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Abstract

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) is
widely used to identify regulatory regions throughout the genome. However, very
few studies have been performed at the single cell level (scATAC-seq) due to
technical challenges. Here we developed a simple and robust plate-based
scATAC-seq method, combining upfront bulk Tn5 tagging with single-nuclei sorting.
We demonstrated that our method worked robustly across various systems,
including fresh and cryopreserved cells from primary tissues. By profiling over 3,000
splenocytes, we identify distinct immune cell types and reveal cell type-specific
regulatory regions and related transcription factors.
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Due to its simplicity and sensitivity, ATAC-seq' has been widely used to map open
chromatin regions across different cell types in bulk. Recent technical developments
have allowed chromatin accessibility profiling at the single cell level (scATAC-seq)
and revealed distinct regulatory modules across different cell types within
heterogeneous samples®”. In these approaches, single cells are first captured by
either a microfluidic device® or a liquid deposition system’, followed by independent
tagmentation of each cell. Alternatively, a combinatorial indexing strategy has been
reported to perform the assay without single cell isolation?*?. However, these
approaches require either a specially engineered and expensive device, such as a
Fluidigm C1° or Takara ICELL8’, or a large quantity of customly modified Tn5

transposase®*>”’.

Here, we overcome these limitations by performing upfront Tn5 tagging in the bulk
cell population, prior to single nuclei isolation. It has been previously demonstrated
that Tn5 transposase-mediated tagmentation contains two stages: (1) a tagging
stage where the Tn5 transposome binds to DNA, and (2) a fragmentation stage
where the Tn5 transposase is released from DNA using heat or denaturing agents,
such as sodium dodecyl sulfate (SDS)'®'2. Since the Tn5 tagging does not fragment
DNA, we reasoned that the nuclei would remain intact after incubation with the Tn5
transposome in an ATAC-seq experiment. Based on this idea, we developed a
simple, robust and flexible plate-based scATAC-seq protocol, performing a Tn5
tagging reaction®' on a pool of cells (5,000 - 50,000) followed by sorting individual
nuclei into plates containing lysis buffer.

Tween-20 is subsequently added to quench the SDS in the lysis buffer'®, which
otherwise will interfere the downstream reactions. Library indexing and amplification
are done by PCR, followed by sample pooling, purification and sequencing. The
whole procedure takes place in one single plate, without any intermediate
purification or plate transfer steps (Fig. 1a). With this easy and quick workflow, it only
takes a few hours to prepare sequencing-ready libraries, and the method can be
implemented by any laboratory using standard equipment.

We first tested the accuracy of our sorting by performing a species mixing
experiment, where equal amounts of HEK293T and NIH3T3 cells were mixed, and
scATAC-seq was performed with our method. Using a stringent cut-off (Online
Methods), we recovered 307 wells, among which 303 wells contain predominantly
either mouse fragments (n = 136) or human fragments (n=167). Only 4 wells are
categorised as doublets (Fig. 1b).

To compare our plate-based method to the existing Fluidigm C1 scATAC-seq
approach, we performed side-by-side experiments, where cultured K562 and mouse
embryonic stem cells (MESC) were tested by both approaches. We used three
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metrics to evaluate the quality of the data generated by both methods (Fig. 1c and
Supplementary Fig. 1a). Our plate-based method has higher library complexity
(library size estimated by the Picard tool), comparable or lower amount of
mitochondrial DNA, and higher signal-to-noise ratio measured by fraction of reads in
peaks (FRiP) (Fig. 1c). In addition, visual inspection of the read pileup from the
aggregated single cells suggested both methods were successful, but data
generated from our plate-based method exhibited higher signal (Fig. 1d and e).

The main difference between our method and Fluidigm C1 is the Tn5 tagging
strategies. The plate-based method performed Tn5 tagging using a population of
cells, while it was done in individual microfluidic chambers in the Fluidigm C1. It is
possible that the upfront Tn5 tagging is more efficient than tagging in microfluidic
chambers.

To evaluate the generality of our method, we tested the plate-based method on
cryopreserved cells from four tissues: human and mouse skin fibroblasts (hSF and
mSF)™ and mouse cardiac progenitor cells (MCPC) at embryonic day E8.5 and
E9.5%. Cells were revived from liquid nitrogen, and our plate-based method was
carried out immediately after revival. The library complexities varied among cell
types (Fig. 2a). We obtained median library sizes ranging from 52,747 (mSF) to
104,608.5 (MCPC_E8.5) unique fragments (Fig. 2a). The amount of mitochondrial
DNA also varied across cell types but was low in all samples (<13%). All four tested
samples had very high signal-to-noise ratio, with a median FRiP ranging from 0.50
(mSF) to 0.60 (hSF) (Fig. 2a). The insert size distributions of the aggregated single
cells from all four samples exhibited clear nucleosomal banding patterns (Fig. 2b),
which is a feature of high quality ATAC-seq libraries'. Finally, visual inspection of
aggregate of single cell profiles showed clear open chromatin peaks around
expected genes (Fig. 2c and d). Details of all tested cells/tissues are summarised in
Supplementary Table 1.

