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Abstract: 14 

Esophageal Adenocarcinoma (EAC) is a poor prognosis cancer type with rapidly rising incidence. Our 15 

understanding of genetic events which drive EAC development is limited and there are few molecular 16 

biomarkers for prognostication or therapeutics. We have accumulated a cohort of 551 genomically 17 

characterised EACs (73% WGS and 27% WES) with clinical annotation and matched RNA-seq. Using a 18 

variety of driver gene detection methods, we discover 77 EAC driver genes (73% novel) and 21 non-19 

coding driver elements (95% novel), and describe mutation and CNV types with specific functional 20 

impact. We identify a mean of 4.4 driver events per case derived from both copy number events and 21 

mutations. We compare driver mutation rates to the exome-wide mutational excess calculated using 22 

Non-synonymous vs Synonymous mutation rates (dNdS). We observe mutual exclusivity or co-23 

occurrence of events within and between a number of EAC pathways (GATA factors, Core Cell cycle 24 

genes, TP53 regulators and the SWI/SNF complex) suggestive of important functional relationships. 25 

These driver variants correlate with tumour differentiation, sex and prognosis. Poor prognostic 26 

indicators (SMAD4, GATA4) are verified in independent cohorts with significant predictive value. Over 27 
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50% of EACs contain sensitising events for CDK4/6 inhibitors which are highly correlated with clinically 28 

relevant sensitivity in a panel EAC cell lines and organoids.  29 

 30 

Introduction 31 

Esophageal cancer is the eighth most common form of cancer world-wide and the sixth most 32 

common cause of cancer related death1. Esophageal Adenocarcinoma (EAC) is the predominant 33 

subtype in the west, including the UK and the US. The incidence of EAC in such countries has been 34 

rapidly rising, with a seven-fold increase in incidence over the last 35 years in the US2. EAC is a highly 35 

aggressive neoplasm, usually presenting at a late stage and is generally resistant to chemotherapy, 36 

leading to five-year survival rates below 15%3. It is characterised by very high mutation rates in 37 

comparison to other cancer types4 but also, paradoxically, there is a paucity of recurrently mutated 38 

genes. EACs also display dramatic chromosomal instability and thus may be classified as a C-type 39 

neoplasm which may be driven mainly by structural variation rather than mutations5,6. Currently our 40 

understanding of precisely which genetic events drive the development of EAC is highly limited and 41 

consequentially there is a paucity of molecular biomarkers for prognosis or targeted therapeutics 42 

available in the clinic.  43 

Driver events undergoing positive selection during cancer evolution are a small proportion 44 

of total number of genetic events that occur in each tumour7. Methods to differentiate driver 45 

mutations from passenger mutations use features associated with known driver events to detect 46 

regions of the genome, often genes, in which mutations are enriched for these features8. The 47 

simplest of these features is the tendency of a mutation to co-occur with other mutations in the 48 

same gene at a high frequency, as detected by MutsigCV9. MutsigCV has been applied on several 49 

occasions to EAC cohorts6,10,11 and has identified ten known cancer genes as high confidence EAC 50 

drivers (TP53, CDKN2A, SMAD4, ARID1A, ERBB2, KRAS, PIK3CA, SMARCA4, CTNNB1 and FBXW7). 51 
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Analysis of the non-coding genome has been performed by the PCAWG ICGC analysis and identified 52 

a significantly mutated enhancer associated with TP53TG112. However these analyses leave most 53 

EAC cases with only one known driver mutation, usually TP53, due to the low frequency at which 54 

other drivers occur. Equivalent analyses in other cancer types have identified three or four drivers 55 

per case13,14. Similarly, detection of copy number driver events in EAC has relied on identifying 56 

regions of the genome recurrently deleted or amplified, as detected by GISTIC10,15-18. However, 57 

GISTIC identifies relatively large regions of the genome, often containing hundreds of genes, with 58 

little indication of which specific gene-copy number aberrations (CNAs) may actually confer a 59 

selective advantage. There are also several non-selection based mechanisms which can cause 60 

recurrent CNAs, such as fragile sites where a low density of DNA replication origins causes frequent 61 

structural events at a particular loci. These have not been differentiated properly from selection 62 

based recurrent CNAs19. Epigenetic events, for example methylation, may also be important sources 63 

of driver events in EAC but are much more difficult to assess formally for selection. 64 

Without proper annotation of the genomic variants which drive the biology of EAC tumours 65 

we are left with a very large number of events, most of which are likely to be inconsequential, 66 

making it extremely difficult to detect statistical associations between genomic variants and various 67 

biological and clinical parameters. To address these issues, we have accumulated a cohort of 551 68 

genomically characterised EACs using our esophageal ICGC project, which have high quality clinical 69 

annotation, associated whole genome sequencing (WGS) and RNA-seq on cases with sufficient 70 

material. We have augmented our ICGC WGS cohort with publically available whole exome20 and 71 

whole genome sequencing21 data. We have applied a number of complementary driver detection 72 

tools to this cohort, using a range of driver associated features combined with analyses of RNA 73 

expression to produce a comprehensive assessment and characterisation of mutations and CNAs 74 

under selection in EAC. We then use these events to define functional cell processes that have been 75 

selectively dysregulated in EAC and identify novel, clinically relevant biomarkers for prognostication, 76 
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which we have verified in independent cohorts. Finally, we have used this compendium of EAC 77 

driver variants to provide an evidence base for targeted therapeutics, which we have tested in vitro.  78 

