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Abstract 

 

Pseudomonas aeruginosa is a human pathogen that causes health-care associated 

blood stream infections (BSI). Although P. aeruginosa BSI are associated with high 

mortality rates, the clinical relevance of pathogen-derived prognostic biomarker to 

identify patients at risk for unfavorable outcome remains largely unexplored. We 

found novel pathogen-derived prognostic biomarker candidates by applying a multi-

omics approach on a multicenter sepsis patient cohort. Multi-level Cox regression 

was used to investigate the relation between patient characteristics and pathogen 

features (2298 accessory genes, 1078 core protein levels, 107 parsimony-informative 

variations in reported virulence factors) with 30-day mortality. Our analysis revealed 

that presence of the helP gene encoding a putative DEAD-box helicase was 

independently associated with a fatal outcome (hazard ratio 2.01, p = 0.05). helP is 

located within a region related to the pathogenicity island PAPI-1 in close proximity to 

a pil gene cluster, which has been associated with horizontal gene transfer. Besides 

helP, elevated protein levels of the bacterial flagellum protein FliL (hazard ratio 3.44, 

p < 0.001) and of a bacterioferritin-like protein (hazard ratio 1.74, p = 0.003) 

increased the risk of death, while high protein levels of a putative aminotransferase 

were associated with an improved outcome (hazard ratio 0.12, p < 0.001). The 

prognostic potential of biomarker candidates and clinical factors was confirmed with 

different machine learning approaches using training and hold-out datasets. The helP 

genotype appeared the most attractive biomarker for clinical risk stratification due to 

its relevant predictive power and ease of detection.    
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Introduction 

Blood stream infections (BSI) are a frequent and often fatal occurrence in 

hospitalized patients, particularly under immunosuppression (ECDC 2015). According 

to the European Detailed Mortality Database (http://data.euro.who.int/dmdb/), more 

than 40,000 deaths in Europe can be attributed to sepsis in 2014. Pseudomonas 

aeruginosa is an important pathogen causing up to 15.4% of all BSI cases (ECDC 

2015). Mortality rates of up to 42% even in advanced settings are reported (McCarthy 

and Paterson 2017), especially when appropriate antibiotic treatment is delayed 

(Skaar 2010).   

The search for appropriate biomarkers is linked with the prospect of improving early 

diagnosis and prognosis prediction in sepsis. To date, C-reactive protein, interleukin-

6 and procalcitonin are the only well-established diagnostic biomarkers, despite 

extensive evaluation of more than 100 biomarkers (Pierrakos and Vincent 2010). The 

majority of these biomarkers is host-derived. This is in line with the current paradigm 

of sepsis pathophysiology that explains lethal septic shock and multi-organ failure 

primarily as a result of the host’s pro- and anti-inflammatory reaction to pathogen 

components like carbohydrate and fatty acids, termed pathogen-associated 

molecular patterns (PAMP) (Walton et al. 2014; Gotts and Matthay 2016). It is indeed 

well known that the genetic diversity in human genes encoding for pathogen 

recognition receptors as well as for pro- and anti-inflammatory mediators explains in 

part the variability in the clinical course of septic patients (Khor et al. 2007; Lehmann 

et al. 2009; Thompson et al. 2014). However, the role of the nature and 

characteristics of the infecting pathogen is frequently neglected (Lisboa et al. 2010; 

Angus and van der Poll 2013). Given the huge diversity of bacterial genomes and 

functional capacities even within one species, the pathogen itself could account for 
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unexplained heterogeneity in the clinical course and outcome of sepsis. Recently, the 

pangenome of the species P. aeruginosa was estimated to contain more than 16,000 

non-redundant genes, while only 15% of these genes were present in all strains 

forming the core genome (Mosquera-Rendon et al. 2016). Of particular interest are 

prognostic bacterial biomarkers that can indicate the risk of a fatal outcome in septic 

patients, thus providing guidance in therapy and improved management of patient 

monitoring.  

While bacterial virulence factors have been extensively explored in P. aeruginosa 

(Veesenmeyer et al. 2009), investigations have almost exclusively been carried out in 

in vitro experimentations or in animal models providing no evidence of their relevance 

and utility as prognostic biomarkers in humans. The type 3 secretion bacterial 

effector proteins ExoS, ExoT, and ExoU are an exception (Lisboa et al. 2010), with 

some authors reporting an association between expression level and sepsis outcome 

(El-Solh et al. 2012; Hattemer et al. 2013). In addition, one recent study presented 

evidence that the presence of the exoU gene is an independent predictor of early 

sepsis mortality in P. aeruginosa BSI (Pena et al. 2015).  

In a multicenter study, we applied a multi-omics approach to identify pathogen factors 

that contribute to differential mortality outcomes in patients with P. aeruginosa 

bloodstream infection. We first used genomics and proteomics to characterize P. 

aeruginosa strains from sepsis patients. Next, we integrated these omics data from 

bacterial isolates with treatment- and patient-related data to gain a broader 

understanding of the complex interactions between host and pathogen during blood 

stream infections. We thereby screened for pathogen factors which are 

independently linked to 30-day mortality and which would consequently be attractive 
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prognostic biomarker candidates. Finally, we confirmed biomarker candidates 

identified by our statistical model using different machine learning algorithms.     

