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Oscillations can improve neural coding by grouping action poten-
tials into synchronous windows of activity, but this same effect
can harm coding when action potentials become over-synchronized.
Diseases ranging from Parkinson’s to epilepsy suggest that over-
synchronization leads to pathology, but the precise boundary sep-
arating healthy from pathological synchrony remains an open theo-
retical problem. Here we study a simple model that shows how error
in individual cells’ computations is traded for population-level syn-
chronization. To put the in biological terms accessible to the cell
we conceive of a “voltage budget” where instantaneous moments
of membrane voltage can be partitioned into oscillatory and compu-
tational terms. By comparing these budget terms we derive a new
set of biologically measurable inequalities that bound healthy from
pathological synchrony. Finally, we derive an optimal non-biological
algorithm for exchanging computational error with population syn-
chrony.

Rhythmic entrainment is a common feature of biological
systems, but complete synchronization is often undesir-

able. This can be conceptually illustrated in the case of neural
oscillations, where a totally unsynchronized neuronal popula-
tion might lack communication capacity whereas a perfectly
synchronized population might lack computation capacity (1).
The biological reality lies in between, where moderate oscilla-
tions coordinate the firing of many individual neurons, creating
synchronous windows of population communication (2). Tem-
porally grouping action potentials in this manner improves
signal to noise (3) and increases the number of coincident firing
events (4, 5), driving learning at individual synapses (6–8).
Complete independence between neurons dramatically reduces
these temporal coincidences, whereas complete synchroniza-
tion eliminates each neuron’s individual firing characteristics,
negating any possible computational contribution (9).

To understand this problem more intuitively we imagine
a population where each neuron receives the same spiking
input but otherwise is independent from its neighbors. In
this model each cell’s response depends only on its immediate
synaptic weight and its long-term membrane dynamics. Even
in this simple situation the membrane response of each neuron
can be complex, spanning chaotic irregular activity, bursting,
accelerating, and a decay in rate driven by adaptation (10, 11).
Even in the simplest case of regular-firing, with uniform sam-
pling of synaptic weights, a population can exhibit substantial
response variability (as shown in Figure 1a).

From a theoretical perspective, the high-dimensional nature
of an independent neural response is a powerful potential
computational resource (12, 13). However if there are many
populations, all trying to communicate at once, we can again
imagine how individually useful high-dimensional responses

begin to feedback onto each other—with variability amplifying
variability. Allowing a population to fall under the sway of a
oscillator is one way to stabilize communications (14) while
simultaneously, as already noted, improving signal-to-noise
and increasing the synaptic learning rate.

Brittian et al has considered the problem of pathological
synchrony in a model of Parkinson’s disease. In line with our
illustration, they suggested synchrony can tune the complexity
of a population’s response. They use this to explain why
increased beta (13-30 Hz) synchrony in Parkinson’s patients
can lead to a symptom-causing loss of computational capacity
(9). While inspirational to our approach, theirs does not
offer quantitative predictions and its generality is limited by
a strong assumption they make about the nature of neural
computation.

In our formalization, we only assume that neurons that
act independently have the highest possible computational
expression. We study this ideal in the simple model described
above: a population of independent neurons entrained by
a homogeneous global oscillator. We treat any correlation
induced between independent neurons as a perturbation from
its computational ideal—as an error. As the strength of the
oscillation grows, then, error increases as neurons are forced
to synchronize with one other.

To study the trade-off between synchrony and error in bio-
logical terms accessible to the cell, we examine instantaneous
moments of membrane voltage. For a small window of time it
is reasonable to separate out the computational drive from the
oscillatory influence, creating what we call a “voltage budget”.
We use these budgets as a neuron might: for estimating the
budget at one moment in time to predict how a later cycle of
an oscillation will affect spiking.

