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Abstract 

Developmental dyslexia (DD) is one of the most prevalent learning disorders among children 

and is characterized by deficits in different cognitive skills, including reading, spelling, short 

term memory and others. To help unravel the genetic basis of these skills, we conducted a 

Genome Wide Association Study (GWAS), including nine cohorts of reading-impaired and 

typically developing children of European ancestry, recruited across different countries 

(N=2,562-3,468). 

We observed a genome-wide significant effect (p<1×10-8) on rapid automatized naming of 

letters (RANlet) for variants on 18q12.2 within MIR924HG (micro-RNA 924 host gene; p = 

4.73×10-9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation 

transporter; p = 2.25×10-8). RAN represents one of the best universal predictors of reading 

fluency across orthographies and linkage to RAN has been previously reported within CELF4 

(18q12.2), a gene highly expressed in the fetal brain which is co-expressed with NKAIN3 and 

predicted to be a target of MIR924. These findings suggest new candidate DD susceptibility 

genes and provide insights into the genetics and neurobiology of dyslexia. 

 

 

Background 

Developmental dyslexia (DD) is a neurodevelopmental disorder affecting the ability of 

learning to read, in spite of adequate intelligence, educational opportunities and in the 

absence of overt neurological and sensorial deficits1.  It shows a prevalence of 5-12% among 

school-aged children, implying life-long learning difficulties for most of the affected 

individuals1. Dyslexic individuals usually show problems in accurate and fluent reading and 

spelling, and in reading comprehension2. These problems are often caused by deficits in 

underlying cognitive skills, such as the ability to recognize and manipulate the phonemic 

constituents of speech (also known as phoneme awareness), the ability to store such 

phonemes while reading (also known as phonological short term memory), or the ability to 

fast map known visual symbols onto spoken word representations (known as naming speed)3. 

All these cognitive abilities show moderate to high heritability (40-80%)4-6 and significant 

genetic correlations with DD4. Hence, they represent cognitive indicators of dyslexia risk that 

are optimally suited for investigating the genetic mechanisms at its basis. 
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In the last two decades, several studies investigating both DD and the underlying cognitive 

skills have been carried out to better understand the genetic and neurobiological basis of 

reading. On the one hand, linkage and targeted association analyses have suggested several 

candidate DD susceptibility genes, the most robust of which include DYX1C1 (15q21), 

DCDC2 and KIAA0319 (6p22.3), GCFC2 and MRPL19 (2p12), and ROBO1 (3p12.3-p12.3) 

(reviewed in 1,7,8). On the other hand, most of the genome-wide association studies (GWAS) 

published so far have identified mainly suggestive associations with DD and related cognitive 

traits (p < 10-5)9-13, with only one recent study reporting a genome-wide significant 

association (p < 5x10-8)14. The first GWAS for reading ability reported used DNA pooling of 

low vs high reading ability groups in ~1,500 7-year-old children which were genotyped with 

a low-density Single Nucleotide Polymorphism (SNP) microarray (∼107,000 SNPs)13. The 

SNPs showing the largest allele frequency differences between low and high ability groups 

were tested in an additional follow-up cohort of 4,258 children, finally identifying ten SNPs 

showing nominally significant associations with continuous variation in reading ability13. A 

later genome-wide linkage and association scan on ∼133,000 SNPs, in a sample of 718 

subjects from 101 dyslexia-affected families, identified an association with dyslexia status at 

rs9313548, near FGF18 (5q35.1)12. More recently, three GWAS studies with different 

designs were carried out with the aim of identifying shared genetic contributions to reading 

and language abilities. Luciano et al.11 performed a GWAS on quantitative reading- and 

language-related traits in two population-based cohorts (N∼6,500), analysing word reading, 

nonword repetition, and a composite score of reading and spelling abilities. They reported a 

suggestive association of rs2192161 (ABCC13; 21q11.2) with nonword repetition and of 

rs4807927 (DAZAP1, 19p13.3) with both the word reading and the reading-spelling score. A 

case-control GWAS comparing dyslexic (N=353), language impaired (LI) (N=163), and 

comorbid cases (N=174) to a population-based control dataset (N=4,117) identified 

nominally significant associations with comorbid DD-LI cases at rs12636438 and rs1679255, 

mapping to ZNF385D (3p24.3)9. Another GWAS analysed the first principal component from 

various reading- and language-related traits (both with and without IQ adjustment) in three 

datasets comprising children with reading or language problems and their siblings (N=1,862), 

and reported suggestive associations at rs59197085, upstream of CCDC136/FLNC (7q32.1), 

and at rs5995177, within RBFOX2 (22q12.3)10. More recently, Truong and colleagues14 

reported a genome-wide significant multivariate association of rs1555839 (10q23.31) with 

two skills predicting DD risk, namely rapid automatized naming (RAN) and rapid alternating 
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stimulus (RAS), in a multisite case-control study of DD made up of individuals of non-

European ancestry (N=1,263). This SNP, located upstream of the pseudogene RPL7P34, was 

also associated with measures of word reading and showed a nominally significant 

multivariate association (p < 0.05) with RAN traits in an independent cohort from Colorado.  

Although many of the genes suggested by these GWAS studies showed interesting potential 

biological links to DD and underlying skills, most of these associations did not reach 

genome-wide significance and were not replicated in independent datasets15. This might have 

different reasons, including the low statistical power of these studies implied by the relatively 

small sample sizes, and the heterogeneity of recruitment criteria and phenotypic assessment 

of the cohorts involved. In addition, the candidate susceptibility genes identified and 

replicated so far explain only a minor part of the genetic variance underlying dyslexia and the 

related cognitive traits, and a big proportion of this heritability remains unexplained. 