 79 

Results 80 

A Compendium of EAC driver events and their functional effects 81 

In 551 EACs we called a total of 11,813,333 single nucleotide variants (SNVs) and small insertions or 82 

deletions (Indels), with a median of 6.4 such mutations / Mb (supplementary figure 1), and 286,965 83 

copy number aberrations (CNAs). We also identified 134,697 structural variants (SVs) in WGS cases. 84 

Mutations or copy number variants under selection were detected using specific driver associated-85 

mutation features (Fig 1A). We use several complementary driver detection tools to detect each 86 

feature, and each tool underwent quality control to ensure reliability of results (see methods). These 87 

features include highly recurrent mutations within a gene (dNdScv22, ActivedriverWGS23, 88 

MutsigCV29), high functional impact mutations within a gene (OncodriveFM24, ActivedriverWGS23), 89 

mutation clustering (OncodriveClust25, eDriver26 and eDriver3D27) and recurrent amplification or 90 

deletion of genes (GISTIC15) undergoing concurrent over or under-expression (see methods) (Fig 91 

1A)8.   92 

These complementary methods produced highly significant agreement in calling EAC driver 93 

genes, particularly within the same feature-type (supplementary figure 2) and on average more than 94 

half of the genes identified by one feature were also identified by other features (Fig 1B). In total 95 

seventy six EAC driver genes were discovered, 86% of which have not been detected in EAC 96 

previously10,11,16-18,20 and 69% are known drivers in pan-cancer analyses giving confidence in our 97 

methods22,28,29. To detect driver elements in the non-coding genome we used ActiveDriverWGS23 a 98 

recently benchmarked30 method using both function impact prediction and recurrence to determine 99 

driver status (Fig 1C, supplementary figure 3). We discovered 21 non-coding driver elements using 100 
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this method. We have recovered several known non-coding driver elements from the pan-cancer 101 

PCAWG analysis12 including an enhancer on chr7 linked to TP53TG1, a gene required for TP53 action, 102 

the only non-coding driver found in EAC in PCAWG and the promoter/5’UTR regions of PTDSS1 and 103 

WRD74 which are novel in EAC but were found in other cancer types. We also identified completely 104 

novel non-coding cancer driver elements including in the 5’UTR of MMP24 and promoters of two 105 

related histones (HIST1H2BO and HIST1H2AM). 106 

EAC is notable among cancer types for harbouring a high degree of chromosomal 107 

instability21. Using GISTIC we identified 149 recurrently deleted or amplified loci across the genome 108 

(Fig 2A). To determine which genes within these loci confer a selective advantage when they 109 

undergo CNAs we use a subset of 116 cases with matched RNA-seq to detect genes within these loci 110 

in which homozygous deletion or amplification causes a significant under or over-expression 111 

respectively, a prerequisite for selection of CNAs. The majority of genes in these regions showed no 112 

significant CN associated expression change (74%), although work in larger cohorts suggests we may 113 

be underpowered to detect small expression changes31. We observed highly significant expression 114 

changes in 17 known cancer genes within GISTIC peaks such as ERBB2, KRAS and SMAD4 which we 115 

designate high-confidence EAC drivers. We also found five tumour suppressor genes where copy 116 

number loss was not necessarily associated with expression modulation but tightly associated with 117 

presence of mutations leading to LOH, for example ARID1A and CDH11. CDH11 was not identified by 118 

our driver gene detection methods but this would suggest it may be a promising candidate for 119 

further validation.  To determine whether copy number changes in genes not previously associated 120 

with cancer may contribute to oncogenesis we searched for genes with similar expression-CN profile 121 

as most of our high-confidence drivers (see methods). We found 140 such cases which we 122 

designated “candidate copy number (CN) drivers” (supplementary tables 1-4). Not all candidate 123 

drivers are likely to be true CN-drivers. However, several candidate drivers such as ZNF131, YES1 and 124 

PIBF1 are not accompanied by other drivers in their GISTIC peak and contain extrachromosomal-like 125 

events, hence are promising candidates for further study. 126 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/310029doi: bioRxiv preprint 

https://doi.org/10.1101/310029


 In a subset of GISTIC loci, we observed extremely high copy number amplification, 127 

commonly greater than 100 copies, and these loci were highly correlated with presence of CN-128 

drivers (Ploidy adjusted Copy number >10, Wilcox test, p<Ex10-6) (supplementary figure 4). We use 129 

copy number adjusted ploidy to define amplifications as it produces superior correlation with 130 

expression data than absolute CN alone. Ploidy of our samples varies from 2-6 (3.5 on average) and 131 

hence Ploidy adjusted copy number of >10 cut off translates into >20-60 absolute copies (on average 132 