Our main contribution is the introduction of a voltage
budget analysis, which allows us to define a mathematical,
biologically observable criterion to distinguish between healthy
and pathological oscillatory synchronization. We note that
even in the healthy range there is a continuous trade-off be-
tween the induction of synchrony and the introduction of
error. Finally, we describe a new non-biological algorithm that
achieves an optimal trade-off between error and synchrony.

Results

We model a simple neural network: a population of N neurons
entrained by a single global oscillator, governed by an am-
plitude (A) and frequency (f) of the form A/2(1 + sin(2πft)
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with A ≥ 0. When oscillatory amplitude is zero, each neuron
is completely independent. As oscillatory amplitude grows,
each neuron’s firing is increasingly perturbed by the strength
of the oscillation. We illustrate this in Figure 1 where, in the
rightmost panel, oscillatory amplitude is relatively high and
the population’s firing pattern bears little resemblance to the
original population activity as driven by the input (shown in
the leftmost panel).

We define computation here in the most basic mathematical
sense: an input mapped to an output. We formalize this first
in the abstract general form of, f : x → y.. Here f is a
function, synonymous with computation, and x and y are any
set of inputs and outputs. In practice we implement f as
an adaptive exponential (AdEx) integrate-and-fire model (15)
(see Methods), and limit input and output to binary time-series,
i.e. action potentials.

Fig. 1. The trade-off between computation and coordination. a. Illustration of a single
model neuron receiving synaptic input (purple synapse), subjected to increasing
levels oscillatory power (red waveform). b. A population of N independent neurons
subjected to three levels of oscillatory power (A = 0.0, A = 0.1, A = 0.6 nS;
f = 30 Hz). The top panel is a plot of action potentials per neuron and the bottom is
membrane voltages of those same neurons.

The voltage budget. To understand the boundary between
healthy and pathological synchrony, we analyze computation
from a neuronal perspective by examining changes in the
membrane potential of individual neurons. To simplify this
analysis we examine extremely small, nearly instantaneous,
windows of time (w). For a window of time much less than
the membrane time constant (w << τm) it is reasonable to
treat the resting potential (Vr) and the firing threshold (Vt) as
constant values. With these terms fixed, the total amount of
voltage becomes fixed and the membrane potential available
in each neuron becomes a physically conserved quantity. This
means that no energy is allowed in or out, closing the system.

To aid our thinking about this conserved system we use
economic metaphors. The total amount of voltage available
to a neuron in w is termed a “budget” that can be “spent” by
the neuron. It can be spent to either minimize computational

errors—a perturbation of spiking—caused by the global os-
cillator, or to better align itself with the population (Fig. 2).
With this approach the voltage “cost” of increases in oscil-
latory power can be explicitly analyzed in terms of cellular
physiology.

We decompose each budget Vb into three terms: 1) the
computational voltage Vc, 2) the oscillatory voltage Vo, and, 3)
the open voltage Vn (Fig 1). The open voltage serves the same
role as the potential energy term common in basic analyses
of the physics of baseball thrown into the air. For example:
as the ball rises and is slowed by gravity, kinetic energy is
traded for potential energy. Put another way, Vn represents
the unused capacity of the system—the difference between
Vc + Vo and the threshold potential.

The basic budget relationships are shown in equations 1
and 2. In Eq 2, computation and communication explicitly
compete for influence on the eventual spike that happens when
the threshold is reached (when Vn → 0).

Vb = Vt − Vr [1]
Vb = Vo + Vc + Vn [2]

In practice though we study budget terms as ratios, be-
cause working in unitless quantities is simpler mathematically
and eases empirical comparisons. Specifically, we study the
oscillatory power normalized by the total size of each neuron’s
budget (Vo/Vb), and most importantly we study the ratio of
oscillation to computation (Vo/Vc).

