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Abstract4

Integrating evidence over time is crucial for e↵ective decision making. For sim-5

ple perceptual decisions, a large body of work suggests that humans and animals are6

capable of integrating evidence over time fairly well, but that their performance is7

far from optimal. This suboptimality is thought to arise from a number of di↵erent8

sources including: (1) noise in sensory and motor systems, (2) unequal weighting9

of evidence over time, (3) order e↵ects from previous trials and (4) irrational side10

biases for one choice over another. In this work we investigated these di↵erent11

sources of suboptimality and how they are related to pupil dilation, a putative12

correlate of norepinephrine tone. In particular, we measured pupil response in hu-13

mans making a series of decisions based on rapidly-presented auditory information14

in an evidence accumulation task. We found that people exhibited all four types15

of suboptimality, and that some of these suboptimalities covaried with each other16

across participants. Pupillometry showed that only noise and the uneven weighting17

of evidence over time, the ‘integration kernel’, were related to the change in pupil18

response during the stimulus. Moreover, these two di↵erent suboptimalities were19

related to di↵erent aspects of the pupil signal, with the individual di↵erences in20

pupil response associated with individual di↵erences in integration kernel, while21

trial-by-trial fluctuations in pupil response were associated with trial-by-trial fluc-22

tuations in noise. These results suggest that di↵erent sources of suboptimality in23

human perceptual decision making are related to distinct pupil-linked processes24

possibly related to tonic and phasic norepinephrine activity.25

1 Introduction26

The ability to integrate evidence over time is a crucial component of perceptual decision27

making. This is true whether we are integrating visual information from saccade to28

saccade as we scan a scene, or integrating auditory information from word to word as we29

listen to someone talk. In recent years much work has been devoted to understanding30

how humans and animals perform evidence integration over short time scales (on the31

order of one second) in simple perceptual tasks [1, 2, 3, 4]. In a classic paradigm from32
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this literature, known as the Random Dot Motion Task, participants are presented with33

a movie of randomly moving dots that have a weak tendency to drift in a particular34

direction (e.g. left or right) and they must decide which way the dots are drifting [5].35

The optimal strategy in this task is to count, i.e. integrate, the number of dots moving36

to the left and right over the time course of the stimulus and choose the side that had37

the most dots moving in that direction. Amazingly, this optimal strategy can account for38

many of the qualitative properties of human and animal behaviour and neural correlates39

of integrated evidence can be found in several areas of the brain [2, 6, 3, 7].40

Despite the ability of the optimal model to qualitatively account for a number of41

experimental findings, the quantitative performance of even highly trained humans and42

animals is suboptimal [1, 8]. This suboptimality is thought to arise from at least four43

di↵erent sources: (1) neuronal noise, (2) unequal weighting of evidence over time, (3)44

order e↵ects from previous trials and (4) side biases.45

The first source of suboptimality is neuronal noise. While the exact cause of neuronal46

noise is subject to debate [9, 10, 11, 8], it is thought that variability in neural firing impacts47

perceptual decision making in one of two ways. First, noisy sensory information reduces48

the quality of the evidence going into the accumulator in the first place [12, 1, 13, 14].49

Second, noisy action selection causes mistakes to be made even after the integration50

process is complete [15, 16, 17].51

The second source of suboptimality comes from the unequal weighting of evidence over52

time, which we call here the ‘integration kernel’. In particular, while the optimal kernel53

in most perceptual decision making tasks is flat — i.e. all information is weighed equally54

over time — a number of studies have shown that humans and animals can have quite55

suboptimal kernels. For example, in the Random Dot Motion Task, monkeys exhibit56

a ‘primacy’ kernel, putting more weight on the early parts of the stimulus relative to57

the later parts of the stimulus [4]. Conversely, in a slightly di↵erent integration task,58

humans exhibit the opposite ‘recency’ kernel, weighing later information more than early59

information [18, 19]. Finally, in some experiments this second source of suboptimality60

appears to be absent, with a ‘flat’ integration kernel being found in both rats and highly61
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trained humans [1].62

The third source of suboptimality reflects the tendency to let previous decisions and63

outcomes interfere with the present choice. Thus, when making multiple perceptual64

decisions, the current decision is influenced by the choice we just made, for example by65

repeating an action when it is rewarded and choosing something else when it is not, a66

reinforcement learning e↵ect [15, 16, 8, 20], or simply repeating a choice regardless of the67

outcome associated with it, a choice kernel e↵ect[8, 20, 21]. Such sequential dependence68

can be advantageous when there are temporal correlations between trials, as is the case in69

many reinforcement learning tasks [15, 16], but is suboptimal in most perceptual decision70

making tasks when each trial is independent of the past [22, 23, 8, 20].71

Finally, the fourth suboptimality is an overall side bias where both humans and animals72

develop a preference for one option (e.g. left) even though that leads to more errors overall73

[20].74

Evidence from a number of studies suggests that pupil-linked arousal processes, puta-75

tively driven by the locus coerulues norepinephrine system [24, 25, 26, 27, 28], are well76

placed to modulate all four of these di↵erent sources of suboptimality. With regard to77

noise, increased pupil response has been associated with a number of di↵erent cognitive78

processes such as e↵ort, arousal, mood, attention and memory, all of which might influ-79

ence noise [26, 29]. In the specific case of perceptual decisions, previous work suggests80

a role for pupil-linked arousal systems to modulate the overall neuronal noise, i.e. the81

signal-to-noise ratio of sensory cues, in the evidence accumulation process [30, 31]. With82

regard to kernel and side bias, pupil response has been associated with a change the ‘gain’83

of other neural systems, which in turn is thought to modulate the strength of internal84

and external cognitive biases on decision making [26, 28, 32, 33, 34, 35]. In addition,85

recent empirical and theoretical work has also suggested that norepinephrine, a putative86

driver of pupil dilation, modulates the urgency of decision making in a sequential sam-87

pling task such that the higher the norepinephrine level, the more urgently a decision is88

made [36, 37, 38]. Taken together these studies point to the possibility of pupil-linked89

norepinephrine systems to modulate the integration kernel and side bias by changing the90
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strength of pre-existing biases during the integration process. Finally, with regard to91

sequential e↵ects, pupil changes have been related to how humans integrate relevant in-92

formation from previous trials to infer uncertainty and expectation [21, 39, 40], suggesting93

a role for pupil-linked arousal systems in modulating sequential e↵ects.94

In this work we investigated all four sources of suboptimal perceptual decision making95

and their relationship to between pupil-linked arousal processes in a single task. By96

quantifying all four sources of suboptimality in the same task we were able to assess the97

relationships between the suboptimalities and determine the extent to which pupil-linked98

arousal processes were related to each.99

2 Results100

To study the e↵ects of pupil response on evidence accumulation, we designed an auditory101

discrimination task based on the Poisson Clicks Task [1]. In this task, participants listened102

to two trains of clicks in the left and right ears, and were instructed to indicate which side103

they thought had more clicks (Figure 1a). Clicks in our task were generated according104

to a Bernoulli process, such that there was always a click every 50ms that was either on105

the left, with probability pleft, or otherwise on the right. This process meant that the106

total number of clicks was always fixed at 20 clicks and the clicks occurred at a fixed107

frequency of 20 Hz. This generative process for the clicks represented a slight departure108

from [1], in which clicks were generated by a Poisson process with a refractory period109

of 20ms. The main reason for using a Bernoulli process was to simplify the subsequent110

logistic regression analysis for quantifying the di↵erent sources of suboptimality, without111

imposing too much a priori assumptions. To indicate this di↵erence we refer to our task112

as the Bernoulli Clicks Task.113

2.1 Psychometric and chronometric functions114

108 participants each performed between 666 and 938 trials (mean 760.7) of the Bernoulli115