After this validation of the technical robustness of our plate-based method, we
further tested it by generating the chromatin accessibility profiles of 3,648
splenocytes (after red blood cell removal) from two C57BL/6Jax mice. In total, we
performed two 96-well plates and nine 384-well plates. By setting a stringent quality
control threshold (>10,000 reads and >90% mapping rate), 3,385 cells passed the
technical cut-off (>90% successful rate) (Supplementary Fig. 3b). The aggregated
scATAC-seq profiles exhibited good coverage and signal and resembled the bulk
data generated from 10,000 cells by the Immunological Genome Project (ImmGen)"”
(Fig. 3a). The library fragment size distribution before and after sequencing both
displayed clear nucleosome banding patterns (Fig. 3b and Supplementary Fig. 2a).
In addition, sequencing reads showed strong enrichment around transcriptional start
sites (TSS) (Fig. 3c), further demonstrating the quality of the data was high.


https://doi.org/10.1101/309831
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/309831; this version posted October 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Importantly, for the majority of the cells, less than 10% (median 2.1%) of the reads
were mapped to the mitochondrial genome (Supplementary Fig. 3a). Overall, we
obtained a median of 643,734 reads per cell, while negative controls (empty wells)
generated only ~ 100-1,000 reads (Supplementary Fig. 3b). In most cells, more than
98% of the reads were mapped to the mouse genome (Supplementary Fig. 3b),
indicating low level of contamination. The median of estimated library sizes is
31,808.5 (Supplementary Fig. 3c). At the sequencing depth of this experiment, the
duplication rate of each single cell library is ~ 95% (Supplementary Fig. 3d),
indicating that the libraries were sequenced to near saturation. Downsampling the
raw reads (from the fastq files) and repeating the analysis suggest that at 20 - 30% of
our current sequencing depth, the majority of the fragments would have already
been captured (Supplementary Fig. 4a and b). Therefore, in a typical scATAC-seq
experiment, ~ 120,000 reads per cell are sufficient to capture most of the unique
fragments, with higher sequencing depth still increasing the number of detected
unique fragments (Supplementary Fig. 3e).

Next, we examined the data to analyse signatures of different cell types in the
mouse spleen. Reads from all cells were merged, and a total of 78,048 open
chromatin regions were identified by peak calling with q values less than 0.01
(Online Methods). We binarised peaks as “open” or “closed” (Online Methods) and
applied a Latent Semantic Indexing (LSI) analysis to the cell-peak matrix for
dimensionality reduction? (Online Methods). Consistent with previous findings?, the
first dimension is primarily influenced by sequencing depth (Supplementary Fig. 3f).
Therefore, we only focused on the second dimension and upwards and visualised
the data by t-distributed stochastic neighbour embedding (t-SNE)". We did not
observe batch effects from the two profiled spleens, and several distinct populations
of cells were clearly identified in the t-SNE plot (Fig. 3d). Read counts in peaks near
key marker genes (e.g. Bc/11a and Bcl11b) suggested that the major populations are
B and T lymphocytes, as expected in this tissue (Fig. 4a). In addition, we found a
small number of antigen-presenting cell populations (Supplementary Fig. 5),
consistent with previous analyses of mouse spleen cell composition®.

To systematically interrogate various cell populations captured in our experiments,
we applied a spectral clustering technique? which revealed 12 different cell clusters
(Fig. 4b). Reads from cells within the same cluster were merged together to form
‘pseudo-bulk’ samples and compared to the bulk ATAC-seq data sets generated by
ImmGen (Supplementary Fig. 6 and 7). Cell clusters were assigned to the most
similar ImmGen cell type (Fig. 4b and Supplementary Fig. 7). In this way, we
identified most clusters as different subtypes of B, T and Natural Killer (NK) cells, as
well as a small population of granulocytes (GN), dendritic cells (DC) and
macrophages (MF) (Fig. 4b and Supplementary Table 2). An aggregate of all single
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cells within the same predicted cell type agrees well with the ImmGen bulk
ATAC-seq profiles (Supplementary Fig. 8). Remarkably, the aggregate of as few as
55 cells (e.g. the predicted MF cell cluster) already exhibited typical bulk ATAC-seq
profiles (Supplementary Fig. 8). This finding opens the door for a novel ATAC-seq
experimental design, where Tn5 tagging can be performed upfront on large
populations of cells (e.g. 5,000 - 50,000 cells). Subsequently, cells of interest (for
example, marked by surface protein antibodies or fluorescent RNA/DNA probes)
can be isolated by FACS, and libraries generated for subsets of cells only. This will
be a simple and fast way of obtaining scATAC-seq profiles for rare cell populations.