Fig. 2. The voltage budget. a. Membrane voltage of a single neuron. Horizontal
dotted lines indicate the voltage threshold (Vt; top line) and the resting potential (Vr ;
bottom line). The vertical gray box depicts the 2 ms budget window (w; A = 0.1 nA;
f = 20 Hz). Stimulus onset occurs at 0.2 seconds. b. Example of a voltage budget
decomposition in time window w in panel a.. Red represents Vo; purple depicts Vc;
white space is Vn. c. Diagram of budget prediction. A budget estimate is formed at
t, then d seconds later a single cycle of oscillation begins. Over the period of that
cycle’s length T we estimate the error and variance of the population spiking. d. Plot
of average error versus population variance over period T . Increases in Vo/Vb are
denoted in red. Boxed area highlights the error plateau phase. In all plots: w = 2 ms;
d = 2 ms; oscillation frequency f = 20 Hz.

Budget analysis. We imagine each neuron seeks to spend its
budget as prudently as possible for each cycle of oscillation.
We model this by using a voltage budget at time t to predict
the effect of a later (t + d) cycle of oscillation on spiking,
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where t + d is the time at which we induce a burst of oscil-
lation. We then measure spiking activity for T seconds after
the oscillation begins, where T = 1/f (illustrated in Figure
2c). Tuning oscillations requires the cell make a temporal
predictions, because once a cycle of oscillation begins the dy-
namics of the network are committed to completing that cycle.
Mathematically, oscillations begin as an initial value problem;
how the oscillation starts largely determines where it ends.

To demonstrate the broader trend we first examine the
effect of a 20 Hz rhythm. Later we show that the key trends
for this rhythm is robust to changes to frequency (4-30 Hz),
noise (0 - 2.5 mV), and synaptic weights (0.3 -45 nS) (Fig 5),
as well as to neuron type (Fig 6).

Each experiment begins with a reference run, where the
neurons are initialized with their unique synaptic weights,
capacitances, and recovery variables. After 200 milliseconds of
settling in time, each neuron to subjected to the stimulus—a
pulse of 8 Hz Poisson activity lasting 50 milliseconds. The
entire spiking response to this brief stimulus is recorded for
later reference. The time of the first spike serves as a locking
point E. The reference run is followed by the budget run,
where we measure the level of computational influence Vc. In
each neuron, we then calculate Vo for many possible levels of
peak oscillatory power A, and store these for later reference.
We do not imagine that a real biological system would need
to explicitly conduct either the reference or the budget phases.
This would instead be learned by the system, becoming implicit
in the synaptic weights and delay times of the circuit. Finally,
in the experimental phase, we sweep over a large range of A
values corresponding to Vo changes ranging from < 0.1 mV to
greater than 5 mV. In each of these, a single cycle of oscillation
introduced at E+d seconds, and spiking behavior is monitored
for T seconds 2c). In all our simulations d = 2 ms.

A model of bursts. We study single cycle “bursts” of oscillation
for two reasons. The first reason is empirical: when individual
experimental trials of real oscillatory data are examined, oscil-
lations often appear as bursts (16, 17) even though averaging
many trials gives what appears to be sustained rhythm (18).
As a result of this averaging, most theoretical work on oscilla-
tions assume a sustained rhythm though there are exceptions
(18–20). Still, it remains unclear what, in general, a single
cycle of oscillation can accomplish, which is why we focus on
the this case here.

The second reason is practical. Bursts, by definition, are
accompanied by aperiodic windows of neuronal activity that
serve as a natural reference for doing error calculations. By
comparing firing during an aperiodic trial to a later periodic
trial, we can measure how synchronization perturbs single
neuron computations in a simple and direct way.

The trade-off between error and variance. As Vo rises in pro-
portion of the total budget Vb, population variance declines
consistent with previous models (21, 22). We also observe that
while variance decreases computational errors increase. This
trade-off is roughly linear for low power oscillations (Fig2d).
This early trend implies a nearly one-to-one trade-off between
coordination at the population level and errors introduced
at the neuronal level. However as relative oscillatory power
grows eventually error plateaus at the inflection point of the
error-variance curve (boxed region, Fig. 2d). Separating the

pseudo-linear from the plateau phase is the basis for how we
come to separate healthy from pathological synchrony.

