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Oscillations can improve neural coding by grouping action poten-
tials into synchronous windows, but this same effect harms coding
when action potentials become over-synchronized. Diseases rang-
ing from Parkinson’s to epilepsy suggest that over-synchronization
can lead to pathology, but the precise boundary separating healthy
from pathological synchrony remains an open theoretical problem.
We address this in series of numerical experiments. We study a sim-
ple model that shows how error in individual cells’ computations is
traded for population-level synchronization. In this model we con-
ceive of a “voltage budget” where instantaneous moments of mem-
brane voltage can be partitioned into oscillatory and computational
terms. In comparing these budget terms we suggest a new set of bi-
ologically measurable inequalities that separate healthy from patho-
logical synchrony. Finally, we derive an optimal non-biological algo-
rithm for exchanging computational error with population synchrony.

R

hythmic entrainment is a common feature of biological
systems, but complete synchronization is often undesir-

able. This can be conceptually illustrated in the case of neural
oscillations, where a totally unsynchronized neuronal popula-
tion might lack communication capacity whereas a perfectly
synchronized population might lack computation capacity (1).
The biological reality lies in between, where moderate oscilla-
tions coordinate the firing of many individual neurons, creating
synchronous windows of population communication (2). Tem-
porally grouping action potentials in this manner improves
signal to noise (3) and increases the number of coincident firing
events (4, 5), driving learning at individual synapses (6–8).
Complete independence between neurons dramatically reduces
these temporal coincidences, whereas complete synchroniza-
tion eliminates each neuron’s individual firing characteristics,
negating any possible computational contribution (9).

To understand this problem more intuitively we imagine a
population where each neuron receives the same spiking input
but otherwise is independent from its neighbors. In this model
each cell’s response depends only on its immediate synaptic
weight and its long-term membrane dynamics. Even in this
simple situation the membrane response of each neuron can be
complex, spanning chaotic irregular activity, bursting, acceler-
ating, and a decay in rate driven by adaptation (10, 11). Even
in the simplest case of regular-firing, with uniform sampling
of synaptic weights, a population can exhibit substantial in
response variability (as shown in Figure 1a).

From a theoretical perspective, the high-dimensional nature
of an independent neural response is a powerful potential
computational resource (12, 13). However if there are many
populations, all trying to communicate at once, we can again
imagine how individually useful high-dimensional responses
begin to feedback onto each other—with variability amplifying

variability. Allowing a population to fall under the sway of a
oscillator is one way to stabilize communications (14) while
simultaneously, as already noted, improving signal-to-noise
and increasing the synaptic learning rate.

Brittian et al has considered the problem of pathological
synchrony in a model of Parkinson’s disease. In line with our
illustration, they suggested synchrony can tune the complex-
ity of population’s response. They use this to explain why
increased beta (13-30 Hz) synchrony in Parkinson’s patients
can lead to a symptom-causing loss of computational capac-
ity (9). While inspirational to our approach, theirs does not
o�er quantitative predictions and its generality is limited by
a strong assumption they make about the nature of neural
computation.

In our formalization, we only assume that neurons that
act independently have the highest possible computational
expression. We study this ideal in the simple model described
above: a population of independent neurons entrained by
a homogeneous global oscillator. We treat any correlation
induced between independent neurons as a perturbation from
its computational ideal—as an error. As the strength of the
oscillation grows, then, error increases as neurons are forced
to synchronize with one other.

To study the trade-o� between synchrony and error in bio-
logical terms accessible to the cell, we examine instantaneous
moments of membrane voltage. For a small window of time it
is reasonable to separate out the computational drive from the
oscillatory influence, creating what we call a “voltage budget”.
We use these budgets as a neuron might: for estimating the
budget at one moment in time to predict how a later cycle of
an oscillation will a�ect spiking.

Our main contribution is the introduction of a voltage
budget analysis, which allows us to define a mathematical,
biologically observable criterion to distinguish between healthy
and pathological oscillatory synchronization. We note that
even in the healthy range there is a continuous trade-o� be-
tween the induction of synchrony and the introduction of
error. Finally, we describe a new non-biological algorithm that
achieves an optimal trade-o� between error and synchrony.

Results

We model a simple neural network: a population of N neurons
entrained by a single global oscillator, governed by an am-
plitude (A) and frequency (f) of the form A/2(1 + sin(2fift)
with A Ø 0. When oscillatory amplitude is zero, each neuron
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is completely independent. As oscillatory amplitude grows,
each neuron’s firing is increasingly perturbed by the strength
of the oscillation. We illustrate this in Figure 1 where, in the
rightmost panel, oscillatory amplitude is relatively high and
the population’s firing pattern bears little resemblance to the
original population activity as driven by the input (shown in
the leftmost panel).