 

Results 

Clinical and patient-related risk factors for 30-day mortality 

From 175 eligible patients, 166 (94.86%) patients with P. aeruginosa BSI were 

included into the final analysis (Figure S1). The basic demographic, clinical and 

infection-related characteristics of the patient study population are presented in table 

S1. An investigation of factors that had an impact on the mortality rate was initially 

performed on clinical and patient-related variables (Table S2). Multivariate Cox 

regression modelling revealed that immunosuppression as well as a rise in the SAPS 

II score increased 30-day mortality while administration of appropriate antibiotic 

treatment and a genitourinary infection source decreased the risk of a fatal outcome 

(Table S3). 

Genomic characteristics of clinical P. aeruginosa strains  

The genome of the first isolate recovered from each patient with a P. aeruginosa 

blood stream infection was sequenced (166 strains). The pangenome consisted of 

23917 genes with 4354 core genes shared by > 99% of isolates, 639 soft core genes 

shared by 95% - 99%, 1762 shell genes shared by 15% - 95%, and 17162 cloud 

genes shared by < 15%. The high number of accessory genes underlines the 

stupendous genomic diversity and plasticity of P. aeruginosa species represented by 

our study dataset.  
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The phylogenetic tree based on the core genome SNP alignment shows a highly 

diverse population structure of our clinical isolates with distinct clades of similar 

branch length within two major phylogenetic clusters along with a discriminative 

cluster formed by only 3 strains (Figure 1). Recombination had occurred at a median 

rate of 0.07 (SNPs inside recombination/SNPs outside recombination, interquartile 

range: 0.03 - 0.27), demonstrating that recombination events have only slightly 

contributed to shaping the diversity of our strain set. Closely related isolates were 

most commonly found in only one hospital in a narrow time frame, providing evidence 

Figure 1. Core genome phylogenetic, temporal and spatial relationship of clinical P. aeruginosa strains recovered from 

patients with blood stream infection. 

A maximum-likelihood phylogeny of the core genome SNP alignment reveals three major genomic clusters (Core-cluster 1 = 

bright yellow; Core-cluster 2 = light rose; Core-cluster 3 = grey). A high diversity within these clusters is reflected by numerous 

subgroups and distinct single isolates. Location and year of isolation is provided for each strain. Regions of predicted 

recombinations are shown by the right-sided panels of blocks. Red blocks indicate recombinations on internal branches, 

therefore shared by several strains through common descent. Blue blocks indicate recombinations that take place on terminal 

branches, thus are specific to individual isolates. Presence of the dead box helicase gene helP is shown by brown blocks beside 

the phylogenetic tree, with pink-colored squares that illustrate strains where helP location was predicted to be on a plasmid 

(plasmidSPAdes). The scale beneath demonstrates a distance of 17.000 point mutations.         
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for a spatial and temporal clustering. In some cases, strains from the same cluster 

have been isolated in different hospitals during the entire study period, suggesting 

either a transfer from one to the other hospital or a circulation of the particular strain 

within the community and sporadic reintroduction in our hospitals.  

Antibiotic susceptibility profiles are shown in figure S2, demonstrating a wide range 

from broadly susceptible to extensively drug resistant (XDR) strains. XDR strains 

Figure 2. Genomic and temporal clustering of accessory genes and its link to core genome clusters.  

(A) Population structure of the accessory genome using the Ward cluster algorithm with the Pearson similarity index and displayed 

as three-dimensional correlation network by Biolayout. Each node represents a study isolate, whereas the connecting edges reflect 

similarity based on the input gene presence-absence matrix. Four accessory genome clusters (acc-clusters) were revealed, coded 

by different colors (acc-cluster 1 = purple; acc-cluster 2 = orange; acc-cluster 3 = green, acc-cluster 4 = red). (B) The histograms 

illustrate the distribution of isolation time over the study period for each acc-cluster. All acc-clusters were evenly isolated with the 

exception of acc-cluster 4 which has only been found consecutively in four years (2009 - 2012). (C) The bars display overlaps 

between core- and acc-clusters. Core-cluster 1 and 2 were mainly partitioned in two distinct types of accessory genomes, hence 

rising evidence for a deeper structural genomic disparity than the one shown by the core genome maximum-likelihood phylogeny. 

Only one isolate from core-cluster 2 had an accessory genome that is grouped with acc-cluster 1. The three isolates of core-cluster 

3 belong exclusively to acc-cluster 1, pointing to a closer genomic relation to core-cluster 1 than core cluster 2.  
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were only susceptible to colistin and were usually phylogenetically clustered, 

suggesting outbreak situations as previously described (Willmann et al. 2015).    

In order to investigate the genomic relatedness of the accessory genome between 

the 166 strains, we only considered accessory genes with a prevalence ≥ 10% and ≤ 

90%. Using this criterion, a subset of 2298 accessory genes was tested. Ward 

analysis revealed that the 166 isolates can be divided in four accessory genome 

(acc-) clusters (Figure 2A). Except for acc-cluster 4, which was confined to a 4-year 

period, the appearance of strains from the other acc-clusters was evenly distributed 

over time (Figure 2B). Acc-clusters showed a strong affiliation to the three major 

core-genome clusters, underlining a further structural distinction within the core 

genome phylogeny (Figure 2C). Acc-clusters were included in the clinical Cox 

regression model. The analysis showed that acc-cluster 2 was independently 

associated with 30-day mortality (HR 1.95, p = 0.048, Wald test), suggesting the 

presence of genomic pathogen factors that negatively influence patient survival 

(Table S4).  