Defining pathological oscillation. The fundamental idea we
wish to test: can a pathological oscillation be identified using
only computational activity as a reference? To do this we
consider the ratio of oscillation to computation, Vo/Vc. Before
getting to our numerical results though it is worth considering
Vo/Vc on its own. When Vo/Vc < 1, computation dominates
the system in that the majority of the voltage driving each
spike reflects the computational dynamics of each neuron. But
beyond Vo/Vc = 1, the majority of spikes reflect the modulatory
oscillation. Intuitively then, once a modulator dominates, it is
in effect no longer a modulator: the neurons downstream gain
information mostly about the oscillatory entrainment “signal”
and not the population’s normal computation. This idea leads
to our first new definition: oscillations that exceed Vo/Vc = 1
are intrinsically pathological.

Numerical analysis of Vo/Vc confirms this prediction: at
Vo/Vc = 1.0, the average error and variance of the population
plateau and are incrementally—asymptotically—approaching
their maximum values (for error see Figure 4a and c). At the
individual level, error for all neurons plateaus by Vo/Vc = 1.0,
however the steepness and curvature of this rise is neuron
dependent (Figure 4b). These cell-level differences suggest
that global oscillation is not optimal. That is, better trade-offs
may be possible if the oscillation is tuned to each neuron’s
particular computational curve; an idea we return to below.

Fig. 3. Voltage budget spent on oscillation increases error and reduces variance.
a. Plot of error predicted by changes to Vo/Vc. Grey lines indicate individual
neurons. Black is the population average. Dashed lines suggest the end points for
the pathological (dark) and healthy (light) inequalities. b. Randomly chosen individual
examples taken from a. c. Variance predicted by the ratio Vo/Vc. Grey lines indicate
individual neurons. Black represents the population average.

Defining healthy oscillation. In a later section we prove that
the optimal trade-off between error and variance is linear.
This proof leads to our second criterion: on normative grounds
we suggest that healthy oscillations have Vo/Vc < 0.5. This
point demarcates the average transition from pseudo-linear
to plateau (Figure 3a and b). At Vo/Vc = 0.5, this point
also separates the transition in variance from linear to its
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(even sharper) plateau phase, after which increasing oscillatory
power has an increasingly marginal effect on error or variance,
as those are close to maximal and minimal respectively (3c).

Variance and Vo. Variance and oscillatory budget (Vo) have
a more complex relationship than error and oscillation. In
individual neurons we see that as oscillatory budget increases
variance exists as two phenomena, which act in opposition.
For sufficiently small increases in oscillatory budget, synchrony
declines along a logistic path (see light orange traces in Figure
4a and e). However once the oscillatory budget reaches a
critical value, specific to each neuron, variance discontinuously
increases, denoted by the dark orange in Figure 4a and e.
These sudden jumps happen every time a new, extra action
potential is generated. New action potentials tend to be at
the extremes of an oscillatory cycle, as illustrated in Figure 4f.
In contrast to variance, however, individual neuron’s errors
change smoothly (Figure 4e).

On average, increases in oscillatory budget increase syn-
chrony. Counter-intuitively, however, very weak oscillations
can generate as much synchrony as strong oscillations. In fact,
the quantiles analysis in Figure 4c suggests that weak oscilla-
tions, when targeted at a select sub-set of neurons, can have
lower overall variance, while showing much greater capacity
for error/variance trade-off.

Fig. 4. Oscillations both decrease and increase variance. b. A plot of variance and
Vo, where traces from individual neurons are colored by the number of new spikes
introduced by Vo. Light orange indicates that the oscillation introduced zero new
spikes; dark orange is when the oscillation introduced one spike; red is two spikes.
b. Spike count as a function of Vo/Vc. The left side of the light dashed line denotes
the healthy ratio of Vo to Vc while the dark line denotes the start of the pathological
region. c. Histogram density plots for the top and bottom variance deciles. The
black line indicates the minimum population variance. The arrow indicates neurons
that show a lower total variance for weaker, rather than stronger, oscillations. d.
Randomly chosen examples of variance for individual neurons. e. Examples of error
for individual neurons. f. Illustration of the opposing possible effects an increase in Vo

can have on on variance. Left panel depicts an oscillation acting to shift spike times
closer together. Right panel depicts a stronger oscillation that adds an additional
spike, shown in red.