We define computation here in the most basic mathematical
sense: an input mapped to an output. We formalize this first
in the abstract general form of, f : x æ y.. Here f is a
function, synonymous with computation, and x and y are any
set of inputs and outputs. But in practice we implement f as
an adaptive exponential (AdEx) integrate-and-fire model (15)
(see Methods), and limit input and output to binary time-series,
i.e. action potentials.

The voltage budget. To understand the boundary between
healthy and pathological synchrony, we analyze computation
from a neuronal perspective by examining changes in the mem-
brane potential of individual neurons. To simplify this analysis
we examine extremely small, nearly instantaneous, windows
of time (w). For a very small window of time (w << ·

m

) it
is reasonable to treat the resting potential (V

r

) and the firing
threshold (V

t

) as constant values. With these terms fixed,
the total amount of voltage becomes fixed and the membrane
potential available in each neuron becomes a physically con-
served quantity. This means that no energy is allowed in or
out, closing the system.

To aid our thinking about this conserved system we use
economic metaphors. The total amount of voltage available
to a neuron in w is termed a “budget” that can be “spent” by
the neuron. It can be spent to either minimize computational
errors—a perturbation of spiking—caused by the global os-
cillator, or to better align itself with the population (Fig. 2).
With this approach the voltage “cost” of increases in oscil-
latory power can be explicitly analyzed in terms of cellular
physiology.

We decompose each budget into three terms: 1) the compu-
tational voltage V

c

, 2) the oscillatory voltage V

o

, and, 3) the
open voltage V

n

(Fig 1). The open voltage serves the same
role as the potential energy term common in basic analyses of
the physics of baseball thrown into the air, for example: as the
ball rises and is slowed by gravity, kinetic energy is traded for
potential energy. Put another way, V

n

represents the unused
capacity of the system—the di�erence between V

c

+ V

o

and
the threshold potential.

The basic budget relationships are shown in equations 1
and 2. In Eq 2, computation and communication explicitly
compete for influence on the eventual spike that happens when
the threshold is reached (when V

n

æ 0).

V

b

= V

t

≠ V

r

[1]
V

b

= V

o

+ V

c

+ V

n

[2]

In practice though we study budget terms as ratios, be-
cause working in unitless quantities is simpler mathematically
and eases empirical comparisons. Specifically, we study the
oscillatory power normalized by the total size of each neuron’s
budget (V

o

/V

b

), and most importantly we study the ratio of
oscillation to computation (V

o

/V

c

).

Budget analysis. We imagine each neuron seeks to spend its
budget as prudently as possible for each cycle of oscillation.
We model this by using a voltage budget at time t to predict
the e�ect of a later (t+d) cycle of oscillation on spiking, where
t + d is the time at which we induce a burst of oscillation. We
then measure spiking activity for T seconds after the oscillation
begins, where T = 1/f (illustrated in Figure 2c).

To demonstrate the broader trend we first examine the
e�ect of a 20 Hz rhythm. Later we show that the key trends
for this rhythm is robust to changes to frequency (4-30 Hz),
noise (0 - 2.5 mV), and synaptic weights (0.3 -45 nS) (Fig 5),
as well as to neuron type (Fig 6).

Each experiment begins with a reference run, where the
neurons are initialized with their unique synaptic weights,
capacitances, and recovery variables. After 200 milliseconds of
settling in time, each neuron to subjected to the stimulus—a
pulse of 8 Hz Poisson activity lasting 50 milliseconds. The
entire spiking response to this brief stimulus is recorded for
later references. The time of the first spike serves as a locking
point E. The reference run is followed by the budget run,
where we measure the level of computational influence V

c

. In
each neuron, we then calculate V

o

for many possible levels of
peak oscillatory power A, and store these for later reference.
We do not imagine that a real biological system would need
to explicitly conduct either the reference or the budget phases.
This would instead be learned by the system, becoming implicit
in the synaptic weights and delay times of the circuit. Finally,
in the experimental phase, we sweep over a large range of
A values corresponding to V

o

changes ranging from < 0.1
mV to greater than 5 mV. In each of these, a single cycle of
oscillation in introduced at E+d seconds, and spiking behavior
is monitored for T seconds 2c). In all our simulations d = 2
ms.

A model of bursts. We study single cycle “bursts” of oscillation
for two reasons. The first reason is empirical: when individual
experimental trials of real oscillatory data are examined, oscil-
lations often appear as bursts (16, 17) even though averaging
many trials gives what appears to be sustained rhythm (18).
As a result of this averaging, most theoretical work on oscilla-
tions assume a sustained rhythm though there are exceptions
(18–20). Still, it remains unclear what, in general, a single
cycle of oscillation can accomplish, which is why we focus on
the case of oscillatory bursts here.