Clicks Task. Basic behaviour was consistent with behaviours in similar pulsed-accumulation116
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Figure 1: Basic behaviour of 108 participants. (a) Participants listened to a train of
twenty clicks coming in either the left (L, black bars) or right (R, grey bars) ear for one
second, and decided which side had more clicks. (b) Choice probability (probability of
choosing left) showed sigmoidal relationship with di�culty (the di↵erence in number of
clicks between left and right). (c) Reaction times were higher on more di�cult trials.
Size of grey dots scaled by number of trials. All error bars (black bars) indicate s.e.m.
across participants. Dotted red lines are fits with sigmoidal function and linear function
respectively.
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tasks [1, 4]. Choice exhibited a sigmoidal dependence on the net di↵erence in evidence117

strength, i.e. the di↵erence in number of clicks between the right and left, �click (Figure118

1b). A simple logistic regression of the form:119

logit(p
left

at trial t) = �
0

+ �
�click

�click (1)

revealed a significant e↵ect of �click (�
�click

= 0.3500, p = 0.0001). Reaction times were120

also modulated by net evidence strength (Figure 1c) and linear regression of the form:121

RT at trial t in seconds = �
0

+ �
�click

|�click| (2)

found a significant e↵ect of the absolute value of �click on RT (�
�click

= �0.017, p =122

3.7 ⇥ 10�13). These results indicated that participants were faster and more accurate123

when the di↵erence of number of clicks was large (easy trials), and less accurate and124

slower when that di↵erence was small (hard trials).125

2.2 Humans exhibited all four suboptimalities in the Bernoulli126

Clicks Task127

We used a logistic regression model to characterize the four di↵erent types of subopti-128

malities in human decision making in our task. This model quantified the impact of each129

click, the reinforcement learning and choice kernel e↵ects from the five previous trials and130

the side bias on participants’ choices. In particular, we assumed that the probability of131

choosing left on trial t was given by132

logit(p
left

at trial t) =
20X

i=1

�click

i ci

| {z }
intergration

kernel

+
5X

j=1

�RL

j at�jrt�j

| {z }
reinforcement

learning

+
5X

j=1

�CK

j at�j

| {z }
choice
kernel

+ �side

|{z}
side
bias

(3)

where ci was the ith click (+1 for a left click and -1 for right), at�j was the choice made133

on the t� jth trial (+1 for a left choice and -1 for right), and rt�j was the ‘reward’ on the134
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Figure 2: Regression model. (Leftmost) Mean of click weights is significantly above
zero. T-test against zero, two-tailed, ⇤ ⇤ ⇤: FDR corrected for multiple comparisons
p < 0.00001. (Second from left) Deviation of click weights from the mean has an uneven
shape. repeated measures ANOVA, ⇤ ⇤ ⇤: p < 0.00001. (Second from right) E↵ect of
previous trials: RL (the correct side in previous trial) positively predicts choice, indicating
a reinforcement learning e↵ect, while as CK (the choice made in previous trial) negatively
predicts choice, indicating a alternating choice kernel. T-test against zero, two-tailed, ⇤⇤:
FDR corrected for multiple comparisons p < 0.00001, Cohen’s d > 1; ⇤: FDR corrected
for multiple comparisons p < 0.00001, Cohen’s d > 0.5. (Rightmost) Side bias. T-test
against zero, two-tailed, ⇤: FDR corrected for multiple comparisons p = 0.0001. All error
bars (black bars) indicate s.e.m. across participants.

t�jth trial (+1 for correct and -1 for incorrect). Therefore, at�jrt�j indicated the correct135

side on the t � jth trial (+1 when left was correct and -1 when right was correct). The136

relative e↵ect of each of these terms on the decision was determined by the regression137

weights: �click

i (the e↵ect of each click), �RL

j (the reinforcement learning (RL) e↵ect, i.e.138

e↵ect of previous correct side), �CK

j (the choice kernel (CK) e↵ect, i.e. e↵ect of previous139

choice) and �side (an overall side bias).140

Each of the four suboptimalities could be quantified using di↵erent parameters from141

this model (Figure 2). First, the signal-to-noise ratio (SNR), corresponding to subopti-142

mality arising from neuronal noise, was quantified as the average weight given to all clicks143

( 1

20

P
20

i=1

�click

i ). The higher the average click weight, the higher the SNR or equivalently,144

the lower the relative level of the noise. This average was significantly di↵erent from145

zero (T (107) = 27.65, two-tailed, FDR corrected for multiple comparisons p < 0.00001,146

Cohen’s d = 2.66) (Figure 2 leftmost panel), indicating that participants based their147

decision on (at least some of) the clicks and that each click increased the log odds of148

ultimately choosing that direction by about 0.4.149

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/309526doi: bioRxiv preprint 

https://doi.org/10.1101/309526
http://creativecommons.org/licenses/by-nc-nd/4.0/


The second suboptimality, i.e. deviations from a flat integration kernel, was quantified150

as the deviation of the click weights from the average, i.e. �click

i � 1

20

P
20

j=1

�click

j (Figure151

2 second from left panel). Here we found that participants did not weigh all the clicks152

equally (repeated measures ANOVA, F (19, 2033) = 28.21, p < 0.00001, partial ⌘2 =153

0.21). This was not consistent with previous reports with a similar task where all clicks154

received equal weighting on average [1].155

Sequential e↵ects, the third suboptimality, were captured by the e↵ects from previous156

trials. Specifically, the terms �RL

j and �CK

j quantified the reinforcement learning (RL)157

e↵ect (e↵ect of past correct side) and choice kernel (CK) e↵ect (e↵ect of past choice) for158

the past five trials on the current choice. In line with earlier work [20], we found that159

previous trials had both significant RL and CK e↵ects on participants’ choices (Figure160

2 second from right panel). Notably, the positive RL regression weight demonstrated a161

positive reinforcement learning e↵ect, in that participants tended to choose whichever162

side that was shown to be correct on the previous trial (T (107) = 14.40, two-tailed, FDR163

corrected for multiple comparisons p < 0.00001, Cohen’s d = 1.39). The negative CK164

regression weight indicated an alternating choice kernel — participants tended to choose165

the opposite of what they had chosen on the previous trial (T (107) = �10.45, two-tailed,166

FDR corrected for multiple comparisons p < 0.00001, Cohen’s d = �1.01).167

Finally, the side bias was quantified by the intercept term �side in the model (Figure 2168

rightmost panel). This term quantified the extent to which a participant chose the left169

side on all trials regardless of which side was the correct side. Here we saw a significant170

right bias indicated by a significantly negative regression weight (T (107) = �4.12, two-171

tailed, FDR corrected for multiple comparisons p = 0.0001, Cohen’s d = �0.40) .172

2.3 Sequential e↵ects and signal-to-noise ratio covary across173

participants174

We then inspected how these suboptimalities correlated with each other across partici-175

pants. We used a three way mixed ANOVA to inspect the e↵ect of previous trials on both176

SNR and kernel shape. The three factors we investigated were: RL regression weights,177
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Figure 3: Interaction between suboptimalities across participants. (a) RL is significantly
negatively correlated with SNR (r = �0.28, p = 0.003). (b) CK is significantly positively
correlated with SNR (r = 0.22, p = 0.03). (c) RL is significantly negatively correlated
with CK (r = �0.46, p = 5⇥ 10�7).