Testing robustness to frequency. Frequency has little effect on
error (Fig. 5a) but profoundly affects the synchrony (Fig. 5b).
Oscillations slower than 20 Hz show similar trends outlined in
Figures 2-5 (yellow arrow, Fig. 5b), while oscillations faster
than 20 Hz generate less total synchrony and plateau faster
(green arrow, Fig. 5a).

Influence of membrane noise and synaptic weight.
Biologically-relevant levels of noise have little effect on
normalized variance or error (Fig. 5c-d). The range of
synaptic weights, in combination with the input firing rate,
modestly alter the normalized error profile (Fig. 5e) but
can strongly affect variance (Fig. 5f). As shown in Fig. 5f,
when operating in the healthy range, where Vo/Vc ≤ 0.5,
all examined synaptic weights show a consistent monotonic
decrease in synchrony as Vo rises. However in the pathological
range Vo/Vc ≥ 1, weaker synapses and high Vo generate a
strong increase in variance—a change in variance 5-fold larger
than any other observed in our simulations. The strength of
this effect might tempt us to speculate that weak synapses
are particularly prone to generating pathological symptoms.
When placed under what might otherwise be considered a
low level of power and weak level of entrainment, neurons
with weaker synapses may generate unusually asynchronous
responses.

Fig. 5. Testing oscillatory budget robustness to frequency, noise, and synaptic weight.
The gray colored curve on each plot represents the “standard” value otherwise used
throughout. Light and dark dashed lines represent healthy and pathological Vo/Vc

ratios, respectively. a. Simulated effect of oscillation frequency (4-30 Hz) on average
error, normalized against each neuron’s maximum error. b. Population variance
decreases more quickly for stronger oscillations when those oscillations are lower
frequency. c. Injection of noise into membrane voltage between 0 and 2.5 mV shows
that noise has little effect on either error or, d., variance as a function of oscillatory
power. Oscillation frequency was 20 Hz (gray curve). e. Simulating changes in
the synaptic weight range and its impact on average error. Plots are colored by
the average weight. Individual ranges for the standard weight value in gray were
1.5-15 nS. Light blue illustrates weak synapses in the 0.3-3 nS range, while dark
blue represents strong synapses sampled from 4.5-45 nS. Individual synaptic weights
were sampled independently and uniformly for each condition. Oscillation frequency
was 20 Hz (gray curve). Synaptic weights have relatively weaker effects on population
error, but, f., show stronger effects on population variance.
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Influence of cell-type. So far we have focused on regular firing
neurons. Now we consider a heterogeneous population of
neurons displaying a wide range of firing modes. Our neuron
dynamics are governed by the AdEx model, which is known to
fit a wide range of real firing properties including fast firing,
adaption, accelerating activity, bursting, and chaotic irregular
firing (11). However, rather than simulating preset classes of
neurons, we opted instead to smoothly sample a large range of
the neural space, generating a diverse pool of firing behaviors.
The space is illustrated by a few randomly selected examples
in Figure 6a.

On average, the same budget ratios that predict healthy
synchrony in regular firing neurons hold true in simulations
of heterogeneous neuronal populations Fig. 6b-c). All models
show the same one-to-one trade-off between variance and error
below Vo/Vc = 0.5 and a error plateau by Vo/Vc = 1.0.