Subsequently, we investigated whether certain gene ontology (GO) terms and 

thereby gene functions are over- or under-represented in acc-cluster 2. Compared to 

the three remaining acc-clusters that served as a reference, acc-cluster 2 was 

enriched with the GO terms “peptidyl-histidine modification” (GO:0118202, FDR = 

0.033) and “peptidyl-histidine phosphorylation” (GO:0018106, FDR = 0.033) (Figure 

S3). Both GO terms involve sensor histidine kinase genes that usually function in 

two-component systems. These bacterial regulatory systems, designed to sense 

external stimuli and to facilitate an appropriate adaptive response to stressors and 

changes in environmental and growth conditions, modulate the transcription of genes 

including virulence factors and antimicrobial resistance genes in P. aeruginosa 
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(Gooderham and Hancock 2009). Such systems could have a significant influence on 

a strain’s survival chance during infection (Mikkelsen et al. 2011).            

Protein level characteristics of clinical P. aeruginosa strains 

After determining the genomic features, we next defined the cellular proteome of all 

166 isolates. A total of 7757 unique proteins were identified in the proteomics 

analysis, with a subset of 1078 proteins (13.9%) synthesized by all study strains 

(core proteome). Principal component analysis of protein level profiles of the strains 

Figure 3. Basic proteome and core proteome characteristics and comparison with genomic features.  

A principle component analysis with the first three eigenvectors is presented for the core proteome (A) and the whole proteome (B). 

Any data point stands for a strain isolated from survivors (blue) and decedents (purple). In both cases, no clustering according to 

survival status was observed. The first three eigenvectors comprised 57.1% of the overall variance for the core proteome, and 

68.51% for the proteome. (C) Four core-proteome clusters were revealed, each of them representing a highly correlated expression 

profile. Visualization was done using Biolayout. Clusters are labelled as indicated by the color bar in D. (D) The fraction of the four 

identified core proteome clusters within the three core genome clusters showed the presence of all closely related protein level 

profiles in both the numerical greatest core genome clusters. This suggested that the protein level profiles are independent from the 

underlying core genome structure. 
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did not show clustering according to the survival status of patients, neither for the 

core-proteome (Figure 3A) nor for the whole proteome (Figure 3B). Ward cluster 

analysis of the core proteome resulted in four core proteome clusters (prot-clusters) 

of strains with closely related protein level profiles (Figure 3C). All prot-clusters were 

found in both the two numerically greatest core genome clusters (Figure 3D). This 

demonstrates that even phylogenetically distinct strains can share similar profiles of 

core protein levels. Since the presence of different accessory genes could also have 

an impact on the protein level pattern, we ordered the strains according to their acc-

clusters and compared the protein levels of the core proteome (Figure S4A). We 

observed no distinct patterns associated with an acc-cluster or a strong relationship 

in a cross-comparison of prot- and acc-clusters (Figure S4B).  

Inclusion of prot-clusters into the clinical Cox regression model did not reveal a link 

between prot-clusters and 30-day mortality (Table S4). These results suggest that the 

risk of a fatal outcome is not determined by complex core proteome clusters. But 

since individual protein levels could still have an impact, we performed a multi-level 

Cox regression analysis of single genomic and protein level factors on patient 

outcome.     

Multi-level Cox regression and prediction model  

Figure S5 provides an overview of the statistical workflow up to the final prediction 

model using a multi-level Cox regression analysis approach. We conducted an in-

depth analysis of a pre-assigned accessory genome subset comprising 2298 genes 

and the natural log-normalized protein level data set of 1078 core proteins. Four 

pathogen-derived factors (one genomic and three proteomic factors) were 

independently associated with mortality in the final Cox regression prediction model 

(Table 1).  
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Table 1. Final multivariate Cox regression model including virulence factor 

candidates  

 
Parameter Annotation Hazard ratio 95% CI P-value 

Appropriate antibiotic treatment - 0.24 0.12 - 0.45 0.0001 

SAPSII (index day)* - 1.072 1.0465 - 1.0981 <0.0001 

helP DEAD/DEAH box helicase 2.01 1.03 - 3.94 0.05 

log-Prot7* FliL 3.44 1.67 - 7.07 0.0006 

log-Prot214* Bacterioferritin 1.74 1.18 - 2.57  0.003 

log-Prot330* Probable aminotransferase 0.12 0.03 - 0.44 0.0009 

* Continuous variable. The hazard ratio reflects the increase/decrease in mortality risk per unit increase.     

95% CI, 95% confidence interval; SAPSII, simplified acute physiology score II; Prot, protein 

LFQ intensities were natural log-transformed for core proteomic data.  

 

Prior screening model values of the four pathogen-derived predictors are presented 

in table S5, while all factors that were included into the multivariate models are 

shown in table S6. Two variables of the clinical Cox regression model were removed 

from the final and comprehensive Cox regression prediction model: 

immunosuppression due to a p-value > 0.05 and genitourinary infection source due 

to failing the internal bootstrap validation process. Three of the four pathogen-derived 

predictors shown in table 1 increase the risk of death (hazard ratio > 1), either when 

present in the bacterial genome (the genomic factor helP) or in case of high protein 

levels (proteins Prot7 and Prot214). All three were considered pathogen-derived risk 

factors for a fatal outcome.  