CK regression weights, and time. The ANOVA was set up to investigate the e↵ect of178

these three factors on the regression weights of clicks. In this ANOVA, the main e↵ects of179

either RL or CK on kernel weights told us whether RL or CK correlated with the overall180

SNR. The interaction e↵ect between either RL or CK and time on kernel weights told us181

whether RL or CK correlated with the kernel shape.182

We found that both RL and CK had significant main e↵ects on SNR (RL: F (1, 2080) =183

50.66, p = 1.5 ⇥ 10�12, CK: F (1, 2080) = 56.82, p = 7.1 ⇥ 10�14), but not kernel shape184

(RL ⇥ time: F (19, 2080) = 0.80, p = 0.71, CK ⇥ time: F (19, 2080) = 0.19, p = 0.99).185

Specifically RL is negatively correlated with SNR (r = �0.28, p = 0.003) (Figure 3a),186

while CK is positively correlated with SNR (r = 0.22, p = 0.03) (Figure 3b).187

Importantly, since the RL e↵ect was positive (Figure 2), i.e. participants tended to188

choose, on the current trial, whichever side was correct in the previous trial), a negative189

correlation indicated that participants who relied more on feedback from the previous190

trial tended to rely less on information on the current trial. Conversely, since CK e↵ect191

was negative (i.e. participants tended to alternate their choices of sides between trials)192

(Figure 2), a positive correlation indicated that the more participants alternated their193

choices (i.e. relied on past choice history), again the less they relied on evidence from the194

current trial.195

Together these results suggested a ‘subtractive’ e↵ect between choice history and signal-196

to-noise ratio on the current trial - participants who rely more on history (RL and CK)197
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tend to rely less on evidence from the current trial. This result could also be interpreted as198

that participants who were worse at making decisions based on evidence from the current199

trial tended to rely more on previous history. Interestingly, we also found a similar small200

but significant relationship between sequential e↵ects and SNR at the within participant201

level (Supplementary Materials Section S.1).202

In addition, we also saw a negative correlation between RL and CK across participants203

(r = �0.46, p = 5⇥ 10�7) (Figure 3c), which indicated that participants who relied more204

on past feedback also relied more on past choice (stronger alternating e↵ect).205

2.4 Individual di↵erences in pupil change correlate with indi-206

vidual di↵erences integration kernel207

To examine the interaction between individual di↵erences in pupil response and integra-208

tion behaviour, we first computed the pupil diameter change during the presentation of209

clicks stimulus. We time-locked the pupillary response to the onset of the clicks stimulus,210

and averaged the pupil diameter within each participant. We then took the di↵erence211

between the peak and the trough of the pupil diameter within the clicks stimulus, which212

we called the the ‘pupil change’ for each participant (Figure 4a). As shown by a me-213

dian split in Figure 4b, there were considerable individual di↵erences in the pupil change214

with some participants showing almost no change while others changed a lot during the215

stimulus.216

To examine the relationship of pupil change with overall signal-to-noise ratio and inte-217

gration kernel, we used a two way mixed ANOVA to compare the e↵ects of pupil change218

(coded as a continuous variable) and time on participants’ regression weights from equa-219

tion (�click
i s from equation (3)). If pupil change had an e↵ect on the overall signal-to-noise220

ratio, we should see a main e↵ect of pupil change on the regression weights. Conversely,221

if pupil change had an e↵ect on the integration kernel, we should see a significant interac-222

tion e↵ect between pupil and time on regression weights. Only the interaction e↵ect was223

significant (interaction F (19, 2014) = 2.225, p = 0.0018, partial ⌘2 = 0.02; main e↵ect224

F (1, 106) = 2.761, p > 0.05). Moreover, these results were robust to a number of di↵erent225
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assumptions in the analysis such as the size and location of the window size for comput-226

ing pupil change (Supplementary Materials Section S.4), and whether we performed the227

analysis on the raw regression weights or on the top two principal components (Supple-228

mentary Materials Section S.3). Taken together these findings suggested that individual229

di↵erences in pupil change a↵ected the shape of the integration kernel but not the overall230

signal-to-noise ratio (illustrated using a median split in Figure 4c left two panels).231

Figure 4: Interaction between pupil change and integration behaviour across participants.
(a) Pupil diameter time-locked to the onset of clicks, averaged within participants across
trials and then across participants. All shaded areas indicate s.e.m. across participants.
(b) Averaged pupil response across participants split into two groups — high (blue) vs.
low (red) change in pupil response. All shaded areas indicate s.e.m. across participants.
(c) Regression weights averaged across participants split into high vs. low pupil change
groups for visualization. (Leftmost) Mean regression weight showed no change across
groups. (Second from left) Pupil had a significant interaction e↵ect with time on regres-
sion weights. Two way mixed ANOVA, ⇤⇤: p = 0.0018. (Second from right) E↵ect of
previous trials showed no di↵erences across groups. (Rightmost) Side bias showed no
change across groups. All error bars indicate s.e.m. across participants.

To understand which click weights were driving this interaction e↵ect we performed232

a correlation analysis between individual di↵erences in the regression weights for each233
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click and individual di↵erences in the pupil change. These post hoc tests suggested that234

the main change occurred in the second and third clicks, whose weights were increased in235

participants with high pupil change. Specifically, pupil change was significantly correlated236

with 2nd (r = 0.29, FDR corrected for multiple comparisons p = 0.02) and 3rd (r = 0.30,237

FDR corrected for multiple comparisons p = 0.02) kernel weights (Figure S2).238

To examine the relationship between pupil change and sequential e↵ects and side bias,239

we looked at the correlation between pupil change and regression weights for the previous240

trials (RL and CK) and side bias. We found no significant relationship between pupil241

change and either sequential e↵ects (absolute correlation r < 0.16, FDR corrected for242

multiple comparisons p > 0.05) or side bias (correlation r = �0.01, FDR corrected for243

multiple comparisons p > 0.05 ) (illustrated using a median split in Figure 4c right two244

panels)245

These results combined suggest that individual di↵erences in pupil change were asso-246

ciated with individual di↵erences in only one of the four suboptimalities, the kernel of247

integration such that participants with larger pupil change had more uneven integration248

kernels.249

2.5 Trial-by-trial variability in pupil change correlates with trial-250

by-trial variability in signal-to-noise ratio251

To quantify how trial-by-trial pupil change relates to the four suboptimalities in evidence252

accumulation, we modified the regression model (equation 3) to include interaction terms253