To test the feasibility of this idea, we stained mouse splenocytes with an anti-CD4
antibody conjugated with PE and performed tagmentation afterwards. The PE signal
remained after tagmentation (Supplementary Fig. 9), allowing us to specifically sort
out CD4 positive T cells from the rest of the splenocytes for analysis (we named
these “TagSort” libraries). As a control, we first purified CD4 T cells using an
antibody-based depletion method (Online Method), and subsequently performed
scATAC-seq on the purified CD4 T cells (we named these “SortTag” libraries). The
data of CD4 T cells generated from these two strategies agree very well (Fig. 4c).
The library complexity is comparable with median library sizes of 30,953 and 25,830
respectively (Fig. 4c, top left panel). The binding signals around open chromatin
peaks are highly correlated (Pearson r=0.96) (Fig. 4c, top right panel). Visual
inspection of read pileup profiles around the Cd4 gene locus from single cell
aggregates suggested the data are of good quality (Fig. 4c, bottom panel).

This experiment serves as a proof-of-principle test where staining of a surface marker
can be done before Tn5 tagging, and a specific population can be sorted by FACS
afterwards for scATAC-seq analysis. It should be noted that we have only tested
CD4 - an abundant marker in a subpopulation of splenocytes. Other surface markers
in different tissues would need to be investigated individually. In addition, the ability
to investigate rare cell populations using this approach is limited by the frequency of
the rare cell types and the amount of cells that can be tagged upfront.

The spectral clustering was able to distinguish different cell subtypes, such as naive
and memory CD8 T cells, naive and regulatory CD4 T cells and CD27+ and CD27-
NK cells (Fig. 4b). Previous studies have identified many enhancers that are only
accessible in certain cell subtypes, and these are robustly identified in our data.
Examples are the /lr2b and Cd44 loci in memory CD8 T cells? and /kzf2 and Foxp3
in regulatory T cells® (Supplementary Fig. 10a and b). Interestingly, our clustering
approach successfully identified two subtle subtypes of NK cells (CD27- and CD27+
NK cells), as determined by their open chromatin profiles (Fig. 4b and d). It has been
shown that, upon activation, NK cells can express CD83*, a well-known marker for
mature dendritic cells®. In mouse spleen, Cd83 expression was barely detectable in
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the two NK subpopulations profiled by the ImmGen consortium (Supplementary Fig.
10c). However, in our data, the Cd83 locus exhibited different open chromatin states
in the two NK clusters (Fig. 4d). Multiple ATAC-seq peaks were observed around the
Cd83 locus in the CD27+ NK cell cluster but not in the CD27- NK cluster (Fig. 4d).
This suggests that Cd83 is in a transcriptionally permissive state in the Cd27+ NK
cells, and the CD27+ NK cells have a greater potential for rapidly producing CD83
upon activation. This may partly explain the functional differences between CD27+
and CD27- NK cell states®.

Finally, we investigated whether we could identify the regulatory regions that define
each cell cluster. To this end, we trained a logistic regression classifier using the
spectral clustering labels and the binarised scATAC-seq count data (Online
Methods). From the classifier, we extracted the top 500 open chromatin peaks
(marker peaks) that can distinguish each cell cluster from the others (Fig. 4e and
Online Methods). By looking at genes in the vicinity of the top 50 marker peaks, we
recapitulated known markers, such as Cd4 for the helper T cell cluster (cluster 3),
Cd8a and Cd8b1 for the cytotoxic T cell cluster (cluster 6) and Cd9 for marginal zone
B cell cluster (cluster 4) (Supplementary Figure 11 and Supplementary Table 3).
These results are consistent with our correlation-based cell cluster annotation (Fig.
4b).

While the peaks at TSS are useful for cell type annotation, the majority of the
cluster-specific marker peaks are in intronic and distal intergenic regions, in line with
the global peak distribution (Supplementary Fig. 12). To identify transcription factors
that are important for the establishment of these marker peaks, we investigated
them in more detail by motif enrichment analysis using HOMER?". The full results of
these motif enrichment analyses are included in Supplementary Table 4. As
expected, different ETS motifs and ETS-IRF composite motifs were significantly
enriched in marker peaks of many clusters (Fig. 4f), consistent with the notion that
ETS and IRF transcription factors are important for regulating immune activities®.
Furthermore, we found motifs that were specifically enriched in certain cell clusters
(Fig. 4f). Our motif discovery is consistent with previous findings, such as the
importance of T-box (e.g. Tbx21) motifs in NK* and CD8T memory cells*® and POU
domain (e.g. Pou2f2) motifs in marginal zone B cell®. This suggests that our
scATAC-seq data is able to identify known gene regulation principles in different cell
types within a tissue.