The second reason is practical. Bursts, by definition, are
accompanied by aperiodic windows of neuronal activity that
serve as a natural reference for doing error calculations. By
comparing firing during an aperiodic trial to a later periodic
trial, we can measure how synchronization perturbs single
neuron computations in a simple and direct way.

The trade-off between error and variance. As V

o

rises in pro-
portion of the total budget V

b

, population variance declines
which consistent with previous models (21, 22). We also
observe that while variance decreases computational errors
increase. This trade-o� is roughly linear for low power oscil-
lations (Fig2d). This early trend implies a nearly one-to-one
trade-o� between coordination at the population level and
errors introduced at the neuronal level. However as relative
oscillatory power grows eventually error plateaus at the inflec-
tion point of the error-variance curve (boxed region, Fig. 2d).
Separating the pseudo-linear from the plateau phase is the
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Fig. 1. The trade-off between
computation and coordination.
a. Illustration of a single
model neuron receiving synap-
tic input (purple synapse), sub-
jected to increasing levels os-
cillatory power (red waveform).
b. A population of N in-
dependent neurons subjected
to three levels of oscillatory
power (A = 0.0, A = 0.1,
A = 0.6 nS; f = 30 Hz).
The top panel is a plot of ac-
tion potentials per neuron and
the bottom is membrane volt-
ages of those same neurons.

Fig. 2. The voltage budget.
a. Membrane voltage of a sin-
gle neuron. Horizontal dot-
ted lines indicate the voltage
threshold (V

t

; top line) and the
resting potential (V

r

; bottom
line). The vertical gray box
depicts the 2 ms budget win-
dow (w; A = 0.1 nA; f = 20
Hz). Stimulus onset occurs at
0.2 seconds. b. Example of
a voltage budget decomposi-
tion in time window w in panel
a.. Red represents V

o

; pur-
ple depicts V

c

; white space is
V

n

. c. Diagram of budget pre-
diction. A budget estimate is
formed at t, then d seconds
later a single cycle of oscilla-
tion begins. Over the period of
that cycle’s length T we esti-
mate the error and variance of
the population spiking. d. Plot
of average error versus popula-
tion variance over period T . In-
creases in V

o

/V

b

are denoted
in red. Boxed area highlights
the error plateau phase. In all
plots: w = 2 ms; d = 2 ms; os-
cillation frequency f = 20 Hz.
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basis for how we come to separate healthy from pathological
synchrony.

Defining pathological oscillation. The fundamental idea we
wish to test: can a pathological oscillation be identified using
only computational activity as a reference? To do this we
consider the ratio of oscillation to computation, V

o

/V

c

. Before
getting to our numerical results though it is worth considering
V

o

/V

c

on its own. When V

o

/V

c

< 1, computation dominates
the system in that the majority of the voltage driving each
spike reflects the computational dynamics of each neuron. But
beyond V

o

/V

c

> 1, the majority of spikes reflect the modulatory

oscillation. Intuitively then, once a modulator dominates, it is
in e�ect no longer a modulator: the neurons downstream gain
information mostly about the oscillatory entrainment “signal”
and not the population’s normal computation. This idea leads
to our first new definition: oscillations that exceed V

o

/V

c

> 1
are intrinsically pathological.

Numerical analysis of V

o

/V

c

confirms this prediction: at
V

o

/V

c

= 1.0, the average error and variance of the population
plateau and are incrementally—asymptotically—approaching
their maximum values (for error see Figure 4a and c). At the
individual level, error for all neurons plateaus by V

o

/V

c

= 1.0,
however the steepness and curvature of this rise is neuron
dependent (Figure 4b). These cell-level di�erences suggest
that global oscillation is not be optimal. That is, better trade-
o�s may be possible if the oscillation is tuned to each neuron’s
particular computational curve; An idea we return to below.

Defining healthy oscillation. In a later section we prove that
the optimal trade-o� between error and variance is linear.
This proof leads to our second criterion: on normative grounds
we suggest that healthy oscillations have V

o

/V

c

< 0.5. This
point demarcates the average transition from pseudo-linear
to plateau (Figure 3a and b). At V

o

/V

c

= 0.5, this point
also separates the transition in variance from linear to its
(even sharper) plateau phase, after which increasing oscillatory
power has increasingly marginal e�ect on error or variance, as
those are close to maximal and minimal respectively (3c).