between clicks, previous trials, and trial-by-trial fluctuations in pupil:254

logit(p
left

at trial t) =
20X

i=1

�click

i ci + �RL

1

at�1

rt�1

+ �CK

1

at�1

+ �side

+ ��click⇥�t�c�t| {z }
SNR⇥pupil

+ �RL⇥�t
1

at�1

rt�1

�t| {z }
reinforcement
learning⇥pupil

+ �CK⇥�t
1

at�1

�t| {z }
choice kernel

⇥pupil

+ �side⇥�t�t| {z }
side bias
⇥pupil

(4)
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where�c was number of clicks on the left minus number of clicks on the right, correspond-255

ing to the mean click regression weight in Figure 2, indicating the average signal-to-noise256

ratio. (It is also worth noting that here the interaction between side bias and pupil is257

equivalent to a main e↵ect of pupil change - since the regressor indicating a side bias is258

all 1s.)259

We found that trial-by-trial pupil change interacted significantly with �click after260

correction for multiple comparisons (T
107

= �3.27, two-tailed, FDR corrected for multiple261

comparisons p = 0.0016, Cohen’s d = �0.31), but not with side bias, RL (previous262

correct) or CK (previous choice) (Figure 5).263

Figure 5: Trial-by-trial interaction between pupil change and integration behaviour. T-
test against zero, two-tailed, ⇤⇤: FDR corrected for multiple comparisons p = 0.0016. All
error bars (black bars) indicate s.e.m. across participants.

We then tested whether there was an interaction between pupil change and integration264

kernel shape with a slightly modified version of equation (4):265
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logit(p
left

at trial t) =
20X

i=1

�click

i ci + �RL

1

at�1

rt�1

+ �CK

1

at�1

+ �side

+
20X

i=1

�click⇥�t
i ci�t

| {z }
kernel⇥pupil

+ �RL⇥�t
1

at�1

rt�1

�t| {z }
reinforcement
learning⇥pupil

+ �CK⇥�t
1

at�1

�t| {z }
choice kernel

⇥pupil

+ �side⇥�t�t| {z }
side bias
⇥pupil

(5)

where �t was the pupil change measure at trial t. The first four terms in this model266

were the same as equation (3), and the last four terms were the respective interaction267

terms of clicks (integration kernel), previous correct side (RL), previous choice (CK),268

and side bias with pupil change. With repeated measures ANOVA, we did not find a269

significant e↵ect of time on �clicki⇥�t (F (19, 2033) = 0.72, p = 0.81), suggesting that270

pupil change did not modulate the integration kernel on a trial-by-trial level. We did271

not find a significant interaction e↵ect between pupil and RL (T (107) = 1.78, two-tailed,272

FDR corrected p = 0.14), CK (T (107) = �0.78, two-tailed, FDR corrected p = 0.62),273

or side bias (T (107) = �1.63, two-tailed, FDR corrected p = 0.19) either. These results274

combined suggested that pupil change on a trial-by-trial level specifically modulated the275

overall signal-to-noise ratio, and not integration kernel or sequential e↵ects.276

3 Discussion277

In this paper we investigated four sources of suboptimality in human evidence integra-278

tion: neuronal noise (as reflected in the signal-to-noise ratio), uneven integration kernel,279

sequential e↵ects, and side bias, and their relationship with pupil diameter at the across-280

participants and within-participants level. We showed that all four types of suboptimality281

were at play in our perceptual decision making task. These included variance that could282

not be explained by another source, i.e. ‘noise,’ a predominantly ‘bump’ integration ker-283

nel, sequential e↵ects in the form of a positive reinforcement learning (RL) e↵ect (choosing284

the previous correct answer) and an alternation choice kernel (CK) e↵ect (choosing the285
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opposite of previous choice), and an overall side bias (Figure 2). In addition, across the286

population, participants with stronger sequential e↵ects (RL and CK) tended to rely less287

on evidence from the current trial (smaller signal-to-noise ratio), and participants with288

one kind of sequential e↵ects (RL) also tended to have the other kind (CK) (Figure 3).289

At the physiological level, two of the four suboptimalities were associated with pupil di-290

lation, at the trial-by-trial and individual di↵erence levels respectively. At the individual291

di↵erence level, only the integration kernel was associated with pupil change, with a more292

uneven profile of integration being associated with larger pupil change during stimulus293

presentation (Figure 4). Conversely, at the trial-by-trial level only noise was associated294

with pupil change, with a smaller signal-to-noise ratio being associated with larger pupil295

change on that trial (Figure 5). Our work adds to a growing literature on the subopti-296

malities in evidence accumulation and perceptual decision making and their relationship297

with pupil dilation. In the following we discuss the implications of our behavioral and298

pupillometric findings.299

3.1 Behavioral findings300

At the behavioral level, our findings are consistent with a number of previous results301

showing the presence of noise in the integration process [1, 8], uneven weighting of in-302

formation over time [4, 18, 19], and the presence of order e↵ects [23, 21, 20] and side303

biases [1]. In addition, by running our task in a large number of participants (something304

not traditionally done in the animal literature), we were able to expose the relationships305

between the suboptimalities at the individual di↵erence level. Intriguingly this analysis306

suggests an antagonistic relationship between the use of information from the past trial307

(i.e. RL and CK e↵ects) and processing of the current stimulus, as reflected in SNR. Such308

an e↵ect may reflect a kind of compensatory process in low performers. That is, people309

who are less able to process the stimulus correctly (low SNR) may rely more on sequential310

e↵ects to (either explicitly or implicitly) try to compensate. While such a strategy is not311

adaptive for this task, this approach would pay o↵ if there was autocorrelation in the312

task.313

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/309526doi: bioRxiv preprint 

https://doi.org/10.1101/309526
http://creativecommons.org/licenses/by-nc-nd/4.0/


In addition to the correlations between suboptimalities, one unexpected behavioral314

finding was the shape of the uneven integration kernel. Specifically the ‘bump’ kernel315

where clicks in the middle are weighed more than those at the beginning or the end. This316

contrasts with previous work on perceptual decision making from Brunton and colleagues317

[1], who found that the integration kernel of rats and well-trained humans was flat, Yates318

and colleagues [4], who showed a purely primacy driven integration kernel in monkeys, and319

several studies that showed humans have a recency kernel [18, 19]. Given this di↵erence320

in results, one obvious question is whether the bump kernel is a genuine feature of the321

integration process or some artifact of either the analysis pipeline or the task?322

With respect to the analysis, one possibility is that the bump may result from a mixture323

of subjects with primacy and recency kernels which average together to form the bump.324

To test this we categorized the integration kernel for each participant into one of the325

following four shapes: bump, primacy, recency, and flat (for categorization method, see326

Supplementary Materials Section S.8). All 108 of these are plotted in Supplementary327

Figure S14. From here it is easy to see that a large number of subjects (49%) exhibit328

the bump kernel. This suggests that at least on the level of individual participants, the329

bump kernel is a feature of the integration process, and not just a artifact of averaging.330