35 copies). To discern a mechanism for these ultra-high amplifications we assessed structural 133 

variants (SVs) associated with these events and the copy number steps surrounding them. For many 134 

of these events the extreme amplification was produced largely from a single copy number step the 135 

edges of which were supported by structural variants with ultra-high read support. Two examples 136 

are shown in Fig 2B and further examples in supplementary figure 5. In the first example 137 

circularisation and amplification initially occurred around MYC but subsequently incorporated ERBB2 138 

from an entirely different chromosome and in the second an inversion has been followed by 139 

circularisation and amplification of KRAS. A pattern of extrachromosomal amplification via double 140 

minutes has been previously noted in EAC21, and hence we refer to this amplification class with 141 

ultra-high amplification (Ploidy adjusted Copy number >10) as ‘extrachromosomal-like’. Several 142 

deletion loci co-align with fragile sites (Fig 2A). Most deletion loci were dominated by heterozygous 143 

deletions while a small subset had a far higher percentage of homozygous deletions including 144 

CDKN2A and several associated with fragile site loci (Fig 2A). For some cases we may have been 145 

unable to identify drivers in loci simply because the aberrations do not occur in the smaller RNA-seq 146 

matched cohort.  147 

We found extrachromosomal-like amplifications had an extreme and highly penetrant 148 

effects on expression while moderate amplification (ploidy adjusted copy number > 2) and 149 

homozygous deletion had highly significant (Wilcox test, p<Ex10-4 and p<Ex10-3 respectively) but less 150 

dramatic effects on expression with a lower penetrance (Fig 2C). This lack of penetrance was 151 

associated with low cellularity (fisher’s exact test, expression cut off = 2.5 normalised FPKM, p<0.01) 152 
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in amplified cases but also likely reflects that genetic mechanisms other than gene-dosage can 153 

modulate expression in a rearranged genome. We also detected several cases of over expression or 154 

complete expression loss without associated CN changes which may reflect non-genetic mechanisms 155 

for driver dysregulation. For example, one case overexpressed ERBB2 at 28-fold median expression 156 

however had entirely diploid CN in and surrounding ERBB2 and a second case contained almost 157 

complete loss of SMAD4 expression (0.008-fold median expression) despite possessing 5 copies of 158 

SMAD4. 159 

 160 

Landscape of driver Events in EAC 161 

The overall landscape of driver gene mutations and copy number alterations per case is depicted in 162 

Fig 3A. These comprise both oncogenes and tumour suppressor genes activated or repressed via 163 

different mechanisms. Occasionally different types of events are selected for in the same gene, such 164 

as KRAS and ERBB2 which both harbour activating mutations and amplifications in 19% and 18% of 165 

cases respectively. Passenger mutations occur by chance in most driver genes. To quantify this we 166 

have used the observed:expected mutation ratios (calculated by dNdScv) to estimate the percentage 167 

of driver mutations in each gene and in different mutation classes. For many genes, only specific 168 

mutation classes appear to be under selection. Many tumour suppressor genes; ARID2, RNF43, 169 

ARID1B for example, are only under selection for truncating mutations; ie splice site, nonsense and 170 

frameshift Indel mutations, but not missense mutations which are passengers. However, oncogenes, 171 

like ERBB2, only contain missense drivers which form clusters to activate gene function in a specific 172 

manner. Where a mutation class is <100% driver mutations, mutational clustering can help us define 173 

the driver vs passenger status of a mutation (supplementary figure 6). Clusters of mutations 174 

occurring in EAC or mutations on amino acids which are mutation hotspots in other cancer types32 175 

(supplementary table 5) are indicated in Fig 3A. Novel EAC drivers of particular interest include B2M, 176 

a core component of the MHC class I complex and resistance marker for Immunotherapy33, MUC6 a 177 
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secreted glycoprotein involved in gastric acid resistance and ABCB1 a channel pump protein which is 178 

associated with multiple instances of drug resistance34. We note that several of these drivers have 179 

been previously associated with gastric and colorectal cancer (supplementary table 6)14,35. Lollipop 180 

plots showing primary sequence distribution of mutations in these genes are provided 181 

(supplementary data).  182 

The identification of driver events provides a rich information about the molecular history of 183 

each EAC tumour. We detect a median of five events in driver genes per tumour (IQR = 3-7, Mean = 184 

5.6) and only a very small fraction of cases have no such events detected (6 cases, 1%). When we 185 

remove the predicted percentage of passenger mutations using dnds ratios we find a mean of 4.4 186 

true driver events per case which derive more commonly from mutations than CN events (Fig 3B). 187 