Fig. 6. Influence of cell type on voltage budget analysis. a. Examples of heteroge-
neous firing modes, driven by a 0.8 second, 0.25 nA square-wave pulse. b. Average
(black) and individual errors (gray) for N = 250 heterogeneous neurons. Average
error from a regular firing network is redrawn from Figure 3a (dot-dash). The left side
of the light vertical line denotes the healthy oscillation ratio ((Vo/Vc)=0.5) while the
dark light denotes the start of the pathological region ((Vo/Vc)=1.0). c. Variance as a
function of the Vo/Vc ratio. Black is the population average. Grey traces represent
individual neurons, and the dot-dashed line represents variance from the regular
population.

Optimal synchronization. Our model shows that oscillations
increase computational error and reduce population variance in
a roughly linear fashion such that there is a trade-off between
the two: oscillations reduce the population variance at the
cost of computational accuracy.

To measure population synchrony and average individual
neuron computational error, we use two related metrics. The
first is the mean absolute error (E), which measures the average
computational error. The second is the mean absolute devia-
tion (D), which measures the variance of each neuron’s spiking
relative to the population average. Exploring the mathemati-
cal connections between these metrics in the abstract offers
insight into the structure of the computation/communication
problem, and allows us to prove an optimal algorithm for
oscillatory synchronization.

E = 1
K

K∑
i=1

|ŷ − yi| [3]

D = 1
K

K∑
i=1

|ȳ − yi| [4]

Here y are spike times from individual neurons, reflecting
an example when oscillatory amplitude A is greater than zero.
ŷ is the set of reference times acquired without oscillations,
i.e., when A = 0. We denote examples from y as yi, and ȳ is
the average of y.

What’s the best algorithm to shift spike times? To formalize
an answer, assume we wish to change spiking variance D by
some amount ε ∈ R1. When ε is 0 there is no change in
synchrony and so by definition y = ŷ and E = 0. As we
increase ε the question becomes how should we distribute that
perturbation, or error, among the K spikes in the spiking
population y? That is, how do we set each neuron’s spiking
error, εi, for the series y = (ŷ1 + ε1, ŷ2 + ε2) . . . (ŷK + εK)?

A naive approach, similar in character to a global oscillator,
is to spread the error uniformly among the entire spiking pop-
ulation, y. Formally, if we decompose total error into i equal
error partitions, then we have a uniform error distribution
case where ε = |ε1|+ |ε2|+ . . .+ |εK |. If we wish to use error to
minimize variance we must set the sign of each perturbation
εi to oppose the sign of yi; if yi is negative, εi is positive, and
vice versa (for example see Figure 7a, bottom panel). When
implemented over a range of variances, this uniform approach
gives rise the blue error-variance curve in Figure 7b. The
question then becomes is this uniform strategy the optimal al-
gorithm to balance the trade-off between computational error
and population variance? That is, is there a smaller value of
D for a given level of error, E?

To explore optimality, we introduce a single degree of free-
dom. We hold all errors equal as before, except for two neurons
m and n. This lets us ask the question: by introducing a single
degree of freedom can we generate more synchrony than the
simple uniform error distribution strategy? If we can do so, we
know that the uniform strategy is not optimal. To simplify the
analysis, first we center all y and ŷ, by subtracting ȳ from all,
and remove the normalization term 1/K, leading to equations
5 and 6.

E′ =
K∑
i=1

|ŷ′ − y′i| [5]

D′ =
K∑
i=1

|y′i| [6]

An instructive, but extreme, use of a single degree of free-
dom is to assign all the values from one free perturbation
to the other. That is we set εn to 0, and εm to −2ε

K
. From

here it becomes clear that if we apply εm to max(|y|) and εn
to min(|y|) this will produce the largest possible decrease in
adjusted variance, D′, and represents a max(|y|) - min(|y|)
decrease in D′ compared to the uniform approach.
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If we free ourselves from the contrived example of uniformly
distributing ε, we can see now that the optimal approach is
to apply ε to max(|y|); max(|y|)→ max(|y|)± ε. This means
that for any given arrangement of spike times, the optimal
trade-off between computation and population synchronization
introduced by an oscillation is to shift the spike farthest from
the mean. We implement this as an incremental algorithm,
which can change the variance by ε by intuitively ranking y,
shifting the spike max(y) by some very small amount in time
δ until a running sum of all these tiny perturbations is equal
to ε. In theory, the smaller the δ the better the algorithm
approximates the true optimal solution. In practice, a δ below
0.00001 seconds is sufficient. See Figure 7a (top panel) for an
example of a synchronized spike train and b for a depiction of
the optimal error-variance curve.