Of course, the possibility remains that this bump kernel is a result of mixing a primacy331

and recency kernels within subject (e.g. some trials have primacy kernels, and some have332

recency). More detailed modeling work will be needed to tease these interpretations333

apart.334

With respect to the task, another possible cause for the bump kernel comes from the335

number of clicks in each stimulus being fixed. This fixed number of clicks in each stimulus336

means that an ideal observer, who is aware that there are only 20 clicks in each stimulus,337

could safely stop integrating clicks if the excess number of clicks favoring on one side338

exceeds the number of remaining clicks. That is, by fixing the number of clicks, we may339

be implicitly favoring a bounded integration process (with a collapsing bound). Such340

bound crossing would cause the later clicks to be down-weighted on average as we see341

in the later part of the bump profile. Bound crossing would not, of course, account342
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for the initial rise in weights for the bump profile, which would need some additional343

mechanism (perhaps a recency e↵ect combined with a bound) to explain. Incidentally,344

this account would fit with the recency bias found in perceptual categorization in previous345

studies [18, 19]. An important direction for future research would be to test whether this346

account fully explains the bump profile, both with more detailed modeling in addition to347

more experiments in which the total number of clicks in each stimulus is not fixed.348

3.2 Physiological findings349

At the physiological level, our results add to a rapidly growing literature on the rela-350

tionship between pupil dilation and decision making. In particular, this literature has351

reported associations between pupil dilation and a number of suboptimalities including:352

noise [21, 18], reinforcement learning e↵ects [39], choice kernel e↵ects [21] and pre-existing353

biases [28, 33]. Ours is the first to examine the relationship between pupil dilation and354

all of these suboptimalities in a single task, as well as being the first to look at the rela-355

tionship between pupil dilation and the shape of integration kernel. Below we situate our356

results with respect to this previous literature considering each of the suboptimalities in357

turn.358

3.2.1 SNR and pupil359

With regard to SNR, we found that increased pupil change is associated with lower SNR360

on each trial. This finding is consistent with much of the previous literature. For example,361

in the Dot Motion paradigm, Murphy and colleagues showed that trial-by-trial variability362

in the evidence accumulation process was associated with increased pupil dilation [31].363

Likewise in other perceptual decision making tasks several authors have observed an asso-364

ciation with increased pupil dilation and noise in behavior [21, 18]. Outside of perceptual365

decision making, Jepma and colleagues observed the same relationship between pupil and366

decision noise in a reinforcement-learning based explore-exploit task [41].367

Of course, while the finding that trial-to-trial pupil dilation is associated with trial-368

to-trial behavioral variability is robust across studies, exactly what this finding means is369
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open to interpretation. In this paper we have related it to signal-to-noise ratio, with the370

interpretation that changes in pupil reflect change in SNR which causes poor performance.371

If one takes pupil as an index of activity in the locus coeruleus, our interpretation is372

consistent with the Adaptive Gain Theory of norepinephrine function, such that increased373

LC activity causes more variability in behavior via changes in neural gain [?, 42].374

An alternate interpretation, put forth by Urai and colleagues [21], is that pupil reflects375

subjective uncertainty and that participants are more uncertain on trials in which they376

perform poorly. In this interpretation the direction of causality is reversed: it is poor per-377

formance that leads to changes in pupil, via its e↵ect on uncertainty (which, incidentally,378

may also be related to LC [43]). Distinguishing between these accounts, which predict379

almost identical relationships between pupil and behavioral variability, will be di�cult380

with correlational experiments such as ours, and future work using pharmacological and381

other causal interventions will be necessary to determine the direction of the relationship382

between pupil (putatitvely LC) and noise.383

3.2.2 Sequential e↵ects and pupil384

In contrast to our result showing no relationship between pupil and the reinforcement385

learning and choice kernel, a number of studies have found relationships between pupil386

and sequential e↵ects. For example, Nassar and colleagues showed that both baseline387

pupil and pupil change modulates how information from previous trials a↵ect current388

choice [39], a result which was recently replicated in a di↵erent version of the task [40].389

Similarly, in a perceptual decision making task, Urai and colleagues [21] showed that390

pupil dilation on the previous trial modulated the extent to which that trial influenced391

the current choice.392

One possible cause of the di↵erence between our results and this previous work is the393

overall magnitude of the sequential e↵ects in the respective tasks. Specifically, in our394

task the sequential e↵ects were small, with the combined e↵ect of reinforcement learning395

and choice kernel equating to about 2 clicks, or 10% of the variance in the response.396

Conversely, in [21] the previous trial e↵ects account for almost 100% of the variance when397

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/309526doi: bioRxiv preprint 

https://doi.org/10.1101/309526
http://creativecommons.org/licenses/by-nc-nd/4.0/


evidence on the current trial is weak. Likewise in [39] and [40] successful performance of398

the tasks required the use of sequential e↵ects and so the sequential e↵ects observed were399

huge. This di↵erence in overall magnitude of the sequential e↵ects could simply have400

made modulation of these sequential e↵ects by pupil too small to observe in our task.401

Another possible cause of the di↵erence in results is the timing of the pupil signal that402

we focused on. Specifically, our task was optimized to look at pupil during presentation403

of the click stimuli and not at pupil at other points in the task, such as baseline pupil404

or pupil following the choice and feedback, which can have very di↵ernet behavioral and405

computational correlates [44]. This di↵erence in timing is especially important for the406

Urai et al. results [21] where the pupil signal modulating sequential e↵ects was computed407

250 ms before feedback, which is at least 2800 ms after stimulus onset. Such a time408

lag would be well into the inter-trial interval and possibly even the next trial in our409

task, making the corresponding pupil signal hard for us to compute. Indeed, when we410

looked at the signal at these later times, there was no association between pupil and411

sequential e↵ects (Supplementary Materials Section S.5). Clearly, future experiments412

with additional delays will be necessary to determine whether pupil does or does not413

modulate sequential e↵ects in our task.414

3.2.3 Other biases and pupil415

A number of other authors have related individual di↵erences in pupil dilation to a number416

of other biases including risk aversion [45], learning styles [28], and the framing e↵ect [33].417

While these biases are not directly related to integrating evidence over time, the more418

general point that individuals with large pupil change have more bias across a range of419

tasks is consistent with our result that individual di↵erences in pupil change modulate420

the integration kernel. In particular, we find that people with greater pupil change show421

more deviation (that is more bias) from the ideal, flat, integration kernel. Taken together422

these results suggests that, at least some, deviations from optimality are modulated by423

pupil, possibly via its association with LC.424
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3.2.4 Di↵erence between between- and within-participant results425

More generally, the di↵erence between the between- and within-participant pupil results426

is intriguing. On the one hand, individual di↵erences in pupil change correlate with kernel427

shape, while on the other trial-by-trial fluctuations in pupil change correlate with SNR.428

Why exactly would the individual di↵erences and trial-by-trial correlates of the same429

signal be so di↵erent?430

One possibility, originally raised in [28], is that these slightly di↵erent measures of pupil431

diameter — individual di↵erences vs trial-by-trial fluctuation — may represent di↵erent432

neural measures, with the average of pupil dilations representing baseline or tonic locus433

coeruleus (LC) signals, and the trial-to-trial fluctuations of pupil reflecting transient, or434

phasic, LC firing. At the individual di↵erence level, Eldar and colleagues [28, 33] have435

suggested that mean pupil response within a participant is a measure of tonic LC activity.436