Using hierarchal clustering of drivers we noted that TP53 mutant cases had significantly more CN 188 

drivers (Wilcox test, p = 0.0032, supplementary figure 7). dNdScv, one of the driver gene detection 189 

methods used, also analyses the genome-wide excess of non-synonymous mutations based on 190 

expected mutation rates to assess the total number of driver mutations across the exome which is 191 

calculated at 5.4 (95% CIs: 3.5-7.3) in comparison to 2.7 driver mutations which we calculate in our 192 

gene-centric analysis after passenger removal. This suggests low frequency driver genes may be 193 

prevalent in the EAC mutational landscape (see discussion). Further analysis suggests these missing 194 

mutations are mostly missense mutations and our gene-centric analysis captures almost all 195 

predicted splice and nonsense drivers (supplementary figure 8). Some of our methods use 196 

enrichment of nonsense and splice mutations as a marker of driver genes and hence have a higher 197 

sensitivity for these mutations.  198 

To better understand the functional impact of driver mutations we analysed expression of 199 

driver genes with different mutation types and compared their expression to normal tissue RNA, 200 

which was sequenced alongside our tumour samples (Fig 3C). Since surrounding squamous 201 

epithelium is a fundamentally different tissue, from which EAC does not directly arise, we have used 202 
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duodenum and gastric cardia samples as gastrointestinal phenotype controls, likely to be similar to 203 

the, as yet unconfirmed, tissue of origin in EAC. A large number of driver genes have upregulated 204 

expression in comparison to normal controls, for example TP53 has upregulated RNA expression in 205 

WT tumour tissue and in cases with missense (see non-truncating Fig 3C) mutations but RNA 206 

expression is lost upon gene truncation. In depth analysis of different TP53 mutation types reveals 207 

significant heterogeneity within non-truncating mutations, for example R175H mutations correlate 208 

with low RNA expression (supplementary figure 9). Normal tissue expression of CDKN2A suggests 209 

that CDKN2A is generally activated in EAC, likely due to genotoxic or other cancer-associated 210 

stresses36 and returns to physiologically normal levels when deleted. Heterogeneous expression in 211 

WT CDKN2A cases suggest a different mechanism of inhibition such as methylation in some cases. 212 

Overexpression of other genes in wild type tumours, such as SIN3A, may confer a selective 213 

advantage due to their oncogenic properties, in this case cooperating with MYC, which is also 214 

overexpressed in EACs (Fig 3C). A smaller number of driver genes are downregulated in EAC tissue- 215 

3/4 of these (GATA4, GATA6 and MUC6) are involved in the differentiated phenotype of 216 

gastrointestinal tissues and may be lost with tumour de-differentiation. Driving alterations in these 217 

genes have been observed in other GI cancers14,37,38 however their oncogenic mechanism is 218 

unknown. In most genes we did not observe expression loss at the RNA level with truncation, for 219 

instance ARID1A (supplementary figure 10). 220 

  221 

Dysregulation of specific pathways and processes in EAC 222 

It is known that selection preferentially dysregulates certain functionally related groups of genes and 223 

biological pathways in cancer39. This phenomenon is highly evident in EAC, as shown in Fig 4 which 224 

depicts the functional relationships between EAC drivers. This provides greater functional 225 

homogeneity to the landscape of driver events. 226 
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 While TP53 is the dominant driver in EAC, 28% of cases remain TP53 wildtype. MDM2 is a E3 227 

ubiquitin ligase that targets TP53 for degradation. Its selective amplification and overexpression is 228 

mutually exclusive with TP53 mutation suggesting it can functionally substitute the effect of TP53 229 

mutation via its degradation. Similar mutually exclusive relationships are observed between; KRAS 230 

and ERBB2, GATA4 and GATA6 and Cyclin genes (CCNE1, CCND1 and CCND3). Activation of the Wnt 231 

pathway occurs in 19% of cases either by mutation of phospho-residues at the N terminus of b-232 

catenin, which prevent degradation, or loss of Wnt destruction complex components like APC. Many 233 

different chromatin modifying genes, often belonging to the SWI/SNF complex, are also selectively 234 

mutated (31% of cases). In contrast SWI/SNF genes are co-mutated significantly more often than we 235 

would expect by chance (fisher’s exact test, p<0.01 see methods), suggesting an increased advantage 236 

to further mutations once one has been acquired. We also assessed mutual exclusivity and co-237 

occurrence in genes in different pathways and between pathways themselves (Fig 4B). Of particular 238 

note are co-occurring relationships between TP53 and MYC, GATA6 and SMAD4, Wnt and Immune 239 

pathways as well as mutually exclusive relationships between ARID1A and MYC, gastrointestinal (GI) 240 

differentiation and RTK pathways and SWI-SNF and DNA-Damage response pathways. Wnt 241 

dysregulation has been previously linked to immune escape40 and interestingly was also associated 242 

with hyper-mutated cases (> 50,000 SNVs or Indels, fisher’s exact test, p = 0.021, OR= 2.4). We were 243 

able to confirm some of these relationships in independent cohorts in different cancer types 244 

(supplementary table 7) suggesting some of these may be pan-cancer phenomenon.  As shown in Fig 245 