In contrast, high levels of Prot330, a putative aminotransferase, turned out to have an 

anti-virulence effect (hazard ratio 0.12, 95% CI 0.03 - 0.44, p = 0.0023). Table S7 

illustrates the functional annotation of genomic and proteomic predictors and their 

GO-terms from the UniProtKB database (http://www.uniprot.org/).  
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Besides protein levels and presence of genes, the existence of structural variations in 

putative pathogen virulence factors within the core genome set could have further 

contributed to mortality and was thus specifically explored. A total of 92 reported 

putative virulence factors were identified in the dataset; 59 of those were present in 

the core genome (Table S8). Using PAO1 (accession number: NC_002516.2) and 

PA14 (accession number: NC_008463.1) as genetic references, multivariate 

analyses of 107 parsimony-informative SNPs causing amino acid replacements 

detected only one candidate (LasA, A111V) linked to mortality (hazard ratio 2.18; 

95% confidence interval 1.16 - 4.09; p = 0.012) in the variant screening model. 

However, this SNP candidate failed statistical significance in the final Cox regression 

prediction model (p = 0.28), suggesting that structural variations in putative pathogen 

virulence factors did not impact 30-day mortality in our study population. 

In-depth characterization of the prognostic biomarker candidate helP 

One of the identified prognostic biomarker candidates, the 1866th accessory genome 

gene that we named helP (GenBank accession number: KY940721), is particularly 

interesting. The presence of helP in the genome of the study strains was estimated to 

double the risk of a fatal outcome (hazard ratio 2.01, 95% confidence interval 1.03 - 

3.94, p = 0.05). Its gene product is highly similar to RL063, a protein whose gene 

sequence is located on the pathogenicity island I in PA14 (98.3% protein sequence 

similarity, UniProt accession number Q7WXZ7). The amino acid sequence of HelP is 

identical to a protein named PSPA7_4493 (UniProt accession number: A6V9V7), a 

predicted DEAD/DEAH box helicase from the P. aeruginosa strain PA7. This 

prediction is primarily based on a helicase conserved C-terminal domain (PF00271, 

domain boundary positions: 570 - 685) and a DEXDc domain (SM00487, domain 

boundary positions: 57 - 410). helP appeared in 22 of our study strains, but much 
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more frequently in the high-risk acc-cluster 2 strains (27.27% in acc2 vs 9.77% in the 

other three clusters, p = 0.008, chi-squared test). A maximum-likelihood phylogeny 

showed that HelP groups together with other predicted helicases from Pseudomonas 

sp., thereby most closely related to the class of DEAD-box helicases within the 

superfamily 2 (Figure S6, table S9).  

Generally, helP was evenly distributed among all strains in the core phylogeny and 

was found in different hospitals (Figure 1), reflecting the gene’s integration in many 

different phylogenetic groups rather than just in one. We hypothesized that helP 

might be transmittable via horizontal gene transfer, which is another important aspect 

apart from virulence capabilities. DEAD/DEAH box helicases are non-essential 

bacterial genes that might be acquired through horizontal gene transfer. The recycler 

tool (Rozov et al. 2016) and plasmidSPAdes (Antipov et al. 2016) were used to 

predict plasmids from the short Illumina sequence reads of all helP positive strains. 

Plasmids predicted by plasmidSPAdes harbored helP in strain ID 26, ID 93, ID 101, 

and ID 138 (Figure 1) while plasmids predicted by the recycler tool did not. In the 

remaining strains, helP location was predicted to be on the bacterial chromosome. 

Since genome assembly from short reads can be prone to errors, particularly in the 

detection and characterization of mobile genetic elements, we sequenced the four 

strains including strain ID50 on a PacBio instrument to improve assembly quality. In 

all strains, helP was located on a contig with a size > 800 kb. This makes a location 

on a plasmid very unlikely, indicating that plasmidSPAdes provided a false positive 

rating.  

Nevertheless, helP can be found in 12 strains that originate from four different 

phylogentic clusters as well as in 10 strains that are genetically distinct from all other 

helP positive strains. This genomic diversity of helP positive strains suggests a 
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horizontal transfer of helP in the past. Interestingly, the genomic environment of helP 

on the five large PacBio contigs resembled the pathogenicity island PAPI-1 from 

PA14 (Figure S7), where a homologous gene of helP is located (RL063). Particularly 

upstream of helP, we found PAPI-1 well conserved. Of special interest is the 10-gene 

cluster of a type IV pilus (T4P) apparatus that is located in close proximity to helP 

(Figure S7). This T4P system has been described as a conjugative apparatus 

genetically closely related to genes on the enterobacterial plasmid R64. The system 

has been reported of being capable of transferring PAPI-1 into recipient P. 

aeruginosa (Carter et al. 2010). When mapping the short Illumina sequence reads of 

the 22 helP positive strains against PAPI-1, we found a similar picture with a few 

differences between single strains and clusters (Figure S8). The structure of this 

genomic environment suggests a past exchange of helP between different P. 

aeruginosa strains via conjugation machineries but not via plasmids.   