Fig. 7. A comparison of two algorithmic strategies for inducing synchrony. a. In
these examples, two populations of synchronized neurons have their original spikes
(•) shifted to new positions (X) based on two different algorithms: either by iteratively
shifting the spikes furthest from the mean (top, red) or by shifting each spiking
uniformly (bottom, blue). b. Error-variance trade-off curves for the strategies illustrated
in a. The smaller the error for a given level of variance, the more optimal the algorithm
is. Note that the max(|y|) algorithm (red) optimally minimizes the trade-off between
computational error and population variance.

Discussion

We build a simple model of external oscillatory entrainment.
We mimic the real biological case where one “pacemaker”
population coordinates another, aperiodic, population, such
as in the case of top-down oscillatory influence (23–26). Our
model is the simplest case we could devise that allows for
the precise, biologically testable, predictions of oscillatory
over-entrainment.

Limits of the model. We studied a toy model designed as a
best-case scenario for understanding the trade-off between
computation and communication. Our purpose was to create
an initial (the first, as far as we are aware) quantitative model
of healthy versus pathological oscillations, and so begin by
using the simplest model that embodies the problem: uncou-
pled neurons subjected to a global oscillator. Real biological
systems, and more complete simulations, feature extensive yet
sparse connections between neurons. These connections natu-
rally create dependencies between the activity of one neuron

and the others in its population—a basic phenomenon we do
not capture here. Theoretical analysis of neural coding, and
decades of empirical research, however, suggest that, despite
this extensive connectivity, real neurons act with a high degree
of independence, which is optimal for computational efficiency.
The biological implementation of this independence relies on
a combination of independent dendritic computation and the
precise arrangement of excitatory and inhibitory circuits. So,
despite the simplicity of our model, it may act as a reasonable
approximation of real complex networks which maintain a high
degree of independence between neurons.

Oscillations in a network can also arise by self-organization,
where rhythmicity is driven by interactions within the en-
trained population. Our model is not well-suited to this case;
previous theoretical work suggests that, even in idealized
cases, there is a minimum level of voltage budget needed to
initiate and sustain an intrinsic oscillation (27). That is, in
self-organized systems the order parameter can’t be expected
to smoothly vary in the biologically relevant 1-5 mV range,
which is a requirement for our analysis to hold. Understanding
the interaction between computation and coordination within
a self-organized population remains an open question.

Real synchrony is often weak. It is not clear how oscillatory
entrainment can be weak, yet also be an important general
feature of nervous system function, as is frequently supposed (1,
2). That is, to observe oscillations in real local field potentials
often requires little more than placing an electrode in the
appropriate region, as field potential oscillations are relatively
ubiquitous (24, 28). Observing the same oscillation in the the
spiking behavior of neurons, however, often requires recording
from many—even hundreds—of neurons, especially in cortical
areas (29–31). In these recordings about half the neurons show
no preference for an oscillation’s phase (32). Those that are
entrained are often weakly entrained, synchronized by at most
few percent.

