

Embedding containerized workflows inside data science
notebooks enhances reproducibility

Jiaming Hu, Ling-Hong Hung, Ka Yee Yeung

Institute of Technology, University of Washington, Tacoma, Washington 98402, USA.

Correspondence should be addressed to K.Y.Y. (kayee@uw.edu)

Keywords: software container, reproducibility of research, data science, bioinformatics

workflows

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract
Data science notebooks, such as Jupyter, combine text documentation with dynamically
editable and executable code and have become popular for sharing computational methods. We
present nbdocker, an extension that integrates Docker software containers into Jupyter
notebooks. nbdocker transforms notebooks into autonomous, self-contained, executable and
reproducible modules that can document and disseminate complicated data science workflows
containing code written in different languages and executables requiring different software
environments.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

With the generation of diverse and complex big data, computational method development and

data analyses have become integral to research. Analytical protocols typically involve the

execution of a series of computational tasks that are dependent on code, parameters,

environment, installation and setup, that are not easily described by text inside a traditional

laboratory notebook or in a published “Materials and Methods” section. Data science notebooks

such as Jupyter notebooks offer a partial solution as they allow for inclusion of executable live

code and documentation. Each Jupyter notebook is a web application that is divided into

markdown (text) and code cells that can be modified and run independently inside the notebook
1, 2. All modifiable code cells in a notebook must be in the same language but Jupyter has

kernels supporting over 100 programming languages including R, Python, Ruby, Javascript,

C++ and Perl 1, 3, 4. The integration of editable code with the scientific rationale and narrative

facilitates the documentation, dissemination and adoption of computational methodologies. As a

result, Jupyter notebooks have become extremely popular, with over 1.7 million Jupyter

notebooks shared on the public GitHub code repository 4 covering a wide variety of scientific

disciplines. These interactive notebooks have become particularly useful in bioinformatics for

documenting complicated workflows and sharing analytical protocols between collaborators with

different backgrounds 5-7. Many bioinformatics software tools such as GenePattern 8 and Galaxy

5 have built-in support for Jupyter notebooks.

A major drawback of Jupyter notebooks is that they are not autonomous. Although the code in

code cells is modifiable and executable, execution often requires the installation of additional

software, libraries, frameworks and packages by the user. For bioinformatics workflows, there

are usually many components or modules, each of which executing a different tool that requires

potentially different computing environment and software dependencies. One approach to this

problem is to use software containers such as Docker containers to encapsulate each

computing environment. Docker containers wrap the executables and scripts inside a custom

software environment, avoiding conflicts between different components and thus, eliminating the

need for users to install and manage all the software dependencies. Dockerized components

are completely isolated and modular and will yield identical results regardless of the platform.

When a Docker command is run, Docker will search for and automatically download the

specified container from its public repository, eliminating the need for installation of diverse and

possibly conflicting software. As a result, Docker container technology is rapidly gaining

popularity in biomedical research and has been used to enhance both the portability and

reproducibility of complicated workflows9.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

Another limitation of Jupyter notebooks is that each notebook is limited to one kernel supporting

a single programming language. This is a problem since bioinformatics workflows typically

consist of a series of tasks that are written in different programming languages. There is some

limited support for multiple languages with a single notebook. rpy2 embeds an R interface inside

a Python process 10. Beaker notebooks (currently “beakerX”) can also support multiple

languages but requires that the user to create a REST server to wrap the application 11.

Another possible workaround is to create a custom kernel that provides the software

requirements for all the components. Users would still have to choose a single language and

execute other commands using mechanisms provided by that language (e.g. the subprocess

module of Python). However, the portability and modularity of the workflow are limited by the

use of a custom kernel.

Using Docker containers inside Jupyter notebooks offers a more robust and flexible approach.

Currently, this is possible using Jupyter’s ability to embed shell commands within code cells.

However the syntax and availability of these commands varies between different kernels12. For

example, preceding a shell command with an exclamation point “!” works in the Python kernel

but not in the R kernel. Here, we present “nbdocker”, a Python/Javascript extension to Jupyter

notebooks that allows for different Docker containers to be executed inside Jupyter notebooks in

the same manner regardless of the kernel used. nbdocker is an extension that integrates a

Docker management user interface (UI) into Jupyter. The user can embed a set of Docker

commands as clickable buttons inside markdown (text) cells. Specifically, “nbdocker” provides

a point-and-click Docker management UI to pull a Docker image from a registry such as

DockerHub or a local image, keep a record of running Docker containers, document and

execute a Docker container in the history. The user can also check the status of running

containers with a single click.