It was recently reported that a RNA helicase (Uniprot accession: Q9I003) in P. 

aeruginosa affected expression of ExoS (Tan et al. 2016). For this reason, we 

explored protein levels of known P. aeruginosa exotoxins, secretion system effectors 

and factors of the T4P in all clinical isolates (Table S10). Strains that were positive for 

helP had a 6.57-fold higher expression of exoU compared to helP negative strains (p 

= 0.04), but were not distinct in their ExoS levels. This is likely due to different 

structures of both helicases. In a pairwise alignment comparison, HelP had only a 

20% amino acid sequence similarity with the respective RNA helicase (Uniprot 

accession: Q9I003), suggesting that both putative helicases do not necessarily 

operate with the same mode of action. However, our findings indicate a potential 

connection between the helP genotype and ExoU expression, and could play a role 
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in sepsis when considering the clinical impact of the exoU genotype (Pena et al. 

2015). 

Predictive performance of identified prognostic factors in machine learning 

algorithms   

The following datasets were submitted for further evaluation using different machine 

learning strategies: datasets including all features of the three screening models 

(genomic, phenotypic, or SNP features), a dataset containing all pathogen-derived 

factors from the screening models (“ALL”) and the dataset with the variables from the 

final Cox regression model (“Final”). All datasets consisted of the clinical predictors 

identified in the clinical Cox regression model (Table S3).  

Performance specifications of the estimators from each tested dataset are presented 

in supplement table S11. Values for the area under the receiver operating 

characteristic curve (AUC) indicate each estimator’s potential to discriminate patients 

at high risk of a fatal outcome from those with a lower risk. In most cases, AUC 

values were below 0.8, indicating a rather weak discriminatory power of the 

estimators. Exceptions were estimators from the dataset of the final cox regression 

model which gained higher AUC values compared with the estimators from the other 

datasets (median AUC 0.829 vs 0.736, p = 0.0009). The best estimator from the 

dataset of the final cox regression model was a linear support vector classifier that 

showed no sign of overfitting in its learning curve (Figure 4A). In contrast, most 

estimators were prone to overfitting and were difficult to regularize. However, using 

the best 5% of features generally increased performance significantly and often 

removed overfitting. This indicates a high background of uninformative features that 

disturb the predictive potential of the estimators. It underlines the importance of 
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feature selection in datasets with a high number of features and a comparative 

smaller number of instances, as is usually the case in multi-omics studies.  

For each dataset, we subsequently evaluated the most promising estimator on the 

hold-out dataset that contained 20% of the total data (Table S12). The estimator 

trained on the dataset with the features from the final Cox regression model was 

clearly superior to the estimators of the other datasets (AUC = 0.895, Matthews 

correlation coefficient 0.726, Figure 4B and 4C). It was the only model that predicted 

all fatal cases correctly and thus did not miss one patient at high risk of a fatal 

outcome (Table S12). This suggests a significant relation between the identified 

Figure 4. Machine learning estimator validation of the multi-omics datasets 

A ) The learning curve of the linear support vector machine estimator from the dataset containing the features from the final Cox 

regression model (“Final”) determined cross-validated training and test area under the receiver operating characteristic curves 

scores (AUC scores) for different training set sizes. The faded areas indicate standard deviations of the respective test scores. Both 

curves approach each other with increasing training set size, reflecting evidence against overfitting. (B) The radial graph 

demonstrates the area under the receiver operating characteristic curve (ROC AUC) values of the final validation step, when the 

best estimators from each dataset were tested against the hold-out data. The prediction performance from estimators of the 

following datasets was examined: ACC = accessory genome features, Pheno = protein levels and antibiotic susceptibility features, 

SNP = single nucleotide polymorphisms in reported virulence factors, ALL = combination of the three models above. These datasets 

included the clinical risk factors from the respective clinical Cox regression model. “Final” marks the estimator that consists of the 

dataset with the features from the final Cox regression model. The label “Values” does not indicate a dataset but the AUC values at 

the grid in the radial graph. The estimator from the Final dataset showed superior performance (AUC = 0.895), particularly over the 

Pheno dataset estimator which performed quite weak (AUC = 0.595). (C) Matthews correlation coefficients are provided for the 

same estimators as mentioned in B. The label “Values” indicates the correlation coefficients but not a dataset. Again, the estimator 

from the Final dataset shows the highest coefficient (0.726), reflecting a high number of correct predictions.      

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 28, 2018. ; https://doi.org/10.1101/309898doi: bioRxiv preprint 

https://doi.org/10.1101/309898
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

clinical risk factors and prognostic biomarker candidates with fatal outcome. It also 

demonstrates that a feature selection based on classical epidemiological 

methodology (here Cox regression) can be a powerful tool when combined with 

machine learning algorithms in multi-omics approaches.  

  

Discussion  

Our approach integrated genomic and proteomic pathogen data into a clinical 

multicenter cohort study with a wide range of sepsis conditions. This was followed by 

an evaluation of promising prognostic biomarker candidates using machine learning. 

Our results support that certain P. aeruginosa pathogen factors significantly 

contribute to the risk of a fatal outcome in bloodstream infections independently of 

the physiological patient status and administration of appropriate antibiotic therapy. 

In terms of a more detailed characterization, we have focused on the genomic 

candidate helP since its presence increased the risk of death by two-fold in our study 

and since it can be easily measured in a routine diagnostic setting (e.g. by PCR), 

which makes it an interesting prognostic biomarker. Moreover, its genomic 

environment and its detection in different genetic lineages suggest that helP has 

been acquired by horizontal gene transfer.  