In contrast, at the trial-by-trial level, work in monkeys and in mice has suggested that437

moment-to-moment pupil diameter changes track phasic LC firing [24, 25]. Applying438

these interpretations to the present findings suggests that tonic LC activity changes the439

kernel of integration while phasic LC decreases the signal-to-noise ratio.440

The interpretation that tonic LC modulates the integration kernel between participants441

is consistent with previous work showing that individual di↵erences in pupil change cor-442

relate with individual di↵erences in susceptibility to a variety of cognitive and decision443

biases [28, 33]. Importantly, theoretical work has shown with biophysically based neural444

network model that high tonic LC activity acts to amplify attractor dynamics, essentially445

causing the storage of impulsive decisions [38]. This can serve as a partial explanation446

for why our results revealed a positive correlation between individual pupil (proxy for447

tonic LC activity) and early kernel weights. Furthermore, empirical work has shown that448

pupil-linked arousal (associated with LC-NE activity and neural gain) is related to time-449

varying changes in the decision bound [36]. Specifically, higher pupil was found to reflect450

a stronger urgency signal (lower decision bound). While this relationship between pupil451

and urgency was only found for the case in which participants faced a decision deadline,452

an e↵ect on decision bound could potentially o↵er an explanation for the relationship453
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between pupil and the shape of the integration kernel. Clearly, more detailed modeling454

and experimental work will be needed to test this hypothesis.455

The interpretation that phasic LC, as indexed by trial-by-trial pupil change, modu-456

lates signal-to-noise ratio is consistent with a number of pupil findings as outlined above457

[31, 18, 21]. However, it is at odds with a number of findings from direct LC recordings458

in monkeys, where enhanced phasic LC is associated with better task performance [46].459

Understanding these results in more detail, with experiments in animals and neuroimag-460

ing in humans, will be important if we are to fully understand that LC plays in these461

decisions.462

4 Methods463

4.1 Participants464

188 healthy participants (University of Arizona undergraduate students) took part in465

the experiment for course credit. We excluded 55 participants due to poor performance466

(accuracy lower than 60%), and then another 25 participants due to poor eye tracking467

data (see Eye tracking section below). All participants provided informed written consent468

prior to participating in the study. All procedures conformed to the human subject ethical469

regulations. All study procedures and consent were approved by the University of Arizona470

Institutional Review Board.471

4.2 The Bernoulli Clicks Task472

Participants made a series of auditory perceptual decisions. On each trial they listened473

to a series of 20 auditory ‘clicks’ presented over the course of 1 second. Clicks could474

be either ‘Left’ or ‘Right’ clicks, presented in the left or right ear. Participants decided475

which ear received the most clicks. In contrast to the Poisson Clicks Task [1], in which476

the click timing was random, clicks in our task were presented every 50 ms with a fixed477

probability (p = 0.55) of occurring in the ‘correct’ ear. The correct side was determined478

with a fixed 50% probability. Feedback appeared 500 ms after response, followed by a 1479
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s fixation delay before the next trial.480

Participants performed the task on a desktop computer, while wearing headphones,481

and were positioned in chin rests to facilitate eye-tracking and pupillometry. They were482

instructed to fixate on a symbol displayed in the center of the screen, where response and483

outcome feedback was also displayed during trials, and made responses using a standard484

keyboard. Participants played until they made 500 correct responses or 50 minutes of485

total experiment time was reached.486

4.3 Behavioural analyses487

We modeled the choice with logistic regression using equation (3). In particular we488

assumed that the probability of choosing left on trial t, is a sigmoidal function of the489

impact from each click, the impact from five previous trial correct sides, the impact from490

five previous trial choices, and an overall side bias. In this model, by giving the ith click491

its own weight, we could account for the overall integration kernel.492

4.4 Eye tracking493

A desk-mounted EyeTribe eye-tracker was used to measure participants’ pupil diame-494

ter from both eyes at a rate of 30 samples per second while they were performing the495

behavioural task with their head fixed on a chin rest. Pupil diameter data were pre-496

processed to detect and remove blinks and other artifacts. Pupil diameter was z-scored497

across entire experiment before analysis. For each trial, pupil response was extracted498

time-locked to the start of the trial (Figure 4a). Change in pupil response was computed499

as the di↵erence between the peak diameter and the minimum diameter during the 1s500

following trial onset. Pupil response measurements in which more than one-third of the501

samples contained artifacts were considered invalid and excluded from the analysis. Only502

participants with at least 200 valid trials were included in analysis (n = 108).503
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4.5 Across participants pupil analysis504

For each participant, we took the mean pupil response across trials and computed the505

change in pupil diameter as described in previous section. We then compared this pupil506

change measurement with regression weights from equation (3). Specifically, we per-507

formed a two way mixed ANOVA in which pupil change is a between subject variable,508

time is a within subject variable, and regression weight is the dependent variable. We509

inspected the main e↵ect of pupil change, which informed whether the average regression510

weight changed with pupil change across participants. We also inspected the interaction511

e↵ect between pupil change and time, which informed whether pupil change modulates512

the e↵ect of time on regression weights (i.e. the integration kernel).513

4.6 Trial-by-trial within participants pupil analysis514

For each trial, we took the pupil response and computed the change in pupil diameter.515

We then modeled participants’ choices with the logistic model in equations (4) and (5)516

to parse out trial-by-trial e↵ects of pupil on integration. The first three terms in both517

equations were similar to equation (3). But in addition, we assumed that choice was518

also a function of the interaction between trial-by-trial pupil change and clicks, previous519

correct side, and previous choice.520

4.7 Statistics521

All data analyses and statistics were done in MATLAB and R. Repeated measures522

ANOVA, two way mixed ANOVA, and the corresponding post hoc tests done in R. All523

other analyses and statistical tests done in MATLAB.524
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Supplementary Material665

S.1 Within participant analysis of interaction between sequen-666

tial e↵ects and signal-to-noise ratio (corresponding to Main667

Text Section 2.3)668

Another way to investigate whether choice history enhances or diminishes the e↵ect of669

current evidence is to inspect this interaction at a trial-by-trial level within participants.670

We adapted a technique for measuring consistency used by Cheadle and colleagues [18]671

– we measured the consistency ✓ between previous history (previous correct side and672

previous choice, representing reinforcement learning e↵ect (RL) and choice kernel e↵ect673

(CK) respectively) and the net di↵erence in clicks on the current trial as the product674

between the two:675

✓
RL

= at�1

rt�1

�c (6)
676

✓
CK

= at�1

�c (7)

where �c was the net di↵erence in clicks (each click coded as +1 for left or -1 for right),677

at�1

was the previous choice (+1 for left or -1 for right), and rt�1

was the previous reward678

(+1 for correct and -1 for wrong), and at�1

rt�1

indicated which side (left or right) was679

correct in the previous trial (hereby referred to as previous correct side). If the previous680

correct side or previous choice and �c agreed in side (left or right), the consistency would681

be positive, and if not, the consistency would be negative. Because previous correct682

side and previous choice were always either +1 or -1, the magnitude of the consistency683

depended solely on �c, i.e. if the evidence on the current trial was strong and agreed684

with the previous trial, the consistency was highly positive, whereas if the evidence on685

the current trial was strong and disagreed with the previous trial, the consistency term686

would be highly negative.687

We used this consistency measure as a “weight” by multiplying the term with the688

net di↵erence in clicks, so that the weight of the current evidence is modulated by the689
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consistency term. For example, in the case of ✓
CK

, the regressor is computed as the690

following:691

Consistency weighted �c = �c✓
CK

/14 = �c⇥ at�1

�c/14 (8)

This regressor means that the impact of �c is enhanced (quadratically) when it agrees692

with previous choice, but is enhanced in the opposite direction if it does not agree with693

previous choice. We also normalized �c (by dividing it by the maximum absolute dif-694

ference in clicks, which is 14) so that the Beta we estimate from this regressor will have695

the same unit with that of �c, for the purpose of comparing e↵ect size. We added this696

interaction term in to the regression model in addition to the pure net di↵erence in clicks697

term.698

logit(p
left

) = ��c+ �0at�1

�c/14⇥�c (9)

Figure S1: Trial–by–trial interaction between SNR and previous trial e↵ects.