We illustrate the utility of “nbdocker” using an established RNA sequencing (RNA-seq) data

processing workflow using kallisto13 and sleuth 14. In this workflow 15, the first step is to

download data files from NCBI’s Short Read Archive (SRA) database using a Python script that

calls the NCBI SRA toolkit. Next, the reference human transcriptome is downloaded and

indices are generated using the annotation file. The reads are then aligned to the reference and

the abundance of the transcripts are quantitated using kallisto, a binary executable compiled

from C++ source code. Finally, differentially expressed genes under different experimental

conditions are identified Sleuth 14 which is written in R. To replicate this workflow from the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

original published methods description requires the configuration of multiple computing

environment and installation of multiple software tools, including kallisto, sleuth, python, R, SRA

tools and Bioconductor packages. Most importantly, the versions of all software must be

compatible with each other and with the reader’s hardware and operating system. Without

“nbdocker”, the user will have to manually install and execute selected steps in this workflow

outside the Jupyter notebook. One possibility is to execute the data download and kallisto

pseudoalignment steps outside the notebook and represent the differential expression step in a

notebook running the R kernel. In contrast, “nbdocker” allows each module to be represented

as an independent Docker container, and hence, multiple programming languages and

conflicting dependencies can be encapsulated within a single notebook. Most importantly, the

history of Docker commands are all contained in the “nbdocker” notebook such that simply

sharing the notebook file (.pynb file) will allow a collaborator to reproducibly execute and modify

the workflow without any additional download or installation. The differences between these

different methods of documenting computational workflows are shown in Figure 1.

In this paper, we present a Jupyter extension called “nbdocker” that brings the modularity,

portability and reproducibility of software containers to Jupyter notebooks (see Table 1 for a

summary of features). Complex workflows with multiple modules and different software

requirements can be encapsulated within a single nbdocker notebook. In addition, “nbdocker”

offers an interactive computing environment that allows easy sharing, modification and point-

and-click reproducible execution of documented Docker commands, thus facilitating the

communication of complicated data science protocols and collaboration between diverse groups

of researchers.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. Complex bioinformatics workflows illustrate differences between static text

documentation, Jupyter notebook and Jupyter notebook with nbdocker extension. A RNA-seq

processing workflow workflow using kallisto for pseudoalignment and sleuth for identification of

differentially expressed genes is used here as an example bioinformatics workflow.

a. Using static text description, users must configure the computing environment and install all

software tools (circled in red). Since the code in the text file is not executable, users may

unintentionally omit parameters or instructions that match the latest version of the code.

b. Jupyter notebook contains embedded executable code cells (circled in green). This ensures

that the code that was actually run is accurately represented in the notebook. The code in

the notebook can be modified facilitating customization. However, the Jupyter notebook is

limited to a single kernel that only supports the R (sleuth) part of the pipeline. The user must

install and execute the data download and kallisto steps outside the notebook.

c. Finally, “nbdocker” adds the ability to embed Docker commands as clickable buttons in

markdown cells. Users can execute the Docker commands corresponding to the

pseudoalignment (kallisto) task with a point-and-click user interface. The Docker commands

can be documented and modified. Using “nbdocker”, the entire workflow is modularized and

contained within a single notebook that can be shared, modified and reproducibly executed

without installation of any additional software.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Comparison of features of Jupyter, Docker and nbdocker. Three stars mean that the

requirement is strongly satisfied. One star means that the requirement is weakly satisfied.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

METHODS

Implementation details.

“nbdocker” has two components: a Jupyter server extension (back-end) and a Jupyter

notebook extension (front-end). The server extension reserves three URL’s : /docker,

/dockerpull and /dockerbuild. /docker is used to run basic docker commands (e.g. list

images/containers and pull/build image submission) while the URL /dockerpull and /dockerbuild

are reserved for building/pulling docker image. The notebook front-end is implemented in

javascript (JS), renders the JSON data provided by the back-end and interacts with users.

Figure S1 shows the overall architecture of “nbdocker”.

nbdocker Engine: server extension.

The server extension uses the Docker API for python (docker-py) 17 to interact with the Docker

engine. Docker commands are executed through the unix:///var/run/docker.sock socket on

linux/unix and npipe:////./pipe/docker_engine socket on Windows. Some jobs such as pulling or

building a Docker image can be quite lengthy. We implemented a session manager to run these

jobs as threads and return control to the user. The session manager is designed to be used by

multiple notebooks. A separate uuid is provided for each job allowing them to be tracked

individually. The session will terminate when all jobs have finished. Figure S2 summarizes the

process of building a Docker image in “nbdocker”.

Docker management UI: notebook extension.

The front end is based on notebook’s JS library that is used to interact with users. We added

two additional libraries: xterm.js 18 which renders image building logs and progressbar.js 19

which shows the progress of lengthy jobs such as pulling images. AJAX is used for one-step

commands such as listing images. This prevents the webpage from refreshing. For longer jobs

such as pulling or building an image, a POST mechanism is used to pass the Docker image or

Dockerfile to the server extension. We then monitor the server extension for events that we

pass to the EventSource object to display the progress to the user.

To integrate nbdocker inside the Jupyter markdown cells we implement a custom rendering

function for markdown cells. The custom function searches for the keyword

{nbdocker#<history_id>} in the cells and allows other content pass through to the functions that

are responsible for rendering the markdown cells. Upon finding the keyword, it is rendered as

whale shaped badge. Both the <cell_id> and <history_id> are bound to the click event of this

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

badge allowing us to identify which badge has been clicked by the user and which set of Docker

commands should be run in response.