We found helP in close genomic proximity to a type IV pili (T4P) gene complex within 

a genetic environment that is similar to the pathogenicity island I of PA14. These T4P 

systems are involved in motility and adhesion to host cells during infection (Hahn 

1997; Bieber et al. 1998). T4P-deficient P. aeruginosa mutants were reported to have 

a lower cytotoxicity, potentially due to the loss of cell contact and therefore an 

inefficiently working type III secretion system (T3SS) (Comolli et al. 1999), whose 
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importance as a prognostic biomarker in P. aeruginosa bacteremia has been 

repeatedly shown (El-Solh et al. 2012; Hattemer et al. 2013; Pena et al. 2015). 

Besides the possibility of an interaction of helP with its flanking T4P-system, there 

might be other mechanisms involved in how DEAD-box helicases could affect 

virulence. Tan et al. have reported on a DEAD-box helicase of P. aeruginosa that 

was essential for virulence and bacterial cytotoxicity in a mouse pneumonia model 

(Tan et al. 2016). Deletion of the DEAD-box helicase resulted in significantly lower 

expression levels of the T3SS effector protein ExoS and in a decreased production of 

proinflammatory cytokines and neutrophil infiltration in infected mice. However, we 

did not observe a differential expression of ExoS in helP positive isolates, but of 

ExoU levels, suggesting another potential linkage with the T3SS effectors.     

Protein level analysis has also identified putative virulence and anti-virulence factors 

in P. aeruginosa bloodstream infection. Although strains were immediately conserved 

after detection and protein levels were determined in the first subculture after 

thawing, and therefore close to the conditions in the blood culture bottle, it is 

unknown how such protein level profiles would mirror pathogen protein levels in a 

patient’s bloodstream. Because of this limitation, we focused on helP as genomic 

biomarker due to its stability even under different pre-analytical conditions. We also 

hypothesized that protein level analysis can be a valuable tool in detecting additional 

virulence markers. Thus, we included factors arisen from this phenotype screening 

model into our final Cox regression prediction model.  

High protein level of the flagellum basal body protein FliL was associated with 

increased mortality. The flagellum apparatus has been widely reported to be vital for 

virulence in P. aeruginosa (Kazmierczak et al. 2015). It is mainly important for 

swimming motility and attachment to host cells. Flagella components are known to 
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bind to Toll-like receptor 5, thereby activating a mostly proinflammatory immune 

response (Zhang et al. 2003). During chronic infection in cystic fibrosis patients, 

flagellum expression is often downregulated to reduce inflammation 

(Mahenthiralingam et al. 1994). Our observation, together with the reported success 

of an anti-flagella vaccine in a clinical trial (Doring et al. 2007), makes the flagellum 

apparatus an interesting target for therapeutic virulence blockers in sepsis.  

Another prognostic biomarker candidate is Prot214 which is annotated as 

bacterioferritin. Its role as risk factor for fatal outcome remains elusive. It is well 

known that an important line of defense against bacterial infection is the withholding 

of free iron since bacterial pathogens essentially depend on iron for replication and 

their pathogenic actions. In order to ensure sufficient iron levels in the bacterial 

cytosol and to also prevent iron-induced toxicity, cellular levels of free iron need to be 

highly regulated. In P. aeruginosa, two ferritin-like molecules are known to store iron 

intracellularly (bacterial ferritin A and bacterioferritin B) and both are considered 

obligatory for iron metabolism (Rivera 2017). These iron stores, suggested to be an 

important source for the heme prosthetic group of KatA, can increase resistance 

against hydrogen peroxide (Ma et al. 1999). This could be crucial for the rapid 

adaptation of invasive strains to new environments like the human blood and could 

augment pathogen survival against innate immune defense mechanisms. 

Nonetheless, the function of the bacterioferritin-like protein Prot214 as well as the 

anti-virulence capacity of the putative aminotransferase Prot330 during bacteraemia 

needs to be further investigated. This also applies to the discovery that GO-terms for 

peptidyl-histidine phosphorylation as part of two-component systems were enriched 

in the high risk accessory genome group (acc-cluster 2). The enrichment could reflect 

an improved ability for an immediate response to external stimuli. This could be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 28, 2018. ; https://doi.org/10.1101/309898doi: bioRxiv preprint 

https://doi.org/10.1101/309898
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

advantageous in terms of a pronounced growth of invasive strains in different human 

body sites.    

We conducted a systematic search for prognostic biomarker candidates in patients 

with P. aeruginosa bloodstream infection. Routine detection of highly virulent strains 

could result in administering high-dose combination therapy to those patients who 

need it most, providing a fair rationale for the additive toxicity. This is especially the 

case in P. aeruginosa bloodstream infection where combination therapy is thought to 

be superior over monotherapy, particularly when patients are at a higher risk of fatal 

outcome (Safdar et al. 2004; Park et al. 2012; Kim et al. 2014). Beside therapeutic 

management, detection of high-risk strains could also be followed by infection control 

measures like contact isolation. This would allow a reduction in the spread of virulent 

strains, an objective that is neglected by current infection control guidelines that tend 

to focus solely on a strain’s antibiotic susceptibility profile. Such practices could help 

in significantly reducing the more than 40,000 annual sepsis deaths alone in Europe 

and the hundred thousands more throughout the world. Our multi-omics approach 

has produced genomic and proteomic data identifying pathogen-derived prognostic 

biomarker candidates that are interwoven with treatment- and patient-related risk 

factors in a complex interplay. Our results reveal the importance of multi-omics 

approaches, which allow us to investigate multiple pathogen and host factors at the 

same time. Future studies that aim to validate these findings and to move confirmed 

pathogen-derived prognostic biomarkers into clinics are warranted.  
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Methods 

