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Abstract  
Data science notebooks, such as Jupyter, combine text documentation with dynamically 
editable and executable code and have become popular for sharing computational methods. We 
present nbdocker, an extension that integrates Docker software containers into Jupyter 
notebooks. nbdocker transforms notebooks into autonomous, self-contained, executable and 
reproducible modules that can document and disseminate complicated data science workflows 
containing code written in different languages and executables requiring different software 
environments. 
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With the generation of diverse and complex big data, computational method development and 

data analyses have become integral to research.  Analytical protocols typically involve the 

execution of a series of computational tasks that are dependent on code, parameters, 

environment, installation and setup, that are not easily described by text inside a traditional 

laboratory notebook or in a published “Materials and Methods” section. Data science notebooks 

such as Jupyter notebooks offer a partial solution as they allow for inclusion of executable live 

code and documentation.  Each Jupyter notebook is a web application that is divided into 

markdown (text) and code cells that can be modified and run independently inside the notebook 
1, 2.  All modifiable code cells in a notebook must be in the same language but Jupyter has 

kernels supporting over 100 programming languages including R, Python, Ruby, Javascript, 

C++ and Perl 1, 3, 4. The integration of editable code with the scientific rationale and narrative 

facilitates the documentation, dissemination and adoption of computational methodologies. As a 

result, Jupyter notebooks have become extremely popular, with over 1.7 million Jupyter 

notebooks shared on the public GitHub code repository 4 covering a wide variety of scientific 

disciplines. These interactive notebooks have become particularly useful in bioinformatics for 

documenting complicated workflows and sharing analytical protocols between collaborators with 

different backgrounds 5-7.  Many bioinformatics software tools such as GenePattern 8 and Galaxy 

5 have built-in support for Jupyter notebooks. 

 

A major drawback of Jupyter notebooks is that they are not autonomous.  Although the code in 

code cells is modifiable and executable, execution often requires the installation of additional 

software, libraries, frameworks and packages by the user. For bioinformatics workflows, there 

are usually many components or modules, each of which executing a different tool that requires 

potentially different computing environment and software dependencies. One approach to this 

problem is to use software containers such as Docker containers to encapsulate each 

computing environment. Docker containers wrap the executables and scripts inside a custom 

software environment, avoiding conflicts between different components and thus, eliminating the 

need for users to install and manage all the software dependencies. Dockerized components 

are completely isolated and modular and will yield identical results regardless of the platform. 

When a Docker command is run, Docker will search for and automatically download the 

specified container from its public repository, eliminating the need for installation of diverse and 

possibly conflicting software.  As a result, Docker container technology is rapidly gaining 

popularity in biomedical research and has been used to enhance both the portability and 

reproducibility of complicated workflows9.   
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Another limitation of Jupyter notebooks is that each notebook is limited to one kernel supporting 

a single programming language.  This is a problem since bioinformatics workflows typically 

consist of a series of tasks that are written in different programming languages. There is some 

limited support for multiple languages with a single notebook. rpy2 embeds an R interface inside 

a Python process 10.  Beaker notebooks (currently  “beakerX”)  can also support multiple 

languages but requires that the user to create a REST server to wrap the application 11.  

Another possible workaround is to create a custom kernel that provides the software 

requirements for all the components. Users would still have to choose a single language and 

execute other commands using mechanisms provided by that language (e.g. the subprocess 

module of Python). However, the portability and modularity of the workflow are limited by the 

use of a custom kernel.  

 

Using Docker containers inside Jupyter notebooks offers a more robust and flexible approach. 

Currently, this is possible using Jupyter’s ability to embed shell commands within code cells. 

However the syntax and availability of these commands varies between different kernels12. For 

example,  preceding a shell command with an exclamation point “!” works in the Python kernel 

but not in the R kernel. Here, we present “nbdocker”, a Python/Javascript extension to Jupyter 

notebooks that allows for different Docker containers to be executed inside Jupyter notebooks in 

the same manner regardless of the kernel used. nbdocker is an extension that integrates a 

Docker management user interface (UI) into Jupyter.  The user can embed a set of Docker 

commands as clickable buttons inside markdown (text) cells.  Specifically, “nbdocker” provides 

a point-and-click Docker management UI to pull a Docker image from a registry such as 

DockerHub or a local image, keep a record of running Docker containers, document and 

execute a Docker container in the history.  The user can also check the status of running 

containers with a single click. 