Variance and V

o

. Variance and oscillatory budget (V
o

) have
a more complex relationship than error and oscillation. In
individual neurons we see that as oscillatory budget increases
variance exists as two phenomena, which act in opposition.
For su�ciently small increases in oscillatory budget, synchrony
declines along a logistic path (see light orange traces in Figure
4a and e). However once the oscillatory budget reaches a
critical value, specific to each neuron, variance discontinuously
increases, denoted by the dark orange in Figure 4a and e.
These sudden jumps happen every time a new, extra action
potential is generated. New action potentials tend to be at
the extremes of an oscillatory cycle, as illustrated in Figure
4f. In contrast to variance, however, individual neuron errors
changes smoothly (Figure 4)e).

On average, increases in oscillatory budget increase syn-
chrony. Counter-intuitively, however, very weak oscillations
can generate as much synchrony as strong oscillations. In fact,
the quantiles analysis in Figure 4c suggests that weak oscilla-
tions, when targeted at a select sub-set of neurons, can have
lower overall variance, while showing much greater capacity
for error/variance trade-o�.

Testing robustness to frequency. Frequency has little e�ect on
error (Fig. 5a) but profoundly a�ects the synchrony (Fig. 5b).
Oscillations slower than 20 Hz show similar trends outlined in
Figures 2-5 (yellow arrow, Fig. 5b), while oscillations faster
than 20 Hz generate less total synchrony and plateau faster
(green arrow, Fig. 5a).

Real oscillations often appear in short, rapid bursts. Here
we have studied an extreme case of this: a single oscillatory
cycle. Previous analyses, in real systems and in simulation,
often report that faster oscillations synchronize more e�ciently
then slower oscillations, which is the opposite of that found
in our analysis of single cycles. These previous studies often
examine the impact of frequency over a fixed window of time,
integrating over many oscillatory cycles. Over several oscil-
latory periods the cumulative e�ect of waveform curvature
dominates and faster oscillations are seen to synchronize more
strongly. This e�ect is, we emphasize, only the case when
oscillation is sustained over several cycles.

Single cycles of “fast” oscillations synchronize less e�ciently.
A single cycle of a fast oscillation (defined as having a f > 20
Hz) has a more rapid voltage increase over a shorter time
window, allowing for strong synchronization. But this shorter
time window means it also has a smaller temporal period of
e�ect. At biologically relevant power ranges (0-5 mV), the
rapid, sharp voltage increase cannot counter the e�ect of the
shorter period, leading to a weaker e�ect on synchrony. In
contrast, for 20 Hz and slower rhythms, the comparatively
smoother voltage rise cannot synchronize as forcefully; but
this is compensated for by the longer period.

Influence of membrane noise and synaptic weight.
Biologically-relevant levels of noise have little e�ect on
normalized variance or error (Fig. 5c-d). The range of
synaptic weights, in combination with the input firing rate,
modestly alter the normalized error profile (Fig. 5e) but
can strongly a�ect variance (Fig. 5f). As shown in Fig. 5f,
when operating in the healthy range, where V

o

/V

c

Æ 0.5,
all examined synaptic weights show a consistent monotonic
decrease in synchrony as V

o

rises. However in the pathological
range V

o

/V

c

Ø 1, weaker synapses and high V

o

generate a
strong increase in variance—a change in variance 5-fold larger
than any other observed in our simulations. The strength of
this e�ect might tempt us to speculate that weak synapses
are particularly prone to generating pathological symptoms.
When placed under what might otherwise be considered a
low level of power and weak level of entrainment, neurons
with weaker synapses may generate unusually asynchronous
responses.

Influence of cell-type. So far we have focused on regular firing
neurons. Now we consider a heterogeneous population of
neurons displaying a wide range of firing modes. Our neuron
dynamics are governed by the AdEx model, which is known to
fit a wide range of real firing properties including fast firing,
adaption, accelerating activity, bursting, and chaotic irregular
firing (11). However, rather than simulating a preset classes of
neurons, we opted instead to smoothly sample a large range of
the neural space, generating a diverse pool of firing behaviors,
illustrated by a few randomly selected examples in Figure 6a.

On average, the same budget ratios that predict healthy
synchrony in regular firing neurons hold true in simulations
of heterogeneous neuronal populations Fig. 6b-c). All models
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Fig. 3. Voltage budget spent on oscilla-
tion increases error and reduces variance.
a. Plot of error predicted by changes to
V

o

/V

c

. Grey lines indicate individual neu-
rons. Black is the population average.
Dashed lines suggest the end points for
the pathological (dark) and healthy (light)
inequalities. b. Randomly chosen individ-
ual examples taken from a. c. Variance
predicted by the ratio V

o

/V

c

. Grey lines
indicate individual neurons. Black repre-
sents the population average.