To help unravel the genetic basis of DD and related cognitive skills, we conducted a large 

international collaborative GWAS. We analysed cognitive traits such as word reading, 

spelling, decoding skills, phoneme awareness, verbal short term memory and naming speed, 

in nine cohorts of reading impaired and typically developing participants of European 

ancestry (maximum N=3,468). We observed a genome-wide significant association at 

18q12.2 and an association approaching genome-wide significance at 8q12.3, both with rapid 

automatized naming (RAN, N=2,563), which allowed us to identify two novel candidate 

susceptibility genes potentially affecting this ability.  

 

Subjects and Methods 

Datasets 

Table 1 reports the main details on the datasets involved in this study and on the recruitment 

criteria. 

Unrelated DD cases and controls were recruited across seven different European countries, 

namely Austria (N=374), Germany (N=1,061), Finland (N=336), France (N=165), Hungary 

(N=243), The Netherlands (N=311), and Switzerland (N=67). In addition, we included two 

family-based datasets in the study. One of these, from Colorado, United States (US), 

contained children showing a school history of reading difficulties as well as their siblings 
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(N=585; 266 independent nuclear families)10,16. The other one, from the United Kingdom 

(UK), consisted of subjects with a formal diagnosis of dyslexia and their unaffected siblings 

(N=983; 608 independent nuclear families)10,17. Although the family-based datasets have 

been previously investigated in GWAS studies10,17,18 and the European datasets have been 

analysed in a candidate (SNP) association study19, such datasets were never analysed jointly 

in a GWAS. In the present study, samples from Austria, Germany, and Switzerland were 

merged into a single dataset (hereafter called AGS), since they shared language, genetic 

ancestry, phenotypic measures and selection criteria19-21. 

 

Phenotypic measures 

We focused on the core phenotypes of dyslexia, namely word reading (WRead), nonword 

reading (NWRead), and word spelling (WSpell), and on five cognitive measures underlying 

reading ability and dyslexia, namely phoneme awareness (PA), digit span (DigSpan, a 

measure of verbal short-term memory), and rapid automatized naming of letters (RANlet), 

digits (RANdig), and pictures (RANpic). These skills showed moderate to high cross-trait 

correlations (see Table S1 in Supplementary Methods). A brief explanation of these measures 

is reported in Table 2, while details on statistical elaboration are reported in Supplementary 

Methods and elsewhere10,20,21. Briefly, raw scores from psychometric tests were grade-

normed (age-adjusted in Colorado) and then z-standardized to reduce skewness, with the 

exception of the DigSpan score, which was only z-normalized in all datasets since it was 

already standardized and normally distributed20. No phenotypic outliers were detected in any 

of the datasets analysed (see Supplementary Methods for details). 
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Dataset Recruitment Language Relationships 
Sex 

Ratio 
(M:F) 

Age 
range 

(mean) 
IQ inclusion criteria 

AGS a DD cases and controls German 
Only 

unrelated 
subjects 

886:568 

8-19 
(9.9) 

Age-appropriate WISC Block Design80,81 score ≥ 7;  
Age-appropriate WISC Similarities80,81 score ≥ 6 

Finland DD cases and controls Finnish 167:157 
France DD cases and controls French 94:69 

Hungary DD cases and controls Hungarian 136:105 
Netherlands DD cases and controls Dutch 157:127 

Colorado Children with a DD school 
history and their siblings 

English Siblings 
(small 
nuclear 

families) 

292:258 
8-19 

(11.5) 

Full scale IQ (average score of age-adjusted WISC-
R/WAIS-R verbal IQ and performance IQ, measured 

through multiple subtests)82 ≥ 80 c 

UK b DD cases and their siblings English 
596:327 

5-31 
(11.7) 

Full scale IQ (average of age-adjusted standardized 
BAS/WAIS-R similarities subtest and BAS matrices 

subtest score)83,84 ≥ 80 c 
 

Table 1. Main characteristics and recruitment criteria of the datasets involved in the present study.  

Abbreviations: IQ = Intelligence Quotient; DD = developmental dyslexia; WISC = Wechsler Intelligence Scale for Children; WAIS = Wechsler 

Adult Intelligence Scale – Revised; BAS = British Ability Scale. 

a Austria-Germany-Switzerland 

b United Kingdom 

c See Gialluisi et al.10 for details. 
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Trait Definition Task 

Wread Reading single real words of varied difficulty 
Timed word reading in AGS, Finland, France, Hungary and the Netherlands; 

Untimed word reading in UK; 
Composite score of timed word reading and reading accuracy in Colorado 

Wspell Spelling single real words after dictation Spelling accuracy 

NWRead Reading aloud nonsense words of varied difficulty 
Timed nonword reading in AGS, Finland, France, Hungary and the Netherlands; 

Untimed nonword reading in UK and Colorado 

PA 
Deletion, substitution or swapping of specific 

phonemes in one or multiple words 

Phoneme deletion in AGS, Finland, France, Hungary and the Netherlands; 
Phoneme deletion/substitution and spoonerism in UK; 

Composite of phoneme deletion and phoneme segmentation and transposition tasks in Colorado 

DigSpan 
Reciting a sequence of digits presented by 

recalling them in the same (forward) and/or 
reverse (backward) order 

WISC (Wechsler Intelligence Scale for Children) forward and backward digit span task 

RANdig 
Naming as quickly and as accurately as possible a 

matrix of digits visually presented Naming speed task (number of digits correctly named per minute) 

RANlet 
Naming as quickly and as accurately as possible a 

matrix of letters visually presented Naming speed task (number of letters correctly named per minute) 

RANpic 
Naming as quickly and as accurately as possible a 

matrix of objects visually presented 
Naming speed task (number of objects/pictures correctly named per minute) 

 

Table 2. Cognitive traits analysed in the present study. More detailed information on these phenotypic measures, including psychometric tests 
used and statistical elaboration, is reported in the Supplementary Methods. 
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Genotype quality control (QC) and imputation 

Individuals were genotyped using Illumina HumanHap 300k, 550k, 660k, 

HumanOmniExpress, and HumanCoreExome BeadChips (see Table S2 for details). 