In recent years, other methods, such as DNase-seq®”, MNase-seq® and
NOMe-seq***, have investigated chromatin status at the single cell level. However,
due to its simplicity and reliability, ATAC-seq currently remains the most popular
technique for chromatin profiling. Several recent studies have demonstrated the
power of using scATAC-seq for investigating regulatory principles, e.g. brain
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development®’, Mouse sci-ATAC-seq Atlas®*® and pseudotime inference®. The
combined multi-omics approaches also began to emerge, such as sci-CAR-seq®,
scCAT-seq® and piATAC-seq®. Our study added on top of those methods to
provide a simple and easy-to-implement scATAC-seq approach that can successfully
detect different cell populations, including subtle and rare cell subtypes, from a
complex tissue. More importantly, it is able to reveal key gene regulatory features,
such as cell-type specific open chromatin regions and transcription factor motifs, in
an unbiased manner. Future studies can utilise this method to unveil the regulatory
characteristics of novel and rare cell populations and the mechanisms behind their
transcriptional regulation.
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Figure Legends

Figure 1. Simple and robust analysis of chromatin status at the single cell level. (a)
Schematic view of the workflow of the scATAC-seq method. Tagmentation is
performed upfront on bulk cell populations, followed by sorting single-nuclei into
96/384 well plates containing lysis buffer. The lysis buffer contains a low
concentration of proteinase K and SDS to denature the Tn5 transposase and
fragment the genome. Tween-20 is added to quench SDS™. Subsequently, library
preparation by indexing PCR is performed, and the number of PCR cycles needed to
amplify the library is determined by quantitative PCR (qPCR) (Supplementary Fig.
2b). (b) Species mixing experiments to show the accuracy of FACS. Equal amounts
of HEK293T (Human) and NIH3T3 (Mouse) cells were mixed, and scATAC-seq was
performed as described in (a). Successful wells with more than 90% of reads
uniquely mapped to either human or mouse were categorised as singlets (n=303).
Otherwise, they will be categorised as doublets (n=4) (see Online Methods). (c)
Comparison of the median library size (estimated by the Picard tool), fraction of
mitochondrial DNA (MT content) and fraction of reads in peaks (FRiP) in single cells
from either C1 (blue) or plate-based (red) scATAC-seq approach. (d) UCSC genome
browser tracks displaying the signal around the Nanog gene locus from the
aggregate of mESCs obtained from Fluidigm C1 (top) and plate (bottom). (e) The
same type of tracks as (d) around the ZBTB32 gene locus in K562 cells.

Figure 2. Plate-based scATAC-seq worked robustly on cryopreserved cells from
primary tissues. (a) Comparison of the median library size (estimated by the Picard
tool), fraction of mitochondrial DNA (MT content) and fraction of reads in peaks
(FRiP) in cryopreserved single cells from four different tissues: human skin fibroblasts
(hSF), mouse skin fibroblasts (mSF), mouse cardiac progenitor cells (mCPC) at
embryonic day E8.5 and E9.5. (b) Insert size frequencies from the aggregated data
of the cells from the four tissues. (c and d) UCSC genome browser tracks displaying
the signal around the RPS578 gene locus from the aggregate of hSFs (c) and around
the Gapdh gene locus from the aggregate of mSFs, mCPC_E8.5 and mECP_E9.5 (d).

Figure 3. Plate-based scATAC-seq applied to over 3000 mouse splenocytes. (a)
UCSC genome browser tracks displaying the signal around the Cxcr5 gene locus
from the aggregate of all single cells in this study. Bulk ATAC-seq profiles from the
ImmGen consortium are also shown. Randomly selected 100 single cell profiles are
show below the aggregated profile. (b and c) Insert size frequencies (b) and
sequencing read distributions across transcriptional start sites (c) of libraries from the
aggregated data (the red line) and individual single cells (grey lines, 24 examples are
shown). (d) A two-dimensional projection of the scATAC-seq data using t-SNE.
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Colours represent two different batches, showing excellent agreement between
batches. Sp: spleen.

Figure 4. Identification of different cell types and cell-type specific open chromatin
regions and transcription factor motifs. (a) The same t-SNE plot as in Figure 3d,
coloured by the number of counts in the peaks near indicated gene locus. (b) The
same t-SNE plot as in Figure 3d coloured by spectral clustering and cell type
annotation. (c) Comparisons of spleen CD4 T cells scATAC-seq obtained by two
strategies. TagSort: cells were stained with anti-CD4-PE, tagged with Tn5 and
CDA4-PE positive cells were sorted for scATAC-seq; SortTag: CD4 T cells were
purified first and scATAC-seq was performed on the purified cells. Top: comparison
of library size and binding signal correlation (pearson r=0.96) around called peaks;
bottom: UCSC genome browser tracks of the indicated single cell aggregates
around the Cd4 gene locus. (d) UCSC genome browser tracks around CdZ27 and
Cd83 gene loci, displaying the aggregate (top panel) and single cell (bottom panel)
signals of the two NK clusters. ATAC-seq peaks specific to the CD27+ NK cells are
highlighted. For visual comparison reason, we randomly choose 65 out of 75 CD27-
NK cells. (e) Z-score of normalised read counts in the top 500 peaks that distinguish
each cell cluster based on the logistic regression classifier, across each peak (row) in
each cell (column). Top 500 marker peaks were picked per cell cluster, so there are
500 x 12 = 6,000 peaks in the heatmap. Cells are ordered by cluster labels. (f)
Heatmap representation of transcription factor motif (rows) enrichments (binomial
test p-values) in the top 500 marker peaks in different cell clusters (columns). Some
key motifs are enclosed by black rectangles and motif logos are shown to the right.
Motif names are taken from the HOMER software suite.