Fig. 4. Oscillations both decrease and increase variance. b. A
plot of variance and V

o

, where traces from individual neurons are
colored by the number of new spikes introduced by V

o

. Light orange
indicates that the oscillation introduced zero new spikes; dark orange
is when the oscillation introduced one spike; red is two spikes. b.
Spike count as a function of V

o

/V

c

. The left side of the light dashed
line denotes the healthy ratio of V

o

to V

c

while the dark line denotes
the start of the pathological region. c. Histogram density plots for
the top and bottom variance deciles. The black line indicates the
minimum population variance. The arrow indicates neurons that show
a lower total variance for weaker, rather than stronger, oscillations.
d. Randomly chosen examples of variance for individual neurons.
e. Examples of error for individual neurons. f. Illustration of the
opposing possible effects an increase in V

o

can have on on variance.
Left panel depicts an oscillation acting to shift spike times closer
together. Right panel depicts a stronger oscillation that adds an
additional spike, shown in red.

Peterson et al. XXX | April 27, 2018 | vol. XXX | no. XX | 5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2018. ; https://doi.org/10.1101/309427doi: bioRxiv preprint 

https://doi.org/10.1101/309427
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

Fig. 5. Testing oscillatory budget robustness to frequency, noise,
and synaptic weight. The gray colored curve on each plot repre-
sents the “standard” value otherwise used throughout. Light and
dark dashed lines represent healthy and pathological V

o

/V

c

ratios,
respectively. a. Simulated effect of oscillation frequency (4-30 Hz) on
average error, normalized against each neuron’s maximum error. b.
Population variance decreases more quickly for stronger oscillations
when those oscillations are lower frequency. c. Injection of noise into
membrane voltage between 0 and 2.5 mV shows that noise has little
effect on either error or, d., variance as a function of oscillatory power.
Oscillation frequency was 20 Hz (gray curve). e. Simulating changes
in the synaptic weight range and its impact on average error. Plots
are colored by the average weight. Individual ranges for the stan-
dard weight value in gray were 1.5-15 nS. Light blue illustrates weak
synapses in the 0.3-3 nS range, while dark blue represents strong
synapses sampled from 4.5-45 nS. Individual synaptic weights were
sampled independently and uniformly for each condition. Oscillation
frequency was 20 Hz (gray curve). Synaptic weights have relatively
weaker effects on population error, but, f., show stronger effects on
population variance.

show the same one-to-one trade-o� between variance and error
below V

o

/V

c

= 0.5 and a error plateau by V

o

/V

c

= 1.0.

Optimal synchronization. Our model shows that oscillations
increase computational error and reduce population variance in
a roughly linear fashion such that there is a trade-o� between
the two: oscillations reduce the population variance at the
cost of computational accuracy.

To measure population synchrony and average individual
neuron computational error, we use two related metrics. The
first is the mean absolute error (E), which measures the average
computational error. The second is the mean absolute devia-
tion (D), which measures the variance of each neuron’s spiking
relative to the population average. Exploring the mathemati-
cal connections between these metrics in the abstract o�ers
insight into the structure of the computation/communication
problem, and allows us to prove an optimal algorithm for
oscillatory synchronization.

E = 1
K

Kÿ

i=1

|ŷ ≠ y

i

| [3]

D = 1
K

Kÿ

i=1

|ȳ ≠ y

i

| [4]

Here y are spike times from individual neurons, reflecting
an example when oscillatory amplitude A is greater than zero.

ŷ is the set of reference times acquired without oscillations,
i.e., when A = 0. We denote examples from y as y

i

, and ȳ is
the average of y.

What’s the best algorithm to shift spike times? To formalize
an answer, we first state the our goal is to change spiking
variance D by some amount ‘ œ R1. When ‘ is 0 there is
no synchrony and so by definition y = ŷ and E = 0. As
we increase ‘ the question becomes how should we distribute
that perturbation, or error, among the K spikes in the spiking
population y? That is, how do we set each neuron’s spiking
error, ‘

i

, for the series y = (ŷ
1

+ ‘

1

, ŷ

2

+ ‘

2

) . . . (ŷ
K≠1

+ ‘

K≠l

)?
A naive approach, similar in character to a global oscillator,

is to spread the error uniformly among the entire spiking pop-
ulation, y. Formally, if we decompose total error into i equal
error partitions, then we have a uniform error distribution case
where ‘ = |‘

1

| + |‘
2

| + . . . + |‘
K≠1

|. If we wish to use error to
minimize variance we must set the sign of each perturbation
‘

i

to oppose the sign of y

i

; if y

i

is negative, ‘

i

is positive, and
vice versa (for example see Figure 7a, bottom panel). When
implemented over a range of variances, this uniform approach
gives rise the blue error-variance curve in Figure 7b. The
question then becomes is this uniform strategy the optimal al-
gorithm to balance the trade-o� between computational error
and population variance? That is, is there a smaller value of
D for a given level of error, E?