Genotype QC was carried out in PLINK v1.90b3s (https://www.cog-genomics.org/plink2)22 

and QCTOOL v1.4 (http://www.well.ox.ac.uk/~gav/qctool/), as described in Supplementary 

Methods and elsewhere23. Within each dataset, SNPs were filtered out if they showed a 

variant call rate < 98 %; a minor allele frequency (MAF) < 5%, or a Hardy Weinberg 

Equilibrium (HWE) test p-value < 10-6. Moreover, samples showing a genotyping rate < 98 

%, cryptic relatedness (in datasets of unrelated subjects), identity-by-descent (IBD) not 

corresponding to the available pedigree information (in sibling-based datasets), and 

mismatches between genetic and pedigree-based sex were discarded. Furthermore, genetic 

ancestry outliers -detected in a multidimensional scaling (MDS) analysis of pairwise genetic 

distance- and samples showing significant deviations in genome-wide heterozygosity were 

also filtered out (see Table S3). 

For imputation, autosomal variants were aligned to the 1000 Genomes phase I v3 reference 

panel (ALL populations, June 2014 release)24 and pre-phased using SHAPEIT v2 (r837)25. 

Imputation was performed using IMPUTE2 v2.3.226 in 5 Mb chunks with 500 kb buffers, 

filtering out variants that were monomorphic in the 1000 Genomes EUR (European) samples. 

Chunks with < 51 genotyped variants or concordance rates < 92 % were fused with 

neighboring chunks and re-imputed. Finally, imputed variants (genotype probabilities) were 

filtered for IMPUTE2 INFO metric ≥ 0.8, MAF < 5% and HWE test p-values < 10-6, using 

QCTOOL v1.4. We checked again for the absence of genetic ancestry and genome-wide 

heterozygosity outliers after imputation, which revealed substantial concordance with pre-

imputation QC. Further details on the filters used in genotype QC are reported in Table S3, 

while summary statistics are reported for each dataset in Table S2. 

 

Genetic association testing and meta-analysis 

After genotype QC and imputation, autosomal genotype probabilities were tested for 

association with the continuous traits available within each dataset. In the datasets containing 

only unrelated subjects – namely AGS, Finland, France, Hungary, and The Netherlands –

association with genotype dosage was tested through linear regression in PLINK v1.9, using 
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the first ten genetic ancestry (MDS) components as covariates. In the sibling-based datasets 

(Colorado and UK), a generalized linear mixed-effects model association test was carried out 

through FastLMM v2.0727, using a genetic relationship matrix (GRM) of samples as a 

random effect while disabling normalization to unit variance for tested SNPs. 

Following separate GWAS analyses for each dataset, variant associations with each of the 

eight univariate traits available were combined using a fixed-effects model based on inverse-

variance-weighted effect size in METASOFT v2.0.128. Following the software guidelines, 

pooled analysis was conducted in two steps: a first run was carried out to compute genomic 

inflation factors, which were then used to correct meta-analysis statistics in a second run. The 

numbers of subjects involved in our pooled analysis were 3,468 for WRead, 3,399 for 

WSpell, 3,409 for NWRead, 3,093 for PA, 2,591 for DigSpan, 2,563 for RANlet and 

RANdig, and 2,562 for RANpic (see Table S4 for detailed sample size by dataset). RAN 

measures and DigSpan were not available in the UK dataset, which was therefore not 

included in the pooled analyses of those traits. The numbers of variants analysed in two or 

more datasets were 6,952,813 for RANlet, RANdig, RANpic, and DigSpan and 6,969,139 for 

WRead, WSpell, NWRead, and PA. The common genome-wide significance threshold α = 

5×10-8 was corrected for multiple testing of five independent latent variables, as computed 

through MatSpD (http://gump.qimr.edu.au/general/daleN/matSpD/)29 on the correlation 

matrix of the eight univariate traits analysed (Table S1). This adjustment resulted in a final 

Bonferroni-corrected significance level α = 1×10-8. 

 

Further analyses of top association signals 

The analyses explained in this section were only conducted on datasets with RANlet 

measures available (see Table S4) and required the preliminary adjustment of phenotypic 

traits for genetic population structure in each dataset. This was carried out differently in the 

datasets including only unrelated subjects (AGS, Finland, France, Hungary, and The 

Netherlands) and in the sibling-based dataset (Colorado). In the former group, we regressed 

the phenotypic traits against the first ten MDS components (previously used as covariates in 

the GWAS). In the latter case, we adjusted the traits for a GRM through the polygenic() 

function of the GenABEL package (http://www.genabel.org/)30. 
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Permutation-based correlation test and effect size estimation 

To assess the robustness of the most significant associations detected (with RANlet), we 

carried out a permutation-based test on the top-associated SNPs at 18q12.2 (rs17663182) and 

8q12.3 (rs16928927) in R v3.2.3 (http://www.R-project.org/)31. Briefly, we first computed 

allelic dosages from genotype probabilities for the SNPs of interest within each dataset, and 

adjusted the RANlet score for genetic population structure in each dataset (as explained 

above). Subsequently, we computed Pearson correlation through the cor() function of the 

WGCNA v1.51 package32. After the calculation of the Pearson correlation coefficient r, we 

permuted both phenotypic residuals and dosages 10,000 times, computing similar correlation 

coefficients for each of the resulting 10,000 × 10,000 = 100 million random combinations. 

Finally, we derived an empirical p-value from the distribution of these 100 million random 

correlations (defined as the frequency of random correlations which were at least as high as 

our original correlation coefficient r). 

To estimate the fraction of RANlet phenotypic variance explained by rs17663182 (18q12.2) 

and rs16928927 (8q12.3) within each dataset, we used R to compute linear regression R2 of 

the phenotypic trait adjusted for genetic population structure vs dosage values of the top-

associated variants. 