Supplementary Figure 1. (a) Violin plots showing the comparisons of distributions of
the median library size (estimated by the Picard tool), fraction of mitochondrial DNA
(MT content) and fraction of reads in peaks (FRiP) in single cells from either plate or
C1 scATAC-seq approach. (b) the same metrics as in (a) showing data obtained from
cryopreserved cells of four different primary tissues.

Supplementary Figure 2. (a) Bioanalyzer results of pools of 11 different plates (two
spleens) of scATAC-seq in this study. (b) gPCR amplification plot of 64 different
single cell libraries. The qPCR was performed after 8 cycles of pre-amplification.
Dotted line indicates the number of cycles used for final amplification. A total of 8 +
10 = 18 cycles were performed in this studly.

Supplementary Figure 3. Scatter plots of different quality control metrics. Single
cells from different batches are indicated by different colours, and empty well
controls are also indicated. We removed cells that have less than 10,000 reads or
less than 90% mapping rate, as indicated by dotted lines in (b). Sp: spleen; MT
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content: fraction of mitochondrial reads; LSI: latent semantic indexing; Library size is
estimated by the Picard tool.

Supplementary Figure 4. (a) The median library size after downsampling (at the fastq
stage) to different fractions relative to the full data sets. (b) Violin Plot of the library
size at the different level of downsampling.

Supplementary Figure 5. Number of counts from all peaks that assigned to the
indicated genes by HOMER.

Supplementary Figure 6. Hierarchical clustering of the Pearson’s correlation
between aggregated single cell clusters and the bulk ATAC-seq data sets from
ImmGen. The full matrix is shown here, and the InmGen sample labels were taken
directly from the ImmGen ATAC-seq data deposited at the European Nucleotide
Archive (ENA) (https://www.ebi.ac.uk/ena/data/view/PRINA392905).

Supplementary Figure 7. The top correlated ImmGen bulk samples to each
aggregated single cell clusters. Top 5 pearson r scores for each clusters are shown.

Supplementary Figure 8. UCSC genome browser tracks showing ATAC-seq profiles
of indicated ImmGen bulk samples and aggregated single cell clusters around the
Ptprc (Cd45) promoter region.

Supplementary Figure 9. FACS results showing the anti-CD4-PE and DAPI stain on
mouse splenocytes before (top) and after (bottom) Tn5 tagging. Note, all cells are
DAPI negative before Tn5 tagging but become DAPI positive afterwards. CD4-PE
signal remains after Tn5 tagging.

Supplementary Figure 10. (@ and b) UCSC genome browser tracks showing
ATAC-seq profiles of aggregate (top panel) and individual single cells (bottom
panels). Known enhancers are highlighted. (c) Cd83 expression from the ImmGen
bulk RNA-seq of the indicated sample.

Supplementary Figure 11. Nearest genes assigned to the top 50 marker peaks in
each single cell cluster.

Supplementary Figure 12. Genomic distribution (by HOMER) of all peaks and the
marker peaks in each single cell cluster.
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Methods

Cell isolation

For splenocytes, the spleen from a C57BL/6Jax mouse was mashed by a 2-ml
syringe plunger through a 70 pm cell strainer (Fisher Scientific 10788201) into 30 ml
1X DPBS (ThermoFisher 14190169) supplied with 2 mM EDTA and 0.5% (w/v) BSA
(Sigma A9418). Cells were centrifuged down, supernatant was removed, and the cell
pellet was briefly vortexed. 5 ml 1X RBC lysis buffer (ThermoFisher 00-4300-54) was
used to resuspend the cell pellet, and the cell suspension was vortexed again, and
left on bench for 5 minutes to lyse red blood cells. Then 45 ml 1X DPBS was added,
and cells were centrifuged down. 30 ml 1X DPBS were used to resuspend the cell
pellet. The cell suspension was passed through a Miltenyi 30 ym Pre-Separation
Filter (Miltenyi 130-041-407), and the cell number was determined using C-chip
counting chamber (VWR DHC-NO1). All centrifugations were done at 500 g, 4 °C, 5
minutes. For human and mouse skin fibroblasts, cells were extracted as previously
described™. For mouse cardiac progenitor cells, cells were extracted as previously
described'. Cells were cryopreserved in 90% FBS and 10% DMSO and stored in
liquid nitrogen until experiments.

Plate-based single-cell ATAC-seq (scATAC-seq).

A detailed step-by-step protocol can be found in the Supplementary Protocol.
Briefly, 50,000 cells were centrifuged down at 500 g, 4 °C, 5 minutes. Cell pellets
were resuspended in 50 pl tagmentation mix (33 mM Tris-acetate, pH 7.8, 66 mM
potassium acetate, 10 mM magnesium acetate, 16% dimethylformamide (DMF),
0.01% digitonin and 5 pl of Tn5 from the Nextera kit from lllumina, Cat. No.
FC-121-1030). The tagmentation reaction was done on a thermomixer (Eppendorf
5384000039) at 800 rpm, 37 °C, 30 minutes. The reaction was then stopped by
adding equal volume (50 pl) of tagmentation stop buffer (10 mM Tris-HCI, pH 8.0,
20 mM EDTA, pH 8.0) and left on ice for 10 minutes. 200 pl 1X DPBS with 0.5% BSA
was added and the nuclei suspension was transferred to a FACS tube. DAPI
(ThermoFisher 62248) was added at a final concentration of 1 pg/ul to stain the
nuclei.