4, all of these pathways interact to stimulate the G1 to S phase transition of the cell cycle via 246 

promoting phosphorylation of Rb, although many of these pathways have multiple oncogenic or 247 

tumour suppressive functions. 248 

A number of other driver genes have highly related functional roles including core 249 

transcriptional components (TAF1 and POLQ), drivers of immune escape (JAK1 and B2M33), cell 250 

adhesion receptors (CDH1, CHDL and PCDH17), core ribosome components (ELF3 and RPL22), core 251 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/310029doi: bioRxiv preprint 

https://doi.org/10.1101/310029


RNA processing components (GPATCH8 and COIL), ion channels (KCNQ3 and TRPA1) and Ephrin 252 

type-A receptors (EPHA2 and EPHA3).  253 

 254 

Clinical significance of driver variants 255 

Events undergoing selection during cancer evolution influence tumour biology and thus impact 256 

tumour aggressiveness, response to treatment and patient prognosis as well as other clinical 257 

parameters. Clinical-genomic correlations can provide useful biomarkers but also give insights into 258 

the biology of these events.  259 

 Univariate Cox regression was performed for events in each driver gene with driver events 260 

occurring in greater than 5% of EACs (ie after removal of predicted passengers, 16 genes) to detect 261 

prognostic biomarkers (Fig 5A). Events in two genes conferred significantly poorer prognosis after 262 

multiple hypothesis correction, GATA4 amplification (HR : 0.54 , 95% CI : 0.38 – 0.78, P value = 263 

0.0008) and SMAD4 mutation or homozygous deletion (HR : 0.60 , 95% CI : 0.42 – 0.84, P value = 264 

0.003). Both genes remained significant in multivariate Cox regression including pathological TNM 265 

staging, resection margin, curative vs palliative treatment intent and differentiation status (GATA4 = 266 

HR adjusted : 0.47, 95% CIs adjusted : 0.29 - 0.76, P value = 0.002 and SMAD4 = HR adjusted : 0.61, 267 

95% CI adjusted : 0.40 – 0.94,  P value = 0.026). 31% of EACs contain either SMAD4 mutation or 268 

homozygous deletion or GATA4 amplification and cases with both genes altered had a poorer 269 

prognosis (Fig 5B).  We validated the poor prognostic impact of SMAD4 events in an independent 270 

TCGA gastroesophageal cohort (HR = 0.58, 95% CI = 0.37 – 0.90, P value =0.014) (Fig 5C) and we also 271 

found GATA4 amplifications were prognostic in a cohort of TCGA pancreatic cancers (HR = 0.38 95% 272 

CI: 0.18 – 0.80, P value = 0.011) (Fig 5D), the only available cohort containing a feasible number of 273 

GATA4 amplifications. The prognostic impact of GATA4 has been suggested in previously published 274 

independent EAC cohort17 although it did not reach statistical significance after FDR correction and 275 

SMAD4 expression loss has been previously linked to poor prognosis in EAC41. We also noted stark 276 
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survival differences between cases with SMAD4 events and cases in which TGFb receptors were 277 

mutated (Fig 5E, HR = 5.6, 95% CI : 1.7 – 18.2, P value = 0.005) in keeping with the biology of the 278 

TGFb pathway where non-SMAD TGFb signalling is known to be oncogenic42. 279 

In additional to survival analyses we also assessed driver gene events for correlation with 280 

various other clinical factors including differentiation status, sex, age and treatment response. We 281 

found Wnt pathway mutations had a strong association with well differentiated tumours (p=0.001, 282 

OR = 2.9, fisher’s test, see methods, Fig 5F). We noted interesting differences between female 283 

(n=81) and male (n=470) cases. Female cases were enriched for KRAS mutation (p = 0.001, fisher’s 284 

exact test) and TP53 wildtype status (p = 0.006, fisher’s exact test) (Fig 5G). This is of particular 285 

interest given the male predominance of EAC3.  286 

 287 

Targeted therapeutics using EAC driver events. 288 

The biological distinctions between normal and cancer cells provided by driver events can be used to 289 

derive clinical strategies for selective cancer cell killing.  To investigate whether the driver events in 290 

particular genes and/or pathways might sensitise EAC cells to certain targeted therapeutic agents 291 

we used the Cancer Biomarkers database43. We calculated the percentage of our cases which 292 

contain EAC-driver biomarkers of response to each drug class in the database (summary shown Fig 293 

6A, and full data supplementary table 8). Aside from TP53, which has been problematic to target 294 

clinically so far, we found a number of drugs with predicted sensitivity in >10% of EACs including 295 

EZH2 inhibitors for SWI/SNF mutant cancers (23%, and 33% including other SWI/SNF EAC 296 

drivers), and BET inhibitors which target KRAS activated and MYC amplified cases (25%). However, 297 

by far the most significantly effective drug was predicted to be CDK4/6 inhibitors where >50% of 298 

cases harboured sensitivity causing events in the receptor tyrosine kinase (RTK) and core cell cycle 299 

pathways (eg in CCND1, CCND3 and KRAS).  300 
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 To verify that these driver events would also sensitise EAC tumours to such inhibitors we 301 

used a panel of thirteen EAC or Barrett’s HGD cell lines, which share similar genomic changes and 302 

driver events44,45, which have undergone whole genome sequencing46 and assessed them for 303 

presence of EAC driver events (Fig 6B). The mutational landscape of these lines was broadly 304 

representative of EAC tumours. We found that the presence of cell cycle and or RTK activating driver 305 

events was highly correlated with response to two FDA approved CDK4/6 inhibitors, Ribociclib and 306 