 

We illustrate the utility of “nbdocker”  using an established RNA sequencing (RNA-seq) data 

processing workflow using kallisto13  and sleuth 14.  In this workflow 15, the first step is to 

download data files from NCBI’s Short Read Archive (SRA) database using a Python script that 

calls the NCBI SRA toolkit.  Next, the reference human transcriptome is downloaded and 

indices are generated using the annotation file. The reads are then aligned to the reference and 

the abundance of the transcripts are quantitated using kallisto, a binary executable compiled 

from C++ source code.  Finally, differentially expressed genes under different experimental 

conditions are identified Sleuth 14 which is written in R.  To replicate this workflow from the 
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original published methods description requires the configuration of multiple computing 

environment and installation of multiple software tools, including kallisto, sleuth, python, R, SRA 

tools and Bioconductor packages. Most importantly, the versions of all software must be 

compatible with each other and with the reader’s hardware and operating system.  Without 

“nbdocker”, the user will have to manually install and execute selected steps in this workflow 

outside the Jupyter notebook.  One possibility is to execute the data download and kallisto 

pseudoalignment steps outside the notebook and represent the differential expression step in a 

notebook running the R kernel.  In contrast, “nbdocker” allows each module to be represented 

as an independent Docker container, and hence, multiple programming languages and 

conflicting dependencies can be encapsulated within a single notebook.  Most importantly, the 

history of Docker commands are all contained in the “nbdocker” notebook such that simply 

sharing the notebook file (.pynb file) will allow a collaborator to reproducibly execute and modify 

the workflow without any additional download or installation.  The differences between these 

different methods of documenting computational workflows are shown in Figure 1. 

 

In this paper, we present a Jupyter extension called “nbdocker” that brings the modularity, 

portability and reproducibility of software containers to Jupyter notebooks (see Table 1 for a 

summary of features).  Complex workflows with multiple modules and different software 

requirements can be encapsulated within a single nbdocker notebook.  In addition, “nbdocker” 

offers an interactive computing environment that allows easy sharing, modification and point-

and-click reproducible execution of documented Docker commands, thus facilitating the 

communication of complicated data science protocols and collaboration between diverse groups 

of researchers. 
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Figure 1. Complex bioinformatics workflows illustrate differences between static text 

documentation, Jupyter notebook and Jupyter notebook with nbdocker extension.  A RNA-seq 

processing workflow workflow using kallisto for pseudoalignment and sleuth for identification of 

differentially expressed genes is used here as an example bioinformatics workflow.  

a. Using static text description, users must configure the computing environment and install all 

software tools (circled in red). Since the code in the text file is not executable, users may 

unintentionally omit parameters or instructions that match the latest version of the code.  

b. Jupyter notebook contains embedded executable code cells (circled in green). This ensures 

that the code that was actually run is accurately represented in the notebook. The code in 

the notebook can be modified facilitating customization. However, the Jupyter notebook is 

limited to a single kernel that only supports the R (sleuth) part of the pipeline. The user must 

install and execute the data download and kallisto steps outside the notebook.  

c. Finally, “nbdocker” adds the ability to embed Docker commands as clickable buttons in 

markdown cells. Users can execute the Docker commands corresponding to the 

pseudoalignment (kallisto) task with a point-and-click user interface. The Docker commands 

can be documented and modified. Using “nbdocker”, the entire workflow is modularized and 

contained within a single notebook that can be shared, modified and reproducibly executed 

without installation of any additional software. 
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Table 1. Comparison of features of Jupyter, Docker and nbdocker.  Three stars mean that the 

requirement is strongly satisfied.  One star means that the requirement is weakly satisfied.  
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METHODS   

Implementation details. 