Setting 

We conducted a multicenter genomic cohort study in a 1500-bed tertiary teaching 

hospital, a 500-bed district hospital, and a 300-bed trauma center in Tübingen, 

Germany, and the surrounding community. The broad spectrum of medical services 

provided by these hospitals includes multiple medical and surgical specialties, 

pediatric units, dialysis and a maternity ward. Organ transplantations are carried out 

at the tertiary teaching hospital. The study is reported pursuant to the Transparent 

Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 

(TRIPOD) and Strengthening the reporting of Genetic Risk Prediction Studies 

(GRIPS) statements (Janssens et al. 2011; Collins et al. 2015). Our study was 

approved by the local research ethics committee of the University of Tübingen 

(reference number: 364/2013R).  

Study design, patients and definitions 

Adult patients (≥ 18 years) admitted to one of the participating hospitals were 

considered eligible when they were suffering from a blood stream infection (BSI) with 

≥ 1 blood culture positive for P. aeruginosa. Patients were included once at the time 

of the first positive blood culture (index culture). Thirty-day mortality for any cause 

was the clinical endpoint while patient- and pathogen-related factors were regarded 

potential predictors of outcome.    

Relevant patient data variables were defined as follows: site of infection (primary, 

secondary, vascular catheter-related) as classified by the International Sepsis Forum 

(Calandra and Cohen 2005); Charlson comorbidity score (Charlson et al. 1987); 

nosocomial infection (any infection ≥ 48 hours after hospital admission);  
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immunosuppression (HIV and/or neutropenia with a neutrophil count ≤ 1000 cells/µl,  

and/or immunosuppressive chemotherapy within the previous two months and/or 

receipt of prednisolone ≥ 10 mg/daily or equivalent steroid dose). The physiological 

patient condition was determined using the simplified acute physiology score II 

(SAPS II) at the index culture day (Le Gall et al. 1993). A systemic administration of 

at least one antimicrobial agent to which the isolate was susceptible in vitro was 

defined an appropriate antimicrobial treatment.  

Species identification and susceptibility testing   

Species identification was carried out using MALDI-TOF mass spectrometry and the 

Vitek 2 system (bioMérieux, Marcy l’Etoile, France). Minimum inhibitory 

concentrations were assessed by antibiotic gradient strips (MIC Test Strip, 

Liofilchem, Italy) and interpreted according to EUCAST breakpoints (version 8.0, 

2018). 

Genomic data acquisition and analysis  

Genomic DNA of P. aeruginosa has been sheared into 450 bp fragments using a 

focus-ultrasonicator (Covaris, Woburn, USA). Preparation of DNA libraries was done 

with the NEXTflexTM DNA Sequencing Kit (Bioo Scientific, Austin, USA) followed by 

sequencing at 2 x 125 bp on a HiSeq2500 platform (Illumina, San Diego, USA). 

SPAdes (version 3.7.0) has been selected as de novo assembly tool and assembled 

scaffolds were annotated using Prokka (version 1.11) (Bankevich et al. 2012; 

Seemann 2014). A gene presence-absence-matrix of all study isolates has been 

generated by Roary (version 1.006924) using a 95% minimum percentage identity for 

blastp (Page et al. 2015). Structure of the accessory genome was assessed using 

the Ward cluster algorithm with the Pearson similarity index (Stata version 12.1, Stat 
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Corp., College Station, USA). Clustering was visualized using Biolayout 

(Theocharidis et al. 2009). Core genome construction was performed with Spine 

(version 0.1.2), and SNP were called using samtools (version 0.1.19) and GATK tools 

(version 3.2-2) (Li et al. 2009; Van der Auwera et al. 2013). The core genome 

maximum-likelihood phylogeny was generated using Gubbins (version 2.1.0) to 

account for genomic regions which had undergone homologous recombination 

(Croucher et al. 2015). A maximum of 10 iterations were used and a generalized time 

reversible (GTR) substitution model with a gamma distribution of rates. Gene 

ontology (GO) term enrichment analysis was conducted with Blast2GO (version 

4.0.7) after genes from each group were clustered using CD-HIT-EST (version 4.6) 

with a 90% similarity threshold to remove redundancies (Conesa et al. 2005; Fu et al. 

2012). The analysis was performed using a two-tailed Fisher’s exact test. The 

maximum false discovery rate (FDR) was set to 0.05 for reporting significant GO-

terms and the Benjamini-Hochberg correction was used. Genomes from five strains 

were further determined on a PacBio RS II instrument. Each strain was sequenced in 

one SMRT cell resulting in coverage rates between 9-fold and 149-fold. Assembly of 

PacBio long reads was done using Canu version 1.5 (Koren et al. 2017), and contigs 

were subsequently polished with Pilon (version 1.22) to improve accuracy (Walker et 

al. 2014). For ID50, due to the low coverage of 9-fold, we used the SPAdes 

assembler version 3.9.0 (Bankevich et al. 2012) with Illumina short reads and the --

pacbio option. With this hybrid approach, we improved N50 statistic from 255,540 bp 

to 634,760 bp in this strain.              