 

Test of pleiotropy 

We tested the top association signals for pleiotropic effects on traits other than RANlet 

analysed in this study, namely WRead, WSpell, NWRead, PA, DigSpan, RANdig and 

RANpic. To this end, we first regressed these traits, which had previously been adjusted for 

genetic population structure, against the RANlet score in R, separately for each dataset. Then 

we tested the residuals of these traits for association with rs17663182 and rs16928927 

dosages in PLINK. Finally, we combined the results of the association tests in different 

datasets through an inverse-variance fixed-effect pooled analysis in METAL v25-03-2011 

(http://www.sph.umich.edu/csg/abecasis/Metal/index.html)33, which allowed us to directly 

detect concordance of allelic trends across datasets for all the SNPs tested. 
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Test for independent genetic effects in 18q12.2 and 8q12.3 

We tested for the presence of genetic effects independent from the local top hits in 18q12.2 

and 8q12.3 (see above). For each of these two SNPs, we first regressed RANlet scores 

adjusted for population structure against the allelic dosage values and extracted the 

phenotypic residuals in each dataset. Then we used PLINK v1.9 to test these residuals for 

association with all the SNPs positioned up to 50 kb from the most significant variant in each 

region of interest, namely 275 variants on 8q12.3 and 236 variants on 18q12.2. Then we 

combined the association statistics that were produced for each dataset using METAL (as 

described above). 

 

SNP×SNP interaction analysis  

To investigate potential epistatic effects of rs17663182 and rs16928927 on RANlet, we 

carried out a two-SNP interaction analysis in R. Since rs16928927 was not available in the 

Finnish dataset, this analysis was conducted only in the AGS, France, Hungary, Netherlands, 

and Colorado datasets. The analysis consisted of two steps: first, we regressed RANlet scores 

adjusted for genetic population structure against the allelic dosages of the SNPs rs17663182 

and rs16928927. Then we regressed the RANlet residual scores against a single interaction 

term of the two SNPs and computed the fraction of phenotypic variance (R2) explained by 

this term. 

 

Imaging genetics follow-up 

To further investigate the potential neurobiological implications of the top association signals 

detected at rs17663182 (18q12.2) and rs16928927 (8q12.2), we assessed genetic effects of 

these SNPs on different subcortical volumes, including Nucleus Accumbens, Amygdala, 

Caudate Nucleus, Hippocampus, Pallidum, Putamen and Thalamus. These neuroimaging 

traits had been tested for association in a large GWAS involving 30,717 subjects of European 

ancestry34. Our choice of investigating subcortical brain volumes was determined by two 

factors, namely i) the increasing evidence implicating subcortical structures in reading and 

language abilities (as reviewed in 1,35,36), and ii) the large sample size of the imaging genetics 

GWAS, which maximized the power to detect significant genetic effects. 
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For this analysis, we computed a Bonferroni-corrected significance threshold α = 7.1×10-4, 

taking into account two SNPs, five independent latent traits tested in our study (computed in 

MatSpD, see above), and the seven neuroimaging subcortical regions analysed by Hibar and 

colleagues34. 

 

Assessment of genes and SNPs previously associated with DD and related cognitive traits  

We investigated single variant associations for candidate SNPs and genes previously 

implicated in DD and related cognitive traits.  

First, we assessed all the variants mapping to nine candidate genes (up to 10 kb from the 5´- 

or 3´-UTR): DYX1C1, DCDC2, KIAA0319, C2ORF3, MRPL19, ROBO1, GRIN2B, FOXP2 

and CNTNAP2. For these genes, association with DD and related cognitive traits was 

previously reported in at least two independent studies (as reviewed in 1). Of note, most of the 

candidate variants identified in these genes have been already tested in studies showing a 

variable degree of overlap with our cohorts (reviewed in 1,7,8), hence they cannot be formally 

replicated within the scope of the current study. For this reason, we focused on six candidate 

SNPs among these variants, for which a statistically significant association (p < 0.05 after 

correction for multiple testing) has been reported in the past in datasets other than ours, but 

was never formally replicated. These SNPs included rs6803202, rs4535189, rs331142 and 

rs12495133 in ROBO137,38, rs7782412 in FOXP239 and rs5796555 in GRIN2B40. 

We next tested all the variants showing the strongest associations with DD and related 

cognitive traits in previous GWAS9-14. These included all those variants reported to be 

associated in previous GWAS papers, including genome-wide significant associations (p < 

5×10-8), suggestive associations (p < 1×10-5), or variants reported as the most significant 

associations (top 10 or top 100 list, depending on the paper; see Results section for a 

complete list). Again, some of these variants were identified by studies partially overlapping 

with our datasets10, while for other SNPs tested the statistics from the original papers were 

not fully available or not always directly comparable, due to either different design of the 

study or to different traits analysed9-14. Therefore, a direct comparison was possible only for 

few variants (see relevant Results section). 
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Gene- and pathway-based enrichment tests 

Gene-based association analyses for the phenotypic traits analysed were performed using 

MAGMA v1.06 (http://ctg.cncr.nl/software/magma)41. First, genetic variants were assigned 

to protein-coding genes based on their position according to the NCBI 37.3 (hg19) build, 

extending gene boundaries by 10kb from the 3’- and 5’-UTR. A total of 18,033 genes (out of 

19,427 genes available) included at least one variant that passed internal QC, and were thus 

tested in gene-based enrichment analysis. Gene-based statistics were computed using the 

single-variant association statistics calculated in the GWAS of each phenotype, using default 

settings. To account for linkage disequilibrium (LD) among the variants tested, we used a 

combined genetic data set of all the datasets pooled together. Given the number of genes 

(18,033) and of independent latent traits (5) tested, the Bonferroni corrected genome-wide 

significance threshold for this analysis was set to α = 0.05 / (18,033 × 5) = 5.5×10-7. 