Palbociclib and several cell lines were sensitive below maximum tolerated blood concentrations in 307 

humans (Fig 6B, supplementary table 9, supplementary figure 11)47. Such EAC cell lines had 308 

comparable sensitivity to T47D which is derived from an ER +ve breast cancer where CDK4/6 309 

inhibitors have been FDA approved.  We noted three cell lines without sensitising events which were 310 

highly resistant, with little drug effect even at 4000 nanomolar concentrations, similar to a known Rb 311 

mutant resistant line breast cancer cell line (MDA-MB-468). Two of these three cell lines harbour 312 

amplification of CCNE1 which is known to drive resistance to CDK4/6 inhibitors by bypassing CDK4/6 313 

and causing Rb phosphorylation via CDK2 activation48. To verify these effects in a more 314 

representative model of EAC we treated three whole genome sequenced EAC organoid cultures49 315 

with Palbociclib and Ribociclib as well as a more recently approved CDK4/6 inhibitor, Abemaciclib. As 316 

was observed in cell lines, Cell cycle and RTK driver events were present only in the more sensitive 317 

organoids and CCNE1 activation in the most resistant (Fig 6C). We found Abemaciclib to be 318 

significantly more potent in comparison to both other CDK4/6 inhibitors, both in organoids and cell 319 

lines (supplementary figure 10). We note that the maximum tolerated blood doses of Abermaciclib 320 

achieved in the clinic were also higher than the other CDK4/6 inhibitors50, within the range of 321 

sensitivity achieved in several cell lines and organoids cultures.  322 

 323 

 324 

 325 
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Discussion 326 

We present here a detailed catalogue of coding and non-coding genomic events that have been 327 

selected for during the evolution of esophageal adenocarcinoma. These events have been 328 

characterised in terms of their relative impact, related functions, mutual exclusivity and co-329 

occurrence and expression in comparison to normal tissues, producing insights into EAC biology. We 330 

have used this set of biologically important gene alterations to identify prognostic biomarkers and 331 

actionable genomic events for personalised medicine.  332 

While clinical annotation and matched RNA data is a strength of this study, in some cases we 333 

may have been unable to assess selected variants for survival associations or expression changes 334 

which were detected in the full 551 cohort, due to lack of representation in clinically annotated or 335 

RNA matched sub cohorts.  Despite rigorous analyses to detect selected events, assessment of the 336 

global excess of mutations by dNdScv suggests we are unable to detect all events selected in EAC, 337 

similar to many other cancer types22. All driver gene detection methods which we have used rely on 338 

driver mutation re-occurrence in a gene to some degree. Many of these undetected driver 339 

mutations are hence likely to be spread across a large number of genes whereby each is mutated at 340 

low frequency across EAC patients. This tendency for low frequency EAC drivers may be responsible 341 

for the low yield of MutsigCV in previous cohorts and may suggests that C-type cancers such as EAC, 342 

are not less ‘mutation-driven’ than M-type cancers but rather that their mutational drivers are 343 

spread across a larger number of genes5. The identification of these very low frequency mutations 344 

will require substantially different detection techniques to those which are currently in wide spread 345 

use and such methods are in development51 although they require validation. Undoubtedly many 346 

copy number drivers are also left undiscovered and validation of candidates identified here is an 347 

important avenue of future work. 348 

While a number of previous reports have attempted to detect EAC drivers, they have had a 349 

limited yield per case for a variety of reasons. The first such study20 used methods which, despite 350 
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being well regarded at the time, were subsequently discredited9. Hence a number of known false 351 

positive genes (EYS, SYNE1 and CNTTAP5) were erroneously reported as drivers, along with an 352 

additional unknown number of genes. Since then a number of reports, including our own, on 353 

medium and large cohort sizes using MutsigCV10,11,18 were only able to detect a small number of 354 

mutational driver genes (7, 5 and 15 in each study). By using both a large cohort and more 355 

comprehensive methodologies we have significantly increased this figure to 66 mutational driver 356 

genes (excluding CN drivers). Detection of driver CNAs has previously relied on GISTIC to detect 357 

recurrently mutated regions10,15-18 but no analyses have been performed to evidence which genes in 358 

these large regions are true drivers. Many of the genes annotated by such papers are unlikely to be 359 

CN drivers from this analysis due to their lack of expression modulation with CNAs (eg YEATS4 and 360 

MCL1), the role of recurrent heterozygous losses to drive LOH in some mutational drivers (ARID1A 361 

and CDH11) or their association with fragile sites (PDE4D, WWOX, FHIT). Conversely, we have been 362 

able to identify novel EAC copy number drivers (eg CCND3, AXIN1, PPM1D and APC).  363 