To explore optimality, we introduce a single degree of free-
dom. We hold all errors equal as before, except for two neurons.
This lets us ask the question: by introducing a single degree
of freedom can we generate more synchrony than the simple
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Fig. 6. Influence of cell type on voltage budget analysis. a. Examples of heteroge-
neous firing modes, driven by a 0.8 second, 0.25 nA square-wave pulse. b. Average
(black) and individual errors (gray) for N = 250 heterogeneous neurons. Average
error from a regular firing network is redrawn from Figure 3a (dot-dash). The left side
of the light vertical line denotes the healthy oscillation ratio ((V

o

/V
c

)=0.5) while the
dark light denotes the start of the pathological region ((V

o

/V
c

)=1.0). c. Variance as a
function of the V

o

/V

c

ratio. Black is the population average. Grey traces represent
individual neurons, and the dot-dashed line represents variance from the regular
population.

uniform error distribution strategy? If we can do so, we know
that the uniform strategy is not optimal. To simplify the
analysis, first we center all y and ŷ, by subtracting ȳ from all,
and remove the normalization term 1/K, leading to equations
5 and 6.

E

Õ =
Kÿ

i=1

|ŷÕ ≠ y

Õ
i

| [5]

D

Õ =
Kÿ

i=1

|yÕ
i

| [6]

An instructive, but extreme, use of a single degree of free-
dom is to assign all the values from one free perturbation
to the other. That is we set ‘

n

to 0, and ‘

m

to ≠2‘

K

. From
here it becomes clear that if we apply ‘

m

to max(|y|) and ‘

n

to min(|y|) this will produce the largest possible decrease in
adjusted variance, D

Õ, and represents a max(|y|) - min(|y|)
decrease in D

Õ compared to the uniform approach.
If we free ourselves from the contrived example of uniformly

distributing ‘, we can see now that the optimal approach is too
always to apply ‘ to max(|y|). This means that for any given
arrangement of spike times, the optimal trade-o� between
computation and population synchronization introduced by
an oscillation is to shift the spike farthest from the mean. We
implement this as an incremental algorithm, which can change
the variance by ‘ by intuitively ranking y, shifting the spike
max(y) by some very small amount in time ” until a running
sum of all these tiny perturbations is equal to ‘. In theory, the
smaller the ” the better the algorithm approximates the true
optimal solution. In practice, a ” below 0.00001 seconds is
su�cient. See Figure 7a (top panel) for example an example of
a synchronized spike train and b for a depiction of the optimal
error-variance curve.

Discussion

We build a simple model of external oscillatory entrainment.
We mimic the real biological case where one “pacemaker”
population coordinates another, aperiodic, population, such
as in the case of top-down oscillatory influence (23–26). Our
model is the simplest case we could devise that allows for
the precise, biologically testable, predictions of oscillatory
over-entrainment.

Limits of the model. We studied a toy model designed as a
best-case scenario for understanding the trade-o� between
computation and communication. Our purpose was to create
an initial (the first, as far as we aware) quantitative model
of healthy versus pathological oscillations, and so begin by
using the simplest model that embodies the problem: uncou-
pled neurons subjected to a global oscillator. Real biological
systems, and more complete simulations, feature extensive yet
sparse connections between neurons. These connections natu-
rally create dependencies between the activity of one neuron
and the others in its population—a basic phenomenon we do
not capture here. Theoretical analysis of neural coding, and
decades empirical research, however, suggest that, despite this
extensive connectivity, real neurons act with a high degree of
independence, which is optimal for computational e�ciency.
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Fig. 7. A comparison of two algo-
rithmic strategies for inducing syn-
chrony. a. In these examples, two
populations of synchronized neu-
rons have their original spikes (•)
shifted to new positions (X) based
on two different algorithms: either
by iteratively shifting the spikes fur-
thest from the mean (top, red) or
by shifting each spiking uniformly
(bottom, blue). b. Error-variance
trade-off curves for the strategies
illustrated in a. The smaller the
error for a given level of variance,
the more optimal the algorithm is.
Note that the max(|y|) algorithm
(red) optimally minimizes the trade-
off between computational error
and population variance.

The biological implementation of this independence relies on
a combination of independent dendritic computation and the
precise arrangement of excitatory and inhibitory circuits. So,
despite the simplicity of our model, it may act as a reasonable
approximation of real complex networks which maintain a high
degree of independence between neurons.