Docker run history

nbdocker records the directory mapping, port mapping and docker commands when the user

runs a docker container through nbdocker. These histories are saved along with the Jupyter

notebook file (.ipynb). The front-end notebook extension also sends the current working

notebook name to the server where the global history dictionary was maintained. The

appropriate histories are then written in JSON format to the matching ipyb file. nbdocker

monitors clicks on badges in the markdown cells. When a replay event is triggered by a badge

click, a request is sent to the server to retrieve the matching history. The Docker container id will

be written into the metadata of the markdown cell where the badge was clicked. A status bar is

attached to the bottom of the current cells to indicate the running status of the container(s)

launched.

Case study: RNA-seq data processing workflow using STAR and edgeR

We also include a second case study on another RNA-seq work documented in Bioconductor 16.

Specifically, the Love et al. workflow used STAR to align short reads to the reference genome

and DESeq2 to infer differentially expressed genes. STAR 17 is written in C++ while DESeq2 18

is a R package in Bioconductor. The existing workflow documented in Bioconductor provides all

the R code to perform the differential expression tasks after the BAM files are generated from

the alignment step. Figure S3 illustrates this case study.

Software availability

The source code is publicly available on GitHub at https://github.com/BioDepot/nbdocker. A

pre-built Docker image is publicly available on DockerHub with “nbdocker” extension installed:

https://hub.docker.com/r/biodepot/nbdocker/

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S1. Software architecture of “nbdocker”.

Figure S2. The process and events of building a Docker image in “nbdocker”.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S3. An additional case study in which RNA-seq data are processed using STAR and

edgeR.

ACKNOWLEDGEMENTS
We would like to thank Dr. Wes Lloyd for helpful discussions in group meetings. We would like

to thank Mr. Fang Chen for researching the different Jupyter magic commands and working on

earlier implementations of the saving docker histories. L.H.H. and K.Y.Y. are supported by NIH

grants U54HL127624 and R01GM126019. J.H. is supported by U54HL127624. We would also

like to thank the Center for Data Science and the Institute of Technology at University of

Washington Tacoma for the purchase of a computer server.

AUTHOR CONTRIBUTIONS
J.H. designed, implemented and tested the Jupyter extension “nbdocker”. J.H, L.H.H and K.Y.Y

created the Jupyter notebooks for the RNA-seq case study. L.H.H. and K.Y.Y. drafted the

manuscript. L.H.H and K.Y created the tables and figures in the manuscript. J.H. created the

figures in Online Methods, wrote user documentation and created tutorial videos. L.H.H. tested

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

and refined the containers. K.Y.Y. and L.H.H. coordinated the study. All authors edited the

manuscript.

References
1. Pérez, F. & Granger, B.E. IPython: A System for Interactive Scientific Computing.

Computing in Science and Engineering 9, 21-29 (2007).
2. Kluyver, T. et al. in Positioning and Power in Academic Publishing: Players, Agents and

Agendas. (eds. F. Loizides & B. Schmidt) 87-90 (2016).
3. Jupyter kernels. https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
4. JupyterLab is Ready for Users. https://blog.jupyter.org/jupyterlab-is-ready-for-users-

5a6f039b8906
5. Gruning, B.A. et al. Jupyter and Galaxy: Easing entry barriers into complex data

analyses for biomedical researchers. PLoS computational biology 13, e1005425 (2017).
6. Jupyter Genomics: A collection of Jupyter notebooks authored by the UCSD Center for

Computational Biology & Bioinformatics https://github.com/ucsd-ccbb/jupyter-genomics
7. Wang, Z. & Ma'ayan, A. An open RNA-Seq data analysis pipeline tutorial with an

example of reprocessing data from a recent Zika virus study. F1000Research 5, 1574
(2016).

8. Reich, M. et al. The GenePattern Notebook Environment. Cell systems 5, 149-151 e141
(2017).

9. Silver, A. Software simplified: Containerization technology takes the hassle out of setting
up software and can boost the reproducibility of data-driven research. Nature 546, 173-
174 (2017).

10. rpy2. https://rpy2.bitbucket.io/
11. Beaker. http://beakernotebook.com/
12. IPython: built-in magic commands.

http://ipython.readthedocs.io/en/stable/interactive/magics.html - line-magics
13. Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq

quantification. Nature biotechnology 34, 525-527 (2016).
14. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with

RNA-seq. Nature biotechnology 31, 46-53 (2013).
15. kallisto and sleuth walkthrough.

https://github.com/pimentel/bears_iplant/blob/master/README.md
16. Love, M.I., Anders, S., Kim, V. & Huber, W. RNA-Seq workflow: gene-level exploratory

analysis and differential expression. F1000Research 4, 1070 (2015).
17. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21

(2013).
18. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome biology 15, 550 (2014).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/309567doi: bioRxiv preprint

https://doi.org/10.1101/309567
http://creativecommons.org/licenses/by-nc-nd/4.0/