A number of discoveries made in this work require further investigation. Functional 364 

characterisation of many of the driver genes described is needed to understand why they are 365 

advantageous to EAC tumours and how they modify EAC biology. Particularly interesting are the GI 366 

specific genes GATA4, GATA6 and MUC6 which modulate prognosis and have expression loss during 367 

the transition from normal to tumour tissue. Biological pathways and processes that are selectively 368 

dysregulated deserve particular attention in this regard as do the gene pairs or groups with mutually 369 

exclusive or co-occurring relationships such as MYC and TP53 or SWI/SNF factors, suggestive of 370 

particular functional relationships. Prospective clinical work to verify and implement SMAD4 and 371 

GATA4 biomarkers in this study would be worthwhile. While EAC is a poor prognosis cancer type, 372 

significant heterogeneity of survival outcome makes triaging patients in treatment groups an 373 

important part of clinic practice which could be improve using better prognostication. Whole 374 

genome or whole exome sequencing may be impractical for use in the clinic, however targeted NGS 375 

panels to detect mutations and copy number alterations have been implemented to detect genomic 376 
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biomarkers in a cost effective and sensitive manner for some cancer types52. In EAC development of 377 

a customised panel is likely to be required on the basis of this analysis. A number of targeted 378 

therapeutics may provide clinic benefit to EAC cases based on their individual genomic profile. In 379 

particular CDK4/6 inhibitors deserve considerable attention as an option for EAC treatment as they 380 

are, by a significant margin, the treatment to which the most EACs harbour sensitivity-causing driver 381 

events, excluding TP53 as an unlikely therapeutic biomarker. The in vitro validation of these 382 

biomarkers for CDK4/6 inhibitors in EAC is also persuasive of possible clinical benefit using a targeted 383 

approach. 384 

In summary this work provides a detailed compendium of mutations and copy number 385 

alterations undergoing selection in EAC which have functional and clinical impact on tumour 386 

behaviour. This comprehensive study provides us with useful insights into the nature of EAC tumours 387 

and should pave the way for evidence based clinical trials in this poor prognosis disease. 388 

 389 
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of this data allowed augmentation of our ICGC cohort and a greater sensitivity for the detection of 474 

EAC driver genes. 475 

 476 

Figure Legends: 477 

Figure 1 Detection of EAC driver Genes. a. Types of driver-associated features used to detect 478 

positive selection in mutations and copy number events with examples of genes containing such 479 

features b. Coding driver genes identified and their driver-associated features. c. Non-coding driver 480 

elements detected and their element types. 481 

 482 

Figure 2. Copy number variation under positive selection. a. Recurrent copy number changes across 483 

the genome identified by GISTIC. Frequency of different CNV types are indicated as well as the position 484 

of CNV high confidence driver genes and candidate driver genes. The q value for expression correlation 485 

with amplification and homozygous deletion is shown for each gene within each amplification and 486 

deletion peaks respectively and occasions of significant association between LOH and mutation are 487 

indicated in green. Purple deletion peaks indicate fragile sites. b. Examples of Extrachromosomal-like 488 

amplifications suggested by very high read support SVs at the boundaries of highly amplified regions 489 

produced from a single copy number step. In the first example (bi) two populations of 490 

extrachromosomal DNA are apparent (biii), one amplifying only MYC and the second also 491 

incorporating ERBB2 from a different chromosome. In the second example (bii) an inversion has 492 

occurred before circularization and amplification around KRAS (biv). c. Relationship between copy 493 

number and expression in CN driver genes. 494 

 495 

Figure 3. The driver gene landscape of Esophageal Adenocarcinoma. a. Driver mutations or CNVs are 496 

shown for each patient. Amplification is defined as >2 Copy number adjusted ploidy (2 x ploidy of that 497 
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case) and extrachromosomal amplification as >10 Copy number adjusted ploidy (10 x ploidy for that 498 

case). Driver associated features for each driver gene are displayed to the left. On the right the 499 

percentages of different mutation and copy number changes are displayed, differentiating between 500 

driver and passenger mutations using dNdScv, and the % of predicted drivers by mutation type is 501 

shown. Above the plot are the number of driver mutations per sample with an indication of the mean 502 

(red line = 5). b. Assessment of driver event types per case and comparison to exome-wide excess of 503 

mutations generated by dNdScv. c. Expression changes in EAC driver genes in comparison to normal 504 

intestinal tissues. Genes with expression changes of note are shown. 505 

 506 

Figure 4. Biological pathways undergoing selective dysregulation in EAC. a. Biological Pathways 507 

dysregulated by driver gene mutation and/or CNVs. WT cases for a pathway are not shown. Inter 508 

and intra-pathway interactions are described and mutual exclusivities and/or associations between 509 

genes in a pathway are annotated.  GATA4/6 amplifications have a mutually exclusive relationship 510 

although this does not reach statistical significance (fisher’s exact test p=0.07 OR =0.52). b. Pairwise 511 

assessment of mutual exclusivity and association in EAC driver genes and pathways.  512 