This consistency modulated �c came out significantly negative for CK (b = �0.029,699

FDR corrected for multiple comparsions p = 0.0075) and positive for RL (b = 0.032,700

FDR corrected p = 0.0087) (Figure S1). Since the previous history biases are positive701

for RL (reinforcement learning bias) and negative for CK (alternation bias), these results702

suggest that if �c is consistent with the reinforcement learning bias (previous correct703

side) it’s more highly weighted, and if �c is consistent with the alternating bias (i.e. not704

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/309526doi: bioRxiv preprint 

https://doi.org/10.1101/309526
http://creativecommons.org/licenses/by-nc-nd/4.0/


consistent with previous choice) it is again more highly weighted. This agrees with the705

individual di↵erences analysis above, and suggests a multiplicative e↵ect of previous trial706

bias on current trial on a trial–by–trial level. We do note that the e↵ect sizes for both707

consistency-weighted �c are quite small, e↵ectively amounting to about one-tenth of the708

e↵ect of an average click.709
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S.2 Scatter plots of correlation between early kernel weights710

and pupil (corresponding to Main Text Section 2.4)711

We plot the scatter plots between pupil change and early (second and third) kernel weights712

below (Figure S2). Pupil change was significantly correlated with second (r = 0.29, FDR713

corrected for multiple comparisons p = 0.02) and third (r = 0.30, FDR corrected for714

multiple comparisons p = 0.02) kernel weights.715

In addition, we removed a participant who may be an outlier (highlighted in red) in716

both correlations. The correlation results still held after removing the outlier: across par-717

ticipants, pupil change was significantly correlated with second (r = 0.29, FDR corrected718

for multiple comparisons p = 0.03) and third (r = 0.33, FDR corrected for multiple719

comparisons p = 0.01) kernel weights.720

Figure S2: Scatter plots of second and third kernel weights and pupil change across
participants. Grey line is least–squares line for all participants. Red dot is a potential
outlier participant. Blue line is least–squares line for all particpants except the outlier.
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S.3 PCA on kernel weights (corresponding to Main Text Sec-721

tion 2.4)722

We performed PCA on the kernel weights for dimensionality reduction. We showed the723

plot of the cumulative sum of the fraction of the total variance retained as the number of724

components increases (Figure S3a). We computed this fraction by dividing cumulative725

sum of the principal component variances (i.e. eigenvalues) by the sum of the variances.726

We plotted the first two components out of the twenty components (Figure S3b), the727

first one showed a smooth bump kernel and the second one showed a smooth primacy728

kernel. Together they count for 70% of the total variance explained, which indicates that729

the main factors contributing to kernel shape are not the high frequency oscillations but730

these low frequency kernel shapes.731

Figure S3: (a) Cumulative sum of fraction of total variance retained as the number of
components increased. (b) First two principal components. (c) Integration kernel created
using only the first two principal components. (d) Regression weights (recreated using
only the first two principal components) averaged across participants split into high vs.
low pupil change groups for visualization.

We performed dimensionality reduction on the kernel weights by picking these first732

two components to recreate the kernel weights (Figure S3c), and tested for the e↵ect733

of interaction between pupil change and time on kernel weights. With two way mixed734

ANOVA, we saw a significant e↵ect of interaction between pupil change and time on735

kernel weights (F(19,2014) = 4.096, p = 6.9e-9), which concur with what was reported in736
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the original manuscript. This analysis was done with pupil change a continuous variable,737

but again for visualization purpose, we plot the kernel weights of participants split by738

high vs low pupil change (Figure S3d). These results combined suggest that the pupil739

e↵ect on kernel shape is not due to the high frequency components of the kernel, but the740

low frequency components (the bump and the primacy kernels).741
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S.4 Relationship between kernel shape and pupil measured us-742

ing di↵erent window sizes (corresponding to Main Text Sec-743

tion 2.4)744

One potential concern is that the window for measuring pupil change to the stimulus745

window (1 second after stimulus onset) is also a relatively early window for inspecting746

pupil change, and that this relatively early window can bias the result to detecting re-747

lationships between pupil and processes that happen earlier in time. We addressed this748

concern in two ways:749

1. An expanding window analysis, in which we time-locked the pupil response to stim-750

ulus onset and expanded the window of analysis from between 0s and 1s to between751

0s and 2s, and computed the pupil change as the di↵erence between the maximum752

and the minimum of pupil response for each window size.753

2. A sliding window analysis, in which we computed the pupil change as the di↵erence754

between every point on the pupil response time course and baseline (.25 sec pre755

stimulus).756

S.4.1 Expanding window analysis757

We repeated the analysis with a two-way mixed ANOVA to quantify the e↵ect of pupil758

on signal-to-noise ratio and on kernel shape. As in the original reported results, we did759

not see a significant influence of pupil on signal-to-noise ratio, but we did see a significant760

e↵ect of pupil on integration shape at every window size (FDR corrected p-values for all761

points <= 0.011). We reported the corrected p-values of the interaction e↵ect between762

pupil and time on kernel weights in Figure S4a.763

To inspect whether the direction of this result was consistent with the reported result,764

and to inspect whether it was the same set of clicks (i.e. the clicks occuring early on in765

the stimulus) that contribute to the change in kernel shape, we looked at the correlation766

coe�cients between pupil change (for every window size) and kernel weights. We found767

that, as with the original reported results, only the 2nd and 3rd kernel weights correlate768
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significantly positively with pupil change across individuals (Figure S4b). This suggested769

that later pupil change did not reveal relationship with integration that happened later770

in time.771

Figure S4: (a) FDR corrected p-values of e↵ect of interaction between pupil and time on
kernel weights. (b) All correlation coe�cients are significantly positive (FDR corrected
p-values for all coe�cients <= 0.005)

S.4.2 Sliding window analysis772

Figure S5: (a) Uncorrected p-values of e↵ect of interaction between pupil and time on
kernel weights. (b) Correlation coe�cients between pupil and second/third kernel weights
(p <= 0.01 uncorrected)

We repeated the above analysis with a sliding window analysis, and saw the similar773

results. Specifically, we used each point in time of the pupil response between 0 and774