Oscillations arise by self-organization, where rhythmicity
is driven by interactions within the entrained population. Our
model is not well-suited to this case; previous theoretical work
suggests that, even in idealized cases, there is a minimum level
of voltage budget needed to initiate and sustain an intrinsic
oscillation (27). That is, in self-organized systems the order pa-
rameter can’t be expected to smoothly vary in the biologically
relevant 1-5 mV range, which is a requirement for our analysis
to hold. Understanding the interaction between computation
and coordination within a self-organized population remains
an open question.

Real oscillations are often weak. It is not clear how oscillatory
entrainment can be weak, yet also be an important general
feature of nervous system function, as is frequently supposed (1,
2). That is, to observe oscillations in real local field potentials
often requires little more than placing an electrode in the
appropriate region, as field potential oscillations are relatively
ubiquitous (24, 28). Observing the same oscillation in the the
spiking behavior of neurons, however, often requires recoding
from many—even hundreds—of neurons, especially in cortical
areas (29–31). In these recordings about half the neurons show
no preference for an oscillation’s phase (32). Those that are
entrained are often weakly entrained, synchronized by at most
few percent.

Our model suggests that the most e�ective oscillations
are precisely those that are both weak and sparse. When the
oscillatory power remains below the that of all other “computa-
tional” inputs, the system can exchange errors in a single neu-
ron’s computation for group-level synchrony, measured in the
voltage budget analysis as the quantitative ratio V

o

/V

c

Æ 0.5.
This ratio’s predictions are relatively invariant to oscillation
frequency, noise in the membrane potential, and variations

synaptic weight; this ratio also predicts the firing properties
of a large range of heterogeneous cell-types. Further, strong
oscillations o�er only marginal improvements in synchrony:
once an oscillation grows too strong it induces new action
potentials in the population. These extra action potentials
tend to be at the trailing end of the neuron’s response to in-
put, increasing variance rather than gathering spikes together.
Finally, our new strategy for provably-optimal coordination
targets a only small fraction of the population. Targeting all
neurons for coordination has a larger error cost than targeting
only a few of the more extreme action potentials in a given
cycle.

Oscillations as epiphenomenon. Oscillations could be a side
e�ect, or epiphenomenon, of neural physiology. Mathematical
and experimental analysis of both simple (30, 31) and complex
biological (10) structures suggests a relatively large portion
of the neural parameter-space generates oscillations. As a
result, oscillations may be only a nuisance. An artifact of
other biological factors. An epiphenomenon.

The FEVER model by (33) o�ers one perspective on how
the brain could avoid the negative e�ects of rampant, undesir-
able entrainment. To see how this works consider the case a
single cortical neuron, receiving its typical 103-104 connections.
This large number of inputs, drawn from both excitatory, in-
hibitory, and modulatory neurons, forms an extremely high
dimensional space of possible parameters. If, at any given
moment, the target firing rate of the example neuron is 1
Hz, then this high dimensional space means there are many
possible, equally valid, solutions to achieve a 1 Hz firing rate.
The FEVER model o�ers a route to exploit this degeneracy
by arriving at a solution where many oscillatory inputs can be
made to cancel out, while maintaining any given target level
of activity.

On the other hand, oscillations may have arisen early on
during nervous system evolution, initially as an artifact. How-
ever, over time these oscillations were co-opted and put to,
perhaps several distinct, uses. After more than 80 years of
study, separating these two possibilities remains an open prob-
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Table 1. Model parameters.

Symbol Range (unit) Description

A 0 - 0.15 (namp) Peak current (order parameter)
„ 0 Oscillation phase
f 0 - 30 (Hz) Oscillation frequency
r

s

6 (Hz) Stimulus firing rate
C 100-200 (pfarad) Membrane capacitance
win 1.5 - 15 (nsiemens) Synaptic weight
·

e

5 (msecond) Excitatory synaptic time constant
V

e

0 (mvolt) Excitatory synaptic reversal potential
Ibias 10 (namps) Bias current
‡ 0 - 5 (namps) Injected membrane noise
g

l

10 - 18 (nsiemens) Leak conductance
V

l

-50 - -70 (mvolt) Leak reversal potential
a -11 - 4 (nsiemens) Slow recovery term
·

w

30 - 300 (msecond) Slow time constant
b 0 - -12 (psiemens) Instantaneous recovery term
Vrheo -46 - -58 (mvolt) Instantaneous recovery voltage
”t 2.0 (msecond) Recovery voltage rate term

lem.
We o�er a new approach to the oscillations-as-

epiphenomenon debate. By deriving a priori quantitative
bounds between the healthy and pathological ranges of oscilla-
tion, and in defining an optimal algorithmic approach to syn-
chrony, we suggest that these normative constraints can help
in finally separating functional oscillations from physiological
epiphenomena. To see how, recall that our analysis suggests
that oscillatory input—and all the other neuronal inputs (col-
lected into the “computational” term in our model)—into the
neuron exist in equilibrium. At one end of this equilibrium are
neurons whose action potentials are independent. At the other
end are neurons who are completely synchronized, and there-
fore redundant. Oscillations that are just an artifact would
be expected explore both extremes. On the other hand, oscil-
lations that track strict normative bounds must be functional,
rather than epiphenomenal.

