthermore, 539 

more integration of hardware and software specifically for root crown phenotyping has potential to 540 

greatly increase throughput and reliability.  541 
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The M-PIP facilitates rapid, quantitative assessment of root phenes and can be used in physiological 542 

experiments to link root phenotypes to measures of crop performance such as grain yield, nutrient 543 

content, and shoot mass. Likewise, the phenes can be mapped to genetic regions using QTL analysis 544 

and GWAS to enable marker assisted breeding for root phenes. As such, the M-PIP system can 545 

facilitate the inclusion of specific root phenes as targets for breeding programs to aid in the 546 

development of more productive, stress tolerant crops and reduce environmental impact due to nutrient 547 

loss from agricultural ecosystems.  548 
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 708 

Tab709 
le 710 
2. 711 

Ave712 
rag713 

e 714 
time required for the segmentation of all 2400 images across platforms. RVM and EM calculations 715 

Features extracted Description 

Median and maximum number of 
roots 

Horizontal line scans are performed from left to right in each row through the segmented image. 
When pixels change from background to root, then one root is counted. The number of roots are 
recorded from each row of the segmented image and the median and maximum number of roots was 
determined from these values. 

Total root length (mm) It was determined by counting the total number of pixels in the skeletonized image. 

Depth, maximum width (mm) and 
width-to-depth ratio 

The values for both depth and maximum width are obtained from the dimensions of the segmented 
image containing the plant root. The width-to-depth ratio is the ratio of maximum width to the depth 
of the image. 

Network area (mm2), convex area 
(mm2) and solidity 

Network area is the total number of pixels in the segmented image. The convex hull of a geometric 
shape is minimal sized convex polygon that can contain the shape. The ratio of network area and the 
convex area was noted as the solidity. 

Perimeter (mm) Perimeter is the count of total number of pixels in the perimeter image. 

Average and maximum radius 
(mm) 

For each pixel on the medial axis of the segmented image, the distance to the nearest non-root pixel 
was computed and was noted as the radius at that pixel. A list of radii was obtained from all the 
medial axis pixels and determine the average and maximum radii. 

Volume (mm3) and surface area 
(mm2) 

Using the radii determined earlier, the sum of all cross-sectional areas across all the medial axis 
pixels was noted as volume and the sum of the perimeter across all the medial axis pixels was noted 
as surface area. 

Lower root area (mm2) The lower root area is the area of the segmented image pixels that are located below the location of 
the medial axis pixel, which has the maximum radius. 

Holes Holes are the disconnected background components that were counted by inverting the segmented 
image and performing connected component analysis. 

Fine Radius Freq., Medium 
Radius Freq., Coarse Radius Freq. 

From the skeletal image, the medial axis pixels are grouped into fine, medium or coarse roots based 
on the radius values at the pixels. 

Fineness Index The ratio of the number of fine medial axis pixels to the number of coarse medial axis pixels. 

 Shallow Angle Freq., Medium 
Angle Freq., Steep Angle Freq. 

Given the skeletal image, for every pixel in the medial axis, the locations of the medial axis pixels in 
a 20x20 pixel locality were identified and the orientation of these pixels in the locality was 
determined. This orientation was noted for every medial axis pixel. Given these orientations, the 
pixels were grouped as steep, medium, or shallow. 

Shallowness Index The ratio of the number of medial axis pixels having shallow angles to the number of medial axis 
pixels having steep angles. 

Computational time (seconds) The time taken in seconds to extract all features in an image. 
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were on a Intel Xeon E3-1271 v3 processor (3.6 GHz) having 4 cores and 16 GB of RAM, REST was 716 
reported in the original paper, and the DIRT implementation was run on an Intel Core i5-3440 717 
processor (3.3 GHz) having 4 cores and 16 GB RAM. 718 

 719 
Segmentation Method Average segmentation 

time (seconds) 

RVM implementation in MATLAB 90 

EM implementation in MATLAB 50 

EM implementation in C++ with CPU acceleration 25 

EM implementation in C++ with GPU acceleration 10 

Image thresholding with trait extraction in REST system 6 

DIRT implementation of image thresholding 22 
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