2 seconds after the clicks onset. Again a two way mixed ANOVA revealed that pupil775

change modulated kernel shape, although the largest e↵ect was observed about 250ms776

after the end of the clicks (Figure S5a). In addition, we again saw that only the 2nd777

and the 3rd kernel weights correlated with pupil change (Figure S5b). Combined, these778
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analyses support that the relationship between kernel shape and pupil is not a result of779

early window of pupil change biasing the detection of modulation in early kernel weights.780
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S.5 Relationship between sequential e↵ects and pupil measured781

using di↵erent window sizes (corresponding to Main Text782

Section 2.5)783

In contrast to our results, Urai et al 2017 found an association between pupil response and784

the magnitude of the history e↵ects. The question here, then, is whether such a pupil-785

history e↵ect relationship exists in our data. One key di↵erence between our analysis786

and Urai’s is that we only looked at pupil on the present trial, whereas Urai looked at787

pupil on the previous trial. To address this question comprehensively, we repeated the788

above sliding window analysis to inspect correlation between pupil on the previous trial789

and history e↵ects at the within participant level.790

S.5.1 Expanding window analysis for pupil on previous trial791

Here we used a similar expanding window analysis as described in the previous section,792

and repeated the regression analysis described in Main Text Section 2.5 (equation (4)).793

The main di↵erence was that the pupil signal comes from the previous trial, not the794

current trial. Repeating the regression analysis with these two measures we did not see795

a significant interaction e↵ect between previous trial e↵ect and pupil change (Figure S6)796

suggesting that the relationship between past pupil and history e↵ects is not present in797

our data.798

Figure S6: Expanding window analysis of interaction between previous trial e↵ects and
pupil change.
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S.5.2 Sliding window analysis for pupil on previous trial799

We also used a sliding window approach to investigate the interaction e↵ect between800

previous trial and pupil change on the last trial. Again, we did not observe any significant801

e↵ect (Figure S7), further confirming the lack of a relationship between pupil and history802

e↵ects in our data.803

Clearly, these null results are quite di↵erent from the findings of Urai et al. and the804

obvious question is why this di↵erence arises. As discussed in the Discussion, we believe805

there are two possible issues at play here. First, the history e↵ects we observed in this806

task are relatively small (having the same e↵ect on choice as approximately 1 click). This807

small e↵ect size for past trials means that the modulation of this small e↵ect by pupil808

will be di�cult to detect. The second reason we may not have observed the e↵ect is down809

to the timing of our trials. To maximize the number of trials in the task, the inter-trial810

interval was short. This short ITI makes it hard to examine the late pupil components,811

which is exactly the component that Urai et al. found correlating with history e↵ects.812

Figure S7: Sliding window analysis of interaction between previous trial e↵ects and pupil
change.
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S.6 Variance inflation factor analyses for regression models813

Most of the reported analyses require fitting a considerable number of regressors, which814

raises the concern that the regressors may be collinear with each other. Here we computed815

variance inflation factors (VIFs) for our regression models to examine if the regressors in816

our regression models are collinear with each other.817

For equation (3), we note that VIFs are all around 1 (the minimum value for vari-818

ance inflation factors) for all participants (Figure S8), and thus it does not run into819

multicollinearity issues.820

Figure S8: VIFs for equation (3). Equation replicated in figure. Each participant’s VIF
is shown as a colored dot, the mean across participants is shown as a black circle.

Beginning with equation (4) (which had fewer regressors than equation (5), namely821

trial-by-trial analysis showing interaction e↵ect between pupil and signal-to-noise ratio),822

we find that VIFs for individual clicks (1 to 20) and side ⇥ pupil regressors are low823

(Figure S9). Mean VIFs for all the other regressors are <= 10, which is the standard824

cuto↵ for diagnosing multicollinearity in regression [47, 48].825

Figure S9: VIFs for equation (4).

However, we see some participants with VIFs much higher than 5. To assuage the826

validity of this regression analysis, we excluded these participants and picked only par-827
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ticipants for whom all the regressors have a VIF smaller than or equal to 5, and ran the828

regression analyses on only these participants (n = 54). We plot the VIFs from the new829

group of participants (Figure 8). In the new group of participants, we see the same results830

as reported in Main Text Figure 5): trial-by-trial analysis of interaction e↵ect between831

pupil and signal-to-noise ratio is significantly negative (Beta = -0.0083, FDR corrected832

for multiple comparisons p = 0.01) (Figure 9).833

Figure S10: VIFs of only participants for whom all the VIFs are smaller than or equal
to 5 (n = 54) for equation (4)

Figure S11: Trial by trial analysis of interaction e↵ects between pupil and behavior with
only participants for whom all the VIFs are smaller than or equal to 5 (n = 54).

For equation (5), due to the large number of regressors, the VIFs for all regressors834

are relatively high (Figure S12). We acknowledge that for this specific regression model835

(inspecting pupil interaction with kernel shape on a trial by trial basis) we are limited836

in what we can do with the amount of data we have. However, the mean VIFs for all837

regressors are still smaller than 10, which is not a definitive diagnosis that the model has838
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Figure S12: VIFs for equation (5)

serious multicollinearity issues [47].839
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S.7 Pupil analysis using pupil change residualized from previ-840

ous trial pupil change841

The ITI is relatively short for pupil signal, and one potential concern is a bleed over e↵ect842

of pupil signal from the previous trial into the current trial. To alleviate this concern, we843

repeated our analyses with residualized pupil change. We took the regression of the pupil844

change in the previous trial on pupil change in the current trial, and used the residual845

as our new measure of pupil change. Repeating the trial-by-trial analyses, we see that846

our results concur with the original results. Specifically we find that �click ⇥ pupil has847

a significant interaction e↵ect on choice (Beta = -0.0184, FDR corrected p = 0.0025)848

(Figure S13).849

Figure S13:

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/309526doi: bioRxiv preprint 

https://doi.org/10.1101/309526
http://creativecommons.org/licenses/by-nc-nd/4.0/


S.8 Categorizing kernel shapes850

To categorize the kernel for each participant into one of the four shapes, we fit polynomial851

functions with di↵erent degrees to participants’ choices, and selected the best fitting852

model with model comparison using the Akaike Information Criterion (AIC). Specifically,853

we assume that the probability of choosing left at trial t is (the logit of) the weighted sum854

of clicks, where the weights are from a polynomial function, as shown in the following855

equation:856

logit(p
left

at trial t) =
20X

i=1

�poly

i ci , where �poly

i =
NX

n=0

↵ni
n (10)

We fitted three di↵erent polynomial functions by changing N from 0 to 2: constant,857

linear, and quadratic. We then selected the best fitting function for each participant by858

comparing the fits from di↵erent polynomials with AIC. We categorized each participant’s859

integration kernel into one of the four shapes using the following criteria: (1) flat: kernel860

was best fit with the constant function; (2) primacy: kernel was best fit with linear861

function with a negative slope (↵
1

), or with quadratic function with a minimum (↵
2

> 0)862

and the minimum is located later than the 10th click, or with quadratic function with a863

maximum (↵
2

< 0) and the maximum is located earlier than the 2nd click; (3) recency:864

kernel was best fit with linear function with a positive slope, or with quadratic function865

with a minimum (↵
2

> 0) and the minimum is located earlier than the 10th click, or with866

quadratic function with a maximum (↵
2

< 0) and the maximum is located later than the867

18th click; (4) bump: kernel that did not meet the previous three criteria (i.e. kernel was868

best fit with quadratic function and was neither primacy nor recency).869
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Figure S14: Individual integration kernel plots. Colored lines are regression weights of
clicks from equation (3). Plots are sorted and color coded by kernel shape. Light grey
line shows smoothed integration kernel.
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