Using the results of the gene-based association analysis, we carried out a pathway-based 

enrichment test for each trait analysed in the study, through a competitive gene-set analysis in 

MAGMA v1.06. We tested for enrichment 1,329 canonical pathways (i.e. classical 

representations of biological processes compiled by domain experts) from the Molecular 

Signatures Database website (MSigDB v5.2; http://software.broadinstitute.org/gsea/msigdb; 

collection C2, subcollection CP). To correct enrichment statistics for testing of multiple 

pathways, we used an adaptive permutation procedure with default settings (up to a 

maximum of 10,000 permutations). Hence, for gene-set analysis we corrected the 

significance threshold only for the number of independent latent traits tested (α = 0.05 / 5 = 

0.01). 

 

Polygenic Risk Score analysis 

To assess the genetic overlap of common variants between the dyslexia-related skills tested 

here and other correlated phenotypes, we carried out a polygenic risk score (PRS) analysis 

using PRSice v1.2542. We used the eight traits analysed in our GWAS as target traits and 

selected twelve different training traits from previous GWAS studies, including seven 

subcortical volumes used for the imaging genetics follow-up34, an educational attainment trait 

(expressed in years of education completed, EDUyears; N~293,000)43 and four 

neuropsychiatric disorders. These included Attention Deficit Hyperactivity Disorder (ADHD; 
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N~55,000)44; Autism Spectrum Disorder (ASD; N~16,000)45; Major Depressive Disorder 

(MDD; N~19,000)46; and Schizophrenia (SCZ; N~150,000)47. These neuropsychiatric 

conditions were selected in light of their comorbidity with dyslexia reported by previous 

literature3,48-50. 

We performed an analysis of summary statistics using only SNPs with association p-values ≤ 

0.05, and in linkage equilibrium (r2 < 0.05) with the local top hit within a 300 kb window, in 

each training GWAS. Only SNPs which had been tested both in the training and in the target 

GWAS were tested. The number of SNPs meeting these criteria ranged from 11,017 for the 

comparison of MDD vs DigSpan and RAN traits, to 25,409 for SCZ vs WRead, WSpell, 

NWRead and PA. To verify the robustness of our results, we repeated the analysis at 

increasing association significance (PT) thresholds in the training GWAS (with PT = 0.001, 

0.05, 0.1, 0.2, 0.3, 0.4, 0.5). 

To obtain a statistic on the direction of genetic correlations, we selected variants with 

association p-values ≤ 0.05 in each training GWAS and computed Pearson’s correlation of 

effect sizes (hereafter called rβ) with each of the target GWAS analysed. The significance 

threshold for these analyses was corrected for multiple testing of five independent target 

GWAS (i.e. the number of independent latent traits computed through MatSpD) and twelve 

different training GWAS (α = 0.05 / (5 × 12) = 8.3×10-4. 

 

Results 

For each analysis presented below, we report the empirical p-values, along with significance 

thresholds adequately corrected for multiple testing (see Subjects and Methods section). 

 

Single variant genome-wide associations 

Among the eight traits analysed in the present GWAS, only RANlet showed genome-wide 

significant associations withstanding correction for multiple testing (p < 1×10-8), mapped to 

chromosome 18q12.2. The most significant association was observed for rs17663182 (G/T; 

MAF = 7.7%; p-value = 4.73×10-9, major allele (G) β (SE) = 0.35 (0.06)). All the SNPs 

significantly associated on 18q12 were located within the non-coding gene MIR924HG 

(micro-RNA 924 host gene, also known as LINC00669; see Figure 1a) and were in high LD 
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with each other (r2 > 0.9). An additional, independent association approaching genome-wide 

significance was observed with RANlet at rs16928927 (C/T; MAF = 6.5%; p-value = 

2.25×10-8, major allele (C) β (SE) = -0.4 (0.07)) on 8q12.3. This SNP was located within the 

first intron of NKAIN3 (Na+/K+ transporting ATPase interacting 3; see Figure 1b). Further 

details on these associations are reported in Figure 2 and Table 3, while more detailed results 

of the GWAS analyses for each trait are reported in Supplementary Figures S1a-p and Tables 

S5a-h. 

 

 

Figure 1. Regional association plots of a) 18q12.2 and b) 8q12.3 with the RANlet trait. The 
most significantly associated variants are highlighted in violet. Plots were made using 
LocusZoom (http://www.locuszoom.org/). 
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Figure 2. Boxplots of the RANlet trait as a function of genotype of the lead variants 
rs17663182 (left side, major allele G) and rs16928927 (right side, major allele C). To 
generate these plots, all datasets were pooled together. RANlet Z-scores plotted here are 
residualized against the first 10 MDS covariates in all datasets except for Colorado, where we 
adjusted the phenotypic measure for pairwise genetic relatedness in GenABEL (see Subjects 
and Methods section). 
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SNP A1 A2 
A1 

frequency a 
p-value β b β SE I2 c 

Location 
(chr:bp) 

LD relative 
to local  

top hit (r2) 
Gene symbol 

Position 
relative to 

gene 

Distance 
from  
gene 
(bp) 

Trait 

rs17663182 G T 0.92 4.73 x 10-9 0.353 0.060 0 18:36859202 - LINC00669 within - RANlet 
rs17605546 G A 0.92 4.92 x 10-9 0.352 0.060 0 18:36852398 0.98 LINC00669 within - RANlet 
rs74500110 C T 0.92 7.14 x 10-9 0.343 0.059 0 18:36853535 0.94 LINC00669 within - RANlet 
rs34822091 G A 0.92 9.44 x 10-9 0.347 0.060 0 18:36815582 0.94 LINC00669 within - RANlet 
rs16928927 C T 0.94 2.25 x 10-8 -0.403 0.072 0 8:63356625 - NKAIN3 within - RANlet 
rs1541518 G T 0.71 6.42 x 10-8 -0.177 0.033 0 7:31148279 - ADCYAP1R1 downstream 1956 NWRead 

 

Table 3. Most significant single variant associations (p < 1 x 10-7) detected in the eight GWAS analyses of the present study.  

a Average allele frequency computed over all the datasets analysed. 

b 
β values are relative to A1. 

b I-squared test for heterogeneity of genetic effect across datasets (the closer to “0”, the more homogenous is the genetic effect). 
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Characterization of top association signals 

We examined the top local association signals on 18q12.2 (rs17663182) and 8q12.3 

(rs16928927) in detail. Although neither of the two top SNPs was genotyped, imputation 

quality was high in all datasets (IMPUTE2 INFO metric 0.89-0.94 for rs17663182 and ~0.99 

for rs16928927). 