Proteomic data acquisition and analysis 

P. aeruginosa strains were grown overnight, and proteins were extracted as 

described elsewhere (Krug et al. 2013). Protein extracts were precipitated overnight 
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with acetone and approximately 10 µg were loaded onto a NuPAGE Bis-Tris 4-12 % 

gradient gel (Thermo Fisher Scientific, Waltham, USA). Samples were let run 

approximately 10 mm into the gel and cut out as a single slice. In-gel digestion and 

peptide extraction were performed essentially as described previously (Borchert et al. 

2010). Peptides were desalted using C18 StageTips (Rappsilber et al. 2007). LC-

MS/MS analyses were performed on an EasyLC II nano-HPLC coupled to an LTQ 

Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Waltham, USA). LTQ 

Orbitrap Elite was operated in the positive ion mode. Samples were randomized 

before injection and a custom-made standard was measured in regular intervals to 

assess long-term performance of the MS. 

Acquired MS spectra were processed with MaxQuant software package (version 

1.5.2.8), with integrated Andromeda search engine (Cox and Mann 2008; Cox et al. 

2011). Database search was performed against a P. aeruginosa database obtained 

from Uniprot (all strains), containing 103,188 protein entries, together with the 

custom-made database containing 30 additional entries which were not represented 

in the main database. Trypsin (full specificity) was set as the protease and the 

maximum number of missed cleavages was set to two. False discovery rate of 0.01 

was set at the peptide and protein level. The label-free algorithm was enabled and a 

minimum of two unmodified peptide counts were required for quantification. Core 

proteome architecture was explored by using the Ward cluster algorithm with the 

correlation coefficient index (Stata version 12.1, Stat Corp., College Station, USA) 

Statistical analysis for virulence candidate assessment 

A multi-level Cox regression analysis was applied to study the association between 

exposure (patient characteristics, geno- and phenotype of the pathogen) and the 

study endpoint (30-day all-cause mortality). Prior to testing, a variance range was set 
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for all binary variables of interest to reduce dimensionality. Only those variables with 

a frequency ≥ 10% and ≤ 90% were tested. The final Cox regression model was built 

in a stepwise procedure. First, patient characteristics were individually tested and any 

variable with a p-value of < 0.2 was included in a multivariate model, wherein only 

variables with a p-value of ≤ 0.05 were retained, generating the clinical Cox 

regression model. In a second step, pathogen-related features were individually 

incorporated into the clinical Cox regression model. This led to three different 

screening models which integrated each one of the following information: accessory 

genome information (accessory genome gene screening model), phenotypic 

properties (natural log-transformed LFQ intensities of the core proteome and MICs = 

phenotypic screening model) or information about SNPs in known virulence factors 

(variant screening model) (Table S5). For SNPs, linkage disequilibrium was assessed 

and an R2 > 0.8 led to grouping and testing of one representative SNP for each 

group.  

Integration of pathogen-related variables from each of the three screening models 

into the final multivariate model had to run through two selection processes: (i) Within 

each screening model, variables must have had a p < 0.05 and (ii) must have 

belonged to the 10% of variables with the lowest p-value from that model. In the final 

Cox regression prediction model, variables with a p ≤ 0.05 were retained. Hypothesis 

testing was performed by using the likelihood ratio test. The proportional hazards 

assumption was verified on the basis of Schoenfeld residuals. The final Cox 

regression prediction model was internally validated by bootstrapping (10000 

replicates) and the jackknife method. Computations were done using Stata version 

12.1 (Stat Corp., College Station, USA).  
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Machine learning estimator search and optimization  

The following were submitted for further evaluation using different machine learning 

approaches: datasets containing all features of the three screening models, a dataset 

containing the clinical risk factors and all pathogenic factors from the screening 

models (ALL) and the dataset with the variables from the final Cox regression 

prediction model (Final). For each algorithm, 30-day mortality was the outcome 

variable, and a model’s ability to predict the risk of a fatal case was assessed through 

a receiver operating characteristics analysis (ROC) measuring the area under the 

ROC curve (AUC) and through Matthews correlation coefficient. The scikit-learn 

toolbox version 0.19.1 was used for all calculations (http://scikit-learn.org/stable/). 

The following classification algorithms were tested on each dataset: random forest, 

support vector classifier, linear support vector classifier, k-nearest neighbour, and 

multi-layer perceptron. 

The best estimator was searched on a training dataset that was comprised of 80% of 

the whole dataset. On each training dataset, we performed (i) no feature modification, 

(ii) dimensionality reduction using a principle component analysis with a maximum of 

100 components and (iii) feature selection of the 5% features with the lowest 

univariate p-values. An exception was the dataset with the features from the final Cox 

regression prediction model where all calculations were only performed on the 

unaltered set of features. Hyperparameter tuning was conducted using the 

exhaustive grid search function (GridSearchCV), and estimator performance was 

evaluated by a ten-fold cross-validation. Here, the training set was split into 10 

smaller sets. Subsequently, a model was trained on 9 folds of the training data and 

validated on the remaining part. The reported performance was the average of values 

computed in the loop. Potential over- and underfitting was determined by learning 
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curves of the training datasets. Best estimators were finally evaluated on a hold-out 

dataset, which contained data the estimator has not seen before (remaining 20% of 

the data). This is to assess the likely “real-world” performance of the model estimator.           
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