“nbdocker” has two components:  a Jupyter server extension (back-end) and a Jupyter 

notebook extension (front-end). The server extension reserves three URL’s  : /docker, 

/dockerpull and /dockerbuild.  /docker is used to run basic docker commands (e.g. list 

images/containers and pull/build image submission) while the URL /dockerpull and /dockerbuild 

are reserved for building/pulling docker image. The notebook front-end is implemented in 

javascript (JS), renders the JSON data provided by the back-end and interacts with users. 

Figure S1 shows the overall architecture of “nbdocker”. 

 

nbdocker Engine: server extension. 

The server extension uses the Docker API for python ( docker-py) 17 to interact with the Docker 

engine. Docker commands are executed through the unix:///var/run/docker.sock socket on 

linux/unix and npipe:////./pipe/docker_engine socket on Windows.  Some jobs such as pulling or 

building a Docker image can be quite lengthy. We implemented a session manager to run these 

jobs as threads and return control to the user. The session manager is designed to be used by 

multiple notebooks. A separate uuid is provided for each job allowing them to be tracked 

individually. The session will terminate when all jobs have finished.  Figure S2 summarizes the 

process of building a Docker image in “nbdocker”.  

 

Docker management UI: notebook extension. 

The front end is based on notebook’s JS library that is used to interact with users. We added 

two additional libraries: xterm.js 18 which renders image building logs and progressbar.js 19 

which shows the progress of lengthy jobs such as pulling images. AJAX is used for one-step 

commands such as listing images. This prevents the webpage from refreshing. For longer jobs 

such as pulling or building an image, a POST mechanism is used to pass the Docker image or 

Dockerfile to the server extension. We then monitor the server extension for events that we 

pass to the EventSource object to display the progress to the user. 

 

To integrate nbdocker inside the Jupyter markdown cells we implement a custom rendering 

function for markdown cells. The custom function searches for the keyword 

{nbdocker#<history_id>} in the cells and allows other content pass through to the functions that 

are responsible for rendering the markdown cells. Upon finding the keyword, it is rendered as 

whale shaped badge. Both the <cell_id> and <history_id> are bound to the click event of this 
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badge allowing us to identify which badge has been clicked by the user and which set of Docker 

commands should be run in response.  

 

Docker run history 

nbdocker records the directory mapping, port mapping and docker commands when the user 

runs a docker container through nbdocker. These histories are saved along with the Jupyter 

notebook file (.ipynb). The front-end notebook extension also sends the current working 

notebook name to the server where the global history dictionary was maintained. The 

appropriate histories are then written in JSON format to the matching ipyb file. nbdocker 

monitors clicks on badges in the markdown cells. When a replay event is triggered by a badge 

click, a request is sent to the server to retrieve the matching history. The Docker container id will 

be written into the metadata of the markdown cell where the badge was clicked. A status bar is 

attached to the bottom of the current cells to indicate the running status of the container(s) 

launched. 

 

Case study: RNA-seq data processing workflow using STAR and edgeR 

We also include a second case study on another RNA-seq work documented in Bioconductor 16.   

Specifically, the Love et al. workflow used STAR to align short reads to the reference genome 

and DESeq2 to infer differentially expressed genes.  STAR 17 is written in C++ while DESeq2 18  

is a R package in Bioconductor.  The existing workflow documented in Bioconductor provides all 

the R code to perform the differential expression tasks after the BAM files are generated from 

the alignment step.   Figure S3 illustrates this case study. 

 

Software availability 

The source code is publicly available on GitHub at https://github.com/BioDepot/nbdocker.   A 

pre-built Docker image is publicly available on DockerHub with “nbdocker” extension installed: 

https://hub.docker.com/r/biodepot/nbdocker/ 
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Figure S1. Software architecture of “nbdocker”.  

 
 

 

Figure S2. The process and events of building a Docker image in “nbdocker”. 
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Figure S3. An additional case study in which RNA-seq data are processed using STAR and 

edgeR. 
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