Species mixing experiments

25,000 HEK293T (Human) and 25,000 NIH3T3 (Mouse) cells were mixed together,
and scATAC-seq was performed as described in the Supplementary Protocol. The
obtained sequencing reads were mapped to a concatenated genome of mouse and
human by hisat2*. One 384-well plate was performed. We first set a technical cutoff
where a successful well must contain more than 10,000 total reads and more than
90% of reads are mapped to the concatenated genome. 307 wells were marked as
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successful. Among the successful wells, we calculated the ratio of reads that
mapped to the human genome and the mouse genome. If the ratio is larger than
10, the well is categorised as containing human single cells; if the ratio is less than
0.1, the well is categorised as containing mouse single cells; otherwise, the well is
categorised as containing human-mouse doublets.

Plate scATAC-seq on CD4+ T cells (TagSort vs SortTag)

For the “TagSort” strategy, 50,000 splenocytes were stained with anti-Mouse CD4
PE (eBioscience cat no. 12-0043-82) at room temperature for 30 minutes according
to the manufacturer’s instructions. The stained cells were washed with ice-cold 1X
PBS twice and pelleted down at 500 g, 4 °C, 5 minutes. Experimente were carried
out following the procedures described in the Supplementary Protocol. DAPI and PE
double positive cells were sorted into a 384-well plate for library construction. For
the “SortTag” strategy, CD4+ T cells were purified first from mouse splenocytes
using the Naive CD4 T Cell Isolation Kit, Mouse (Miltenyi, cat. no. 130-104-453)
following the manufacturer’s instruction without the anti-CD44 depletion step. The
purified CD4 T cells were processed according to the procedures described in the
Supplementary Protocol.

scATAC-seq using Fluidigm C1

Experiments were performed as previously described® using the medium-sized
(1862x) Open App chip. We followed the manufacturer’s instructions described in
the “ATAC Seq No Stain (Rev C)” from the Fluidigm ScriptHub
(https://www.fluidigm.com/c1openapp/scripthub), except that we replace the
detergent NP-40 in the original protocol with digitonin so that the final
concentration of digitonin in the reaction chamber is 0.005%. After collecting the
pre-amplified material from the Fluidigm chip, the libraries were indexed by library
PCR for 14 cycles as previously described?.

Costs involved in plate-based and Fluidigm C1 scATAC-seq

For our plate-based scATAC-seq method, most reagents and buffers are available in
a standard molecular biology lab. Exceptions are the Tn5 transposase, which can be
purchased from lllumina (Cat No. FC-121-1030), and the PCR master mix, which can
be purchased from various vendors (we used the 2X NEBNext® High-Fidelity 2X
PCR Master Mix from NEB). Since the Tn5 tagging reaction was performed upfront
at the bulk level, the Tn5 cost per cell depends on how many cells are sorted during
the sorting. Based on our experience, when 50,000 cells are used at the beginning,
two to eight 384-well plates can be sorted. Therefore, the cost of Tn5 is negligible.
The major cost per unit for the plate-based scATAC-seq is the PCR master mix used
during library amplification. Currently, 10 pl of PCR master mix are needed per cell
in a 20 pl library amplification reaction, but we have been successfully and
consistently generated libraries from half of the volume described in the protocol.
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For scATAC-seq using the Fluidigm C1, all the aforementioned reagents are
needed, and a microfluidic chip is required per 96 cells.

Hands-on time for plate-based versus C1 scATAC-seq approaches

For our plate-based scATAC-seq method, the most time-consuming part is the lysis
plate preparation (mixing lysis buffer and indexing primers). For maximum efficiency,
this can be done upfront in bulk, and the lysis plate is stable in -80 °C for a long
time. Another time/labour-consuming step is the pooling of single cell libraries after
PCR using a multi-channel pipette. We provide online advice to perform the whole
procedure in minutes. This information is included in the accompanying GitHub
page: https://github.com/dbrg77/plate_scATAC-seq. For scATAC-seq using the
Fluidigm C1, an extra ~4 hours of C1 runtime are needed.

gPCR for library amplification

After assembly of the 20 pl PCR reaction (see Supplementary Protocol), a
pre-amplification step was performed on a PCR machine (Alpha Cycler 4, PCRmax)
with 72 °C 5 minutes, 98 °C 5 minutes, 8 cycles of [98 °C 10 seconds, 63 °C 30
seconds, 72 °C 20 seconds]. Of the product, 19 pl of pre-amplified library were
transferred to a 96 well gPCR plate, 1 pl 20X EvaGreen (Biotium #31000) was added,
and gPCR was performed on an ABI StepOnePlus system with the following cycle
conditions: 98 °C 1 minutes, 20 cycles of [98 °C 10 seconds, 63 °C 30 seconds, 72
°C 20 seconds]. Data was acquired at 72 °C. We qualitatively chose the cycle
number to where the fluorescence signals just about to start going up
(Supplementary Fig. 1b). In this study, a total of 18 cycles were used to amplify the
libraries.