Materials and Methods

Here we describe the model and numerical results in further detail.

Budget window selection. The budget window, w, must be small
enough to allow V

t

and V

r

to reasonably be held constant. The
mathematically ideal w would approach an infinitesimally small
value, dw. To integrate over the noise present in all biological
measurements we comprised by setting w = 1

10

·

m

.

The network. A network of N neurons shared a homogeneous oscil-
latory drive, which acts as the only source of coordination in the
model (Eq 7). As A grows, neurons synchronize through this global
influence.

I

osc(t)

= A

2
(1 + sin(t2fif + „)) [7]

Here f is the frequency of the oscillation, and „ denotes the
phase o�set.

Computation depended on both synaptic input (Eq 8) and
membrane dynamics (Eq. 10). Synaptic input, I

x

, consisted of
a spike train x, Poisson-distributed (⁄ = 8), a synaptic weight w

x

,
and passive conductance g

x

.

I

x

= g

x

(E
l

≠ V ) [8]

g

Õ
x

= ≠
g

x

·

x

+ w

x

”(t ≠ t

k

) [9]

Membrane dynamics were governed by an AdEx model (Eq. 10).

V

Õ = g

l

(E
l

≠ V ) + g

l

�te

((V ≠E

t

)/�t) ≠ w + I

bias

+ I

x

+ I

osc

C

[10]

w

Õ = a(V ≠ E

l

) ≠ w

·

w

[11]
[12]

Here the leak conductance g

l

, the capacitance C, and the leak
potential E

l

control the passive properties of each neuron. While
action potential initiation is driven by the exponential �te

(.) (Eq 10).
Following an action potential, the membrane has both a “fast”
(instantaneous) step, where V and w are reset (Eq. 13), and a “slow”
(passive) response governed by dynamics of w itself. Here a and ·

w

define the rate of change of w (outside of “fast” events).

if (V > 0) =
;

V æ V

r

, w æ w + b

V, otherwise [13]

To generate a unique computational repertoire for each neuron,
synaptic weights w

in

and “slow” membrane recovery parameters a

and tau

w

were independently sampled from a uniform distribution.
A fixed level of “background” tone in each neuron was set using
I

bias

.
Model parameters or sampled ranges are summarized in Table 1.

Neuron-type. Initially we modeled regular firing neurons, whose
parameters are shown in Table1. (11) previously fit the AdEx model
to a range of real neural recordings. To generate a heterogeneous
population of neurons, we sampled parameters from (11). That
is, rather than simulate a pre-set selection of specific neurons,
during heterogeneous experiments each neuron’s parameters were
sampled from a uniform distribution bounded by the extreme values
found in (11). For example, the smallest capacitance C found
by Naud et al was 100 picofarads. The largest was 200. This
means in our heterogeneous model each ith neuron’s capacitance
C

i

was independently sampled as C

i

≥ U(100, 200). Continuing
this pattern, the leak conductance g

l

and voltage V

l

were sampled
from (10, 18) nS and (-59, -70) mV respectively. The slow recovery
dynamics controlled by a and ·

w

were sampled from (-11, 4) nS
and (30, 300) ms. The instantaneous after-spike reset parameters
were b: (0.0, 120) picoamps and V

rheo

: (-46, 58) mV.

Membrane noise. Membrane noise was simulated by current injec-
tion, sampled using a neuron-specific Ornstein–Uhlenbeck process.
The injected noise was held constant when switching from the ref-
erence model (A = 0) and the model with oscillation (A > 0).
Freezing noise between changes in A fully isolates the e�ect of syn-
chrony in a given example (neuron), while sampling many neurons
(examples) gives an estimate of the population’s overall response.
The Ornstein–Uhlenbeck time constant was 5 ms for all simulations.

Metrics. Computational error and synchrony were estimated with
a related set of metrics—the mean absolute error E (Eq. 3) and
mean absolute deviance (D, Eq. 4). In its mathematical form the
mean absolute error assumes the reference ŷ and observed variables
y to be the same size. In practice here, this constraint could not
be satisfied; as A increases new action potentials are inevitable. To
accommodate potentially uneven lengths, we truncated the longer of
the two to match the shorter. For example, if the target series had
length K, and the observed sequence had length L, when K > L,
K ≠L elements were removed starting with the largest value. When
L > K, L ≠ K of the largest were eliminated.
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