 513 

Figure 5. Clinical significance of Driver events in EAC. a. Hazard rations and 95% confidence 514 

intervals for Cox regression analysis across all drivers genes with at least a 5% frequency of driver 515 

alterations * = q < 0.05 after BH adjustment. b. Kaplan-Meier curves for EACs with different status of 516 

significant prognostic indicators (GATA4 and SMAD4). c. Kaplan-Meier curves for different 517 

alterations in the TGFbeta pathway. d. Kaplan-Meier curves showing verification GATA4 prognostic 518 

value in GI cancers using a pancreatic TCGA cohort. e. Kaplan-Meier curves showing verification 519 

SMAD4 prognostic value in Gastroesophageal cancers using a gastroesophageal TCGA cohort. f. 520 

Differentiation bias in tumours containing events in Wnt pathway driver genes. g. Relative frequency 521 

of KRAS mutations and TP53 mutations driver gene events in females vs males (fishers exact test). 522 
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 523 

Figure 6. CDK4/6 inhibitors in EAC. a. Drug classes for which sensitivity is indicated by EAC driver 524 

genes with data from the Cancer Biomarkers database36. b. Area under the curve (AUC) of sensitivity 525 

is shown in a panel of 13 EAC and Be high grade dysplasia cell lines with associated WGS and their 526 

corresponding driver events, based on primary tumour analysis. Also AUC is shown for two control 527 

lines T47D, an ER +ve breast cancer line (+ve control) and MDA-MB-468 a Rb negative breast cancer 528 

(-ve control). *CCNE1 is a known marker of resistance to CDK4/6 inhibitors due to its regulation of 529 

Rb downstream of CDK4/6 hence bypassing the need for CDK4/6 activity (see figure 4). c. Response 530 

of organoid cultures to three FDA approved CDK4/6 inhibitors and corresponding driver events.   531 

 532 

Supplementary figure legends 533 

Supplementary figure 1. Distribution of small scale mutations (SNVs and Indels) across the 551 EAC 534 

cohort. Red line indicates the median mutations per case (6.4) 535 

 536 

Supplementary Figure 2. Concordance between driver gene detection methods. A. Hierarchical 537 

clustering between tools based on gene identified. B Genes identified by each tool. 538 

 539 

Supplementary Figure 3. Frequency and significance of EAC non-coding drivers from 540 

ActiveDriverWGS. a. The observed and expected mutation counts found on each element in 541 

ActiveDriverWGS. b. The fdr for each element in ActiveDriverWGS.  542 

 543 

Supplementary Figure 4. Frequency of Extrachromosomal like events (CN adjusted Ploidy >10) 544 

in GISTIC amplification peaks and presence of high confidence drivers in those peaks indicated. 545 
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 546 

Supplementary figure 5. Examples of Normal amplification (PLiody-adjusted CN >2 & <10) and 547 

Extrachromosomal-like amplification (ploidy-adjusted CN >10) events. 1-10 = Extrachromosomal-548 

like amplification and 11-20 = Normal amplification events. Events were picked at random using 549 

runif() function in R. SV and CNAs surrounding events are shown. Features indicative of 550 

extrachromosomal double minute (DM) formations include sharp, large CN steps, SVs with high read 551 

support at the edges of these steps and when not derived from a continuous region of the genome 552 

CN regions in the DM may have the same CN status (taking into account other additional events 553 

which may have occurred in that region). These features are enriched in the extrachromosomal-like 554 

events, although example 20 may be a low-copy number extrachromosomal event. It should be 555 

noted that SV calling using short read sequencing techniques such as in this study has a relatively 556 

low sensitivity and accuracy for the precise localisation of many SV break points. Examples continue 557 

over four pages. 558 

 559 

Supplementary Figure 6. A scheme demonstrating how to use mutational clustering along with dnds 560 

ratios to estimate the probability of a particular mutation being a driver. In this case the dnds ratio 561 

suggests 2/3 of missense mutations are drivers hence 10/15. 8 missense mutation lie in a mutational 562 

cluster, in this case of known significance in the N-terminal of B-Catenin, making it likely that these 563 

are drivers and hence most (2/7) other mutations are passengers. Similarly, mutations on amino 564 

acids known to be hyper mutated in other cancer types (see Supplementary table 5, for instance if 565 

we found a single KRAS G12 mutation) can be considered likely drivers.  566 

 567 

Supplementary Figure 7. Hierarchical Clustering of samples based on presence of driver variants 568 

with genes ordered by pathway membership. 569 

 570 
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Supplementary Figure 8. A detailed breakdown of mutation and copy number types per case and a 571 

breakdown of exome wide dnds excess for different mutation types (note that exome wide indel 572 

cannot be calculated excess as they have no synonymous mutation equivalent, although a null 573 

model is used in the per gene dnds method to use them to detect driver genes). Error bars indicate 574 

95% confidence intervals for exome-wide dnds mutation excess