Sequencing data processing

All sequencing data were processed using a pipeline written in snakemake*'. The
software/packages and the exact flags used in this study can be found in the
‘Snakefile’ provided in the GitHub repository
https://github.com/dbrg77/plate scATAC-seq. Briefly, reads were trimmed with
cutadapt® to remove the Nextera sequence at the 3’ end of short inserts. The
trimmed reads were mapped to the reference mouse genome (UCSC mm10) using
hisat2®°. Reads with mapping quality less than 30 were removed by samtools® (-q 30
flag) and deduplicated using the MarkDuplicates function of the Picard tool
(http://broadinstitute.github.io/picard). All reads from single cells were merged
together using samtools, and the merged BAM file was deduplicated again. Peak
calling was performed on the merged and deduplicated BAM file by MACS2'®. For
bulk ATAC-seq and single cell aggregate coverage visualisation, bedGraph files
generated from MACS2 callpeak were converted to bigWig files and visualised via
UCSC genome browser. For individual single cell ATAC-seq visualisation, aligned
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reads from individual cells were converted to bigBed files. A count matrix over the
union of peaks was generated by counting the number of reads from individual cells
that overlap the union peaks using coverageBed from the bedTools suite**.

Public ATAC-seq data processing

FASTQ files were all downloaded from the European Nucleotide Archive (ENA). The
ImmGen bulk ATAC-seq data (study accession PRINA392905) and the scATAC-seq
data using Fluidigm C1 (study accessions PRINA274006 and PRINA299657) were
processed in the same way as described in this study. The ‘Snakefile’ used to
process the data can be found at the the same GitHub repository.

Bioinformatics analysis

Codes used to carry out all the analyses were provided as Jupyter Notebook files,
which can be found in the same GitHub repository. Briefly, downsampling was
performed by randomly selecting a fraction of reads from the original FASTQ files
using seqtk (https://github.com/Ih3/seqtk), and the same pipeline was run on the
sub-sampled FASTQ files. For binarising the scATAC-seq data, peak calling was
performed on reads merged from all cells, and we labelled the peak ‘1" (open) if
there was at least one read overlapping the peak, and ‘0" (closed) otherwise. Latent
semantic indexing analysis was performed by first normalising the binarized count
matrix by term frequency inverse document frequency (TF-IDF) and then performing
a Singular-Value Decomposition (SVD) on the normalised count matrix. Only the 2nd
- 50th dimensions after the SVD were passed to t-SNE for visualisation. To compare
with ImmGen bulk ATAC-seq data, a reference peak set was created by taking the
union of peaks from the peak calling results of aggregated scATAC-seq (this study)
and different samples of ImmGen bulk ATAC-seq using mergeBed from the
bedTools suite™. All comparisons were done based on this reference peak set. The
annotatePeaks.pl from HOMER? was used to assign genes to peaks. Latent
semantic indexing, spectral clustering and logistic regression were carried out using
Scikit-learn®.
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Supplementary Protocol

Protocol for plate-based scATAC-seq using FACS
Timestamp: 15-Feb-2018

1. One day before the experiment, prepare the plates by aliquoting 2 pl 2X
Lysis Buffer to each well of the plates (either 96-well or 384-well plate). Then
add 2 pl of 10 pM S5xx/N7xx Nextera Index Primer Mix (5 uM each) to each
well. Seal the plate and store in -80 °C.

Recipe for 2X Lysis Buffer:

100 mM Tris.HCI, pH 8.0

100 mM NaCl

40 pg/ml Proteinase K (Ambion, AM2546, 20 mg/ml stock)
0.4% SDS

2. On the day of the experiment, thaw plates at room temperature.

3. Pre-coat all tubes with 500 pl 0.5% BSA (prepared in 1X PBS) for a few
minutes to reduce sample loss. Count or sort 5k - 50k cells into 1.5-ml
eppendorf tubes. DO NOT use DNA LoBind tubes for pelleting cells, which
does not work well especially when cell numbers are limited.

4. Pellet cells at 500 g, 4 °C, 5 minutes.

5. Wash the cell pellet with 100 pl ice-cold PBS, twice, 500 g, 4 °C, 5 minutes,
and carefully remove the supernatant.

6. Resuspend the cell pellet in 50 pl tagmentation mix. The recipe for the

tagmentation mix is as follows (THS-seq recipe):

12.5 yl 4X THS-seq TD buffer

5l 10X Digitonin

27. 5yl H,O

5ul [llumina Tn5 (Nextera kit, lllumina Cat No. FC-121-1030)




Recipe for 4X THS-seq TD buffer:

132 mM Tris-acetate, pH 7.8

264 mM Potassium acetate

40 mM Magnesium acetate

64% Dimethylformamide (DMF)

Recipe for 10X Digitonin:
1l Digitonin (Promega, G9441, 2% stock)
19 ul H,O

7. Put the tagmentation reaction (50 pl) on a thermomixer, 37 °C, 800 rpm, 30
minutes.

8. Stop the reaction by adding 50 pl tagmentation stop buffer (TSB). Recipe for

TSB:

10 mM Tris-HCI, pH 8.0

20 mM EDTA, pH 8.0

9. Leave on ice for 10 minutes.

10.Add 100 - 300 pl PBS/0.5% BSA to the 100 pl stopped tagmentation mix, and
transfer to a FACS tube.