Association test statistics showed consistent allelic trends across all datasets for both SNPs 

(Figure 3a, b and Table S6a, b). Furthermore, the associations were confirmed by an 

independent permutation-based correlation test between allelic dosages and RANlet scores. 

Indeed, Pearson correlation p-values for both SNPs were very similar to the linear regression 

p-values (see Table S6a, b). The proportion of RANlet variance explained by the SNPs 

ranged from 0.03% in the Dutch dataset to 1.8% in the AGS dataset for rs17663182 and from 

0.067% in AGS to 2.96% in Hungary for rs16928927 (Table S6a, b).  

Since both our lead SNPs showed evidence of an association with many of the traits analysed 

in the present study (see Figure 4a, b), we carried out a pleiotropy test: we first regressed the 

phenotypic traits other than RANlet against this score and then tested the residuals of this 

model for an association with either rs17663182 or rs16928927 dosages in each dataset 

separately, followed by fixed-effects pooled analysis. Neither of the two SNPs showed 

significant effects on any trait other than RANlet (see Tables S6c, d). Similarly, we tested for 

the presence of independent genetic effects at 18q12.2 and 8q12.3, in a 100 kb window 

surrounding the two most strongly associated variants. Pooled analysis of association tests 

with RANlet residual scores extracted from regression against rs17663182 and rs16928927 

dosages revealed no independent associations surviving correction for multiple testing (see 

Tables S6e, f). In addition, we conducted a SNP×SNP interaction analysis on rs17663182 and 

rs16928927, which revealed no significant epistatic effects of these two SNPs on RANlet: 

regression R2 values for the interaction term ranged from 0.6% (p = 0.7) in the Dutch dataset 

to 0.0006% (p ~ 1) in the AGS dataset (Table S6g). 

In light of the increasing evidence implicating subcortical structures in reading and language 

abilities1,35,36, we looked up the associations of rs17663182 and rs16928927 with variability 

in volumes of seven different subcortical structures, which had been analysed in a previous 

independent GWAS34. After correction for multiple testing for the number of SNPs and 

independent traits tested (α = 7.1×10-4), no significant association remained (see Table S6h, 

i). The strongest support was observed for rs16928927 with variation in the volume of the 
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pallidum (p = 6.5 x 10-3), where allele C was nominally associated with an increased volume 

(see Table S6i for details). 

 

 

Figure 3. Forest plots of association signals with RANlet for a) rs17663182 (18q12.2) and b) 
rs16928927 (8q12.3). Effect sizes (β) refer to major alleles a) G and b) C, respectively. 
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Figure 4. Forest plots of associations of a) rs17663182 (18q12.2) and b) rs16928927 
(8q12.3) with the different traits analysed in the study. Effect sizes (β) refer to major alleles 
a) G and b) C, respectively. 

 

Genes and SNPs previously associated with DD and related cognitive traits  

12,785 variants were annotated to nine candidate genes previously implicated in dyslexia by 

at least two independent studies, namely DYX1C1, DCDC2, KIAA0319, C2ORF3, MRPL19, 

ROBO1, GRIN2B, FOXP2, and CNTNAP2. We report associations for all these variants in 

Table S7a-h. Among these variants, a detailed assessment of six candidate SNPs previously 

associated with DD or related cognitive measures in independent studies did not reveal any 

strong evidence of replication in our cohorts (see Table S7i).  

Among variants associated with DD and related cognitive measures in previous GWAS 

efforts (see Table S8a-i), we identified a few nominally significant associations (p < 0.05) 
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which were comparable with those reported by previous independent studies (Table S8j). The 

most significant associations were observed at rs10485609, with both word (A/G; 

MAF=12%; %; p-value = 2.6×10-3, major allele (A) β (SE) = -0.12 (0.04)) and nonword 

reading (p-value = 6.5×10-3, major allele (A) β (SE) = -0.1 (0.04)). These associations 

showed the same direction of effect as in the original report13.  

 

Gene- and pathway-based associations 

Gene-level analyses of single-variant association signals in MAGMA revealed no significant 

associations of genes after correcting for testing of 18,033 protein-coding genes and five 

independent latent traits tested here (α = 5.5×10-7; see Table S9a-h). The most significant 

association was observed for the gene ADCYAP1R1 (adenylate cyclase activating polypeptide 

1 receptor type I; 7p14.3) with NWRead (Z-score = 4.6; p = 2×10-6). Similarly, also in the 

gene-set analysis of 1,329 canonical pathways from the MSigDB website, no pathway was 

significantly enriched (α = 0.01 for permutation-based enrichments, already corrected for 

testing of multiple pathways; see Table S10a-h). However, we found a nominally significant 

enrichment of associations with WSpell for genes in the BioCarta RAS pathway (Bonferroni-

corrected p = 0.045; β(SE) = 0.64(0.16); see Table S10i for a complete list of genes leading 

the pathway-based association). 