Our model suggests that the most effective oscillations
are precisely those that are both weak and sparse. When the
oscillatory power remains below the that of all other “computa-
tional” inputs, the system can exchange errors in a single neu-
ron’s computation for group-level synchrony, measured in the
voltage budget analysis as the quantitative ratio Vo/Vc ≤ 0.5.
This ratio’s predictions are relatively invariant to oscillation
frequency, noise in the membrane potential, and variations
synaptic weight; this ratio also predicts the firing properties
of a large range of heterogeneous cell-types. Further, strong
oscillations offer only marginal improvements in synchrony:
once an oscillation grows too strong it induces new action
potentials in the population. These extra action potentials
tend to be at the trailing end of the neuron’s response to in-
put, increasing variance rather than gathering spikes together.
Finally, our new strategy for provably-optimal coordination
targets a only small fraction of the population. Targeting all
neurons for coordination has a larger error cost than targeting
only a few of the more extreme action potentials in a given
cycle.

Oscillations as epiphenomenon. Oscillations could be a side
effect, or epiphenomenon, of neural physiology. Mathematical
and experimental analysis of both simple (30, 31) and complex
biological (10) structures suggests a relatively large portion
of the neural parameter-space generates oscillations. As a
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Table 1. Model parameters.

Symbol Range (unit) Description

A 0 - 0.15 (namp) Peak current (order parameter)
φ 0 Oscillation phase
f 0 - 30 (Hz) Oscillation frequency
rs 6 (Hz) Stimulus firing rate
C 100-200 (pfarad) Membrane capacitance
win 1.5 - 15 (nsiemens) Synaptic weight
τe 5 (msecond) Excitatory synaptic time constant
Ve 0 (mvolt) Excitatory synaptic reversal potential
Ibias 10 (namps) Bias current
σ 0 - 5 (namps) Injected membrane noise
gl 10 - 18 (nsiemens) Leak conductance
Vl -50 - -70 (mvolt) Leak reversal potential
a -11 - 4 (nsiemens) Slow recovery term
τw 30 - 300 (msecond) Slow time constant
b 0 - -12 (psiemens) Instantaneous recovery term
Vrheo -46 - -58 (mvolt) Instantaneous recovery voltage
∆t 2.0 (msecond) Recovery voltage rate term

result, oscillations may be only a nuisance. An artifact of
other biological factors. An epiphenomenon.

On the other hand, oscillations may have arisen early on
during nervous system evolution, initially as an artifact. How-
ever, over time these oscillations were co-opted and put to,
perhaps several distinct, uses. After more than 80 years of
study, separating these two possibilities remains an open prob-
lem.

We offer a new approach to the oscillations-as-
epiphenomenon debate. By deriving a priori quantitative
bounds between the healthy and pathological ranges of oscilla-
tion, and in defining an optimal algorithmic approach to syn-
chrony, we suggest that these normative constraints can help

in finally separating functional oscillations from physiological
epiphenomena. To see how, recall that our analysis suggests
that oscillatory input—and all the other neuronal inputs (col-
lected into the “computational” term in our model)—into the
neuron exist in equilibrium. At one end of this equilibrium
are neurons whose action potentials are independent. At the
other end are neurons who are completely synchronized, and
therefore redundant. Oscillations that are just an artifact
would be expected to explore both extremes. On the other
hand, oscillations that track strict normative bounds must be
functional, rather than epiphenomenal.

Materials and Methods

The network. Our model was a network of N = 250 Adaptive Expo-
nential (AdEx) neurons (15) sharing a common oscillatory drive,
Iosc(t) = A

2 (1 + sin(t2πf + φ)); where f is the frequency of the
oscillation, and φ denotes the phase offset. Each neuron was driven
by an identical Poisson process. Variability in computational output
depended solely on the variations in synaptic weight, and ‘slow”
membrane recovery parameters a and τw, all of which were inde-
pendently sampled from a uniform distribution (15) All synapses
were excitatory, and governed by a single exponential decay term
with time constant τe. Membrane noise currents were driven by a
Ornstein–Uhlenbeck process, with a 5 ms time constant.

Neuron-type. Initially we modeled regular firing neurons, whose
parameters were piblihsed in shown (11). To generate the heteroge-
neous population in Figure 6, we sampled uniformly sampled from
within a large range of AdEx membrane parameters, whose values
are found in Table 1. These were in turn drawn from several neuron
types previously described by (11).
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