11.Optional: add DAPI to stain nuclei based on manufacturer’s instruction.

12.Sort DAPI positive single nuclei into the plates prepared the day before.

13.Quickly spin down and seal the plate well (can be stored in -80 °C for a few
weeks from here), and put the plate on a PCR machine, with lid temperature
set to 100 °C.

14.Incubate the plate at 65 °C for 15 minutes to perform Tn5 release.

15.Add equal volume (4 pl) of 10% TWEEN-20 to each well to quench SDS.
Briefly vortex to mix.

16.Add 2 pl H,O to each well.

17.Add 10 pl 2X NEBNext® High-Fidelity 2X PCR Master Mix (NEB M0541L) to

each well



18. At this stage, each well contains 20 pl PCR reaction.
19.Perform library amplification PCR:
72 °C 10 minutes
98 °C 5 minutes
[98 °C 10 seconds, 63 °C 30 seconds, 72 °C 20 seconds] x 18
10 °C hold

20.Combine all reactions into a 50-ml falcon, which yields about 20 pl x 384 =
7.68 ml. Normally, the yield will be ~ 7.2 ml.

21. Add 5 volumes (~ 36 ml) Buffer PB (Qiagen), mix well, and pass reaction
volume through a single column from a Qiagen MinElute PCR Purification Kit
by connecting the column to a vacuum.

22.To wash the column, pass through 40 ml Column Wash Buffer (10 mM
Tris-HCI, pH 7.5, 80% ethanol).

23.Spin down the column at top speed on a table top centrifuge to remove all
traces of ethanol, and remember to use a pipette to remove the ethanol
leftover on the rim of the Qiagen column.

24 Elute the library in 12.5 pl Buffer EB. Perform the elution three times and
combine the three elutes to a final volume of ~ 36 pl.

25.Do a final fragment size selection using 0.5X SPRI upper cutoff, followed by
1.2X SPRI lower cutoff, and elute in 30 pyl 10 mM Tris-HCI, pH 8.0.

26.Run Nanodrop to obtain a rough estimate of the concentration, and then
dilute the library to a range suitable for Bioanalyzer/TapeStation etc.

27. Check for expected results (see Supplementary Fig. 2a).

28.Sequencing: we sequenced each 384 pool on one lane of Hiseq 2000 or one
rapid run of Hiseq 2500, which nearly saturated the library. From the data
obtained, each cell was sequenced to about 1 million reads, but only
~30,000 unique reads were obtained per cell. Further reads were redundant,
which is comparable (if not better) to published scATAC-seq by other
methods. Theoretically, 30,000 reads per cell should be sufficient to profile
the unique reads. However, considering the presence of mitochondrial DNA,
non-mapped and non-uniquely mapped reads, it is safer to aim for at least

100,000 reads per cell.



Oligonucleotides sequence

N701
N702
N703
N704
N705
N706
N707
N710
N711
N712
N714
N715
N716
N718
N719
N720
N721
N722
N723
N724
N726
N727
N728
N729
5502
S503
S505
S506
S507
S508

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATTCATGAGCGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATCCTGAGATGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATTAGCGAGTGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATGTAGCTCCGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATTACTACGCGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATAGGCTCCGGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATGCAGCGTAGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATCTGCGCATGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATGAGCGCTAGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATCGCTCAGTGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATGTCTTAGGGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATACTGATCGGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATTAGCTGCAGTCTCGTGGGCTCGG
CAAGCAGAAGACGGCATACGAGATGACGTCGAGTCTCGTGGGCTCGG
AATGATACGGCGACCACCGAGATCTACACCTCTCTATTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACTATCCTCTTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACGTAAGGAGTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACACTGCATATCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACAAGGAGTATCGTCGGCAGCGTC

AATGATACGGCGACCACCGAGATCTACACCTAAGCCTTCGTCGGCAGCGTC



S510
S511
S513
S515
S516
S517
S518
S520
S521
S522

AATGATACGGCGACCACCGAGATCTACACCGTCTAATTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACTCTCTCCGTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACTCGACTAGTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACTTCTAGCTTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACCCTAGAGTTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACGCGTAAGATCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACCTATTAAGTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACAAGGCTATTCGTCGGCAGCGTC
AATGATACGGCGACCACCGAGATCTACACGAGCCTTATCGTCGGCAGCGTC

AATGATACGGCGACCACCGAGATCTACACTTATGCGATCGTCGGCAGCGTC