 

Genetic overlap with neuroimaging, neurodevelopmental and neuropsychiatric traits 

PRS analysis revealed the presence of a significant proportion of shared genetic variance 

between the different DD-related traits analysed in our GWAS and some of the 

neuroimaging, educational, and neuropsychiatric traits investigated in previous large GWAS 

studies (see Figure 5; Table S11a-c). In particular, we observed significant correlations 

withstanding Bonferroni correction (p < 8.3×10-4) with ADHD risk, and with educational 

attainment (EDUyears). The ADHD PRS was negatively associated with WRead, WSpell, 

NWRead, and DigSpan (at PT = 0.05: Nagelkerke’s R2 ranging from 0.004 for DigSpan to 

0.007 for WRead; p ~ [10-5-10-7]), while EDUyears polygenic score was positively associated 

with WRead, WSpell, NWRead, DigSpan, and PA (at PT = 0.05: R2 ranging from 0.011 for 

DigSpan to 0.019 for WRead and PA; p ~ [10-8-10-17]). These results were confirmed at 

different PT thresholds (see Figure S11a-i). 
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Figure 5. Results of the polygenic risk score (PRS) analysis on the eight traits analysed in 
this work (target traits), which were compared with different neuropsychiatric disorders, 
educational, and neuroimaging measures (training traits). In the heatmap, –log(p) of the R2 
computed by PRSice42 at an association p-value threshold (PT) of 0.05 is reported. Complete 
summary statistics are reported in Tables S11a, b, c. 

 

Discussion 

In the present study, we investigated genetic effects on eight different cognitive skills related 

to or underlying reading ability. We conducted a GWAS of up to 3,468 subjects from nine 

different countries, speaking six different languages. Hence, our study represents the richest 

GWAS in the field in terms of phenotypes investigated, as well as countries and languages 

involved. 

We identified a genome-wide significant effect on rapid automatized naming of letters 

(RANlet). Rapid naming reflects the automaticity of visual-auditory processing necessary for 
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a successful word decoding process and accounts for a significant proportion of variance in 

word reading ability, especially reading fluency, which is independent of the well-established 

language and phonological processes implicated in reading51. Moreover, RAN is considered 

as an excellent predictor of reading fluency and is used in kindergarten to identify children at 

risk of dyslexia52.  

The most significant association signal with RANlet was observed for rs17663182, a variant 

located within MIR924HG (18q12.2; micro-RNA 924 host gene, or LINC00669). Additional 

significant associations were detected in the same region for other variants, all in high LD 

with the lead SNP, which suggests that they identified the same genetic effect on RANlet. 

This observation was supported by the absence of strong independent genetic effects on 

RANlet within a 100 kb window surrounding the strongest signal at rs17663182. An 

extensive lookup of the lead variants found within this region in common online gene 

expression databases – including the Genotype-Tissue Expression portal (GTEx; 

http://www.gtexportal.org/home/)53, the Brain eQTL Almanac (Braineac; 

http://www.braineac.org/)54, the Blood eQTL browser 

(http://genenetwork.nl/bloodeqtlbrowser/)55, and the seeQTL database 

(http://www.bios.unc.edu/research/genomic_software/seeQTL)56 – revealed weak evidence of 

expression quantitative trait loci (eQTL) involving rs17663182 and neighboring associated 

SNPs. Braineac reports nominally significant eQTL effects (p-value < 0.05) for these SNPs 

on MIR924HG expression in the occipital cortex, thalamus, and substantia nigra. In addition, 

HaploReg v4.1 (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php)57 

indicated the presence of histone marks usually associated with transcriptional activity in the 

same region, such as H3K4me1, H3K27ac, and H3K9ac58. To the best of our knowledge, no 

regulatory role is known for MIR924HG and MIR924 has not been functionally characterized 

so far. Nonetheless, the significant associations on 18q12.2 represent an interesting genetic 

effect for three main reasons:  

First and foremost, evidence of genetic linkage to dyslexia-related cognitive traits has been 

reported for this region in previous studies, although not always reaching statistical 

significance59-62. In a genome-wide linkage analysis of a German cohort partly overlapping 

with our AGS dataset, a linkage peak to a principal component of RAN scores was observed 

in a region encompassing the microsatellite marker D18S1102, located ~2.1 Mb downstream 

of rs1766318262. Similarly, a linkage signal was later reported for the same marker with a 

composite RAN score, in a Dutch sib-pair sample. However, this association was weaker 
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after including parents of the sib-pairs in the analysis59. Early evidence for linkage in 18q12 

has been reported with word reading and orthographic coding, in samples partially 

overlapping with our Colorado and UK datasets60,61. In line with these findings, rs17663182 

showed associations with traits other than RANlet in our analysis, including RANdig, 

RANpic, WRead, and NWRead (discussed below). It would be tempting to connect the 

linkage signals mentioned above with the SNP associations at rs17663182, but it is important 

to point out that this association likely represents only a small fraction of these linkage 

signals or even a distinct genetic effect, because linkage and association analyses tend to 

detect different effects63. 

Second, a search for binding sites through the online database TargetScanHuman 

(http://www.targetscan.org/)64 allowed us to identify a series of interesting candidate target 

genes which MIR924 could regulate. These include candidate susceptibility genes for 

dyslexia such as MRPL19, KIAA0319L, and CELF4, although these did not show the highest 

predicted binding scores to MIR924 (cumulative weighted context++ scores -0.08, -0.07 and -

0.04; ranked 1,615, 1,626 and 2,146 over 3,472 potential targets, respectively). Of note, the 

closest protein-coding gene to the associated SNPs on 18q12.2 is CELF4 (positioned ~1.6 

Mb downstream), where D18S1102 is located. CELF4 is highly expressed in the fetal brain 

and has been previously implicated in neurodevelopmental and behavioral anomalies through 

a haploinsufficiency mechanism65, although a previous candidate SNP association analysis 

found no major genetic effects on reading traits in this gene61.  

Third, MIR924HG is expressed in a number of cancer cell lines, but consistently in samples 

representing iPS differentiation into neurons, according to the FANTOM5 miRNA promoter 

analysis66. This is interesting in the context that at least three dyslexia candidate genes 

(namely DCDC2, DYX1C1 and KIAA0319) have been implicated in regulating neuronal 

migration and cilia functions in model systems8. 

In the analysis of RANlet, we observed an additional association approaching genome-wide 

significance at rs16928927 (8q12.3). This intronic variant is located within NKAIN3 

(Na+/K+ transporting ATPase interacting 3), a gene which is widely and specifically 

expressed in the brain: in the FANTOM5 Zenbu database (http://fantom.gsc.riken.jp/zenbu/) 

it shows the highest expression in fetal temporal lobe, in newborn and adult hippocampal 

regions, and a high level of expression in all parts of the forebrain throughout development67. 

This evidence supports the importance of NKAIN3 for neuronal function68 and suggests it 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309336doi: bioRxiv preprint 

https://doi.org/10.1101/309336


may have a specific role in central nervous system development. Moreover, NKAIN3 is 

coexpressed at the protein level with FOXP2 – a gene previously implicated in speech, 

language, and reading abilities69 – as well as with CELF4, both at the transcriptional53 and at 

the translational level (the Human Integrated Protein Expression Database, available at 

http://www.genecards.org/)70. The two independent association signals on 18q12.2 and 

8q12.3 might, therefore, share a common biological link with RANlet, mediated by CELF4. 

However, our SNP×SNP interaction analysis on rs17663182 and rs16928927 did not reveal 

any significant epistatic effect of these two variants on RANlet. The reason for this lack of 

support might be either the absence of an actual interaction between the two variants tested – 

which could still independently act in an additive manner – or that the variants are not 

directly causative, in which case our interaction analysis would be underpowered.  

Of note, both our lead SNPs showed associations with different cognitive measures analysed 

in this study, especially with RAN traits. This multi-trait association trend is particularly 

noticeable for rs17663182, which showed convincing evidence of influence even beyond the 

RAN domain, extending to reading abilities. However, a formal pleiotropy test on both 

variants did not reveal any significant effect specific to cognitive traits other than RANlet. 

This suggests that these variants likely exert their genetic influence on the common 

phenotypic variance underlying these traits, with different magnitude of effect on each 

measure. 

Despite the biological appeal of the top association signals mentioned above, an imaging 

genetic follow up of these SNPs on variation in seven different subcortical volumes 

previously analysed in a large independent GWAS34 did not reveal any significant 

association. Considering the sample size of the neuroimaging genetic analysis (N~13,000), 

we deem it unlikely that this lack of support is caused by a lack of power of the analysis. 

However, this negative result does not rule out genetic effects of the RANlet-associated 

variants on other brain structures involved in reading networks, such as the inferior frontal 

gyrus and the temporal and parietal gyri. These potential associations should be tested in the 

future, as was previously done for other variants associated with reading-related traits71,72. 

Another interesting finding of our study is the significant genetic overlap that the reading 

traits analysed showed with educational attainment (EDUyears) and ADHD. Educational 

attainment was already reported to share a significant proportion of genetic variance with 

word reading ability73,74. In a PRS analysis comparing educational attainment with reading 
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efficiency and comprehension, the same EDUYears score used in the present study43 

accounted for 2.1% (at age 7) to 5.1% (at age 14) of the variance in such reading measures in 

a UK sample (N=5,825), and this association remained significant even after accounting for 

general cognitive ability and socioeconomic status73. More recently, Luciano and colleagues74 

used the results of a previous GWAS on reading and language-related traits11 to test genetic 

correlations with several health, socioeconomic, and brain structure measures collected in 

adults from the UK (maximal N=111,749; age range 40–69 years). Polygenic scores 

increasing these traits – namely word reading, nonword repetition, and a reading-spelling 

score – were all positively associated with a binary index of educational attainment (college 

or university degree)74.  In our paper, we replicate these findings by reporting that variants 

nominally associated with EDUyears explain almost 2% of the total variance in WRead and 

extend the evidence of genetic overlap to cognitive predictors of dyslexia risk such as PA and 

DigSpan. Our PRS analysis also revealed negative correlations of WRead, WSpell, NWRead, 

and DigSpan with an ADHD polygenic risk score44, suggesting the presence of a partly 

shared genetic basis between reading traits and ADHD risk. This long-standing hypothesis, 

originally supported by behavioral genetics studies of twins75-77, is therefore corroborated 

here by genome-wide genetic data. 

To conclude, in the present study we report a genome-wide significant association of a 

variant within MIR924HG with RANlet, one of the best universal predictors of reading 

fluency across all known orthographies78. Our results tentatively suggest a role of this gene in 

the genetic etiology and neurobiology of dyslexia. Among the strengths of our study are the 

variety of continuous cognitive traits analysed and the relative homogeneity of phenotypic 

assessment and recruitment criteria of our datasets, which are fundamental to improve 

statistical power. Indeed, most of our samples were collected in the context of a large 

international consortium for studying the neurobiological/genetic basis of dyslexia 

(Neurodys), whose main purpose is to homogenize traits and datasets to allow for comparable 

analyses across different countries19,21. Our analyses also have some limitations, such as the 

absence of a follow-up cohort to replicate the genome-wide significant associations detected, 

as well as the relatively low sample size, compared to GWAS studies published so far in 

other fields79. The variety of the languages tested might be considered as another potential 

limitation of this study. Language transparency has been reported to affect the predictive 

power of dyslexia risk for cognitive traits such as RAN and PA, which is more pronounced in 

more complex orthographies21. Therefore, it may be hypothesized that the magnitude of 
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genetic effects on such traits may vary depending on the transparency of the language 

analysed. Although the effect sizes of our most significant associations do not show any 

apparent relation with the transparency of the orthographies involved in the present study (see 

Figure 3), our analysis as presented here was designed to identify genetic effects common to 

and identical across language complexities, and further studies are warranted to test the 

specific hypothesis mentioned above. Overall, this study represents an early step of one of the 

largest international collaborations aimed at clarifying the genetic basis of reading abilities 

and disabilities, which will hopefully contribute to identify the causes of dyslexia in the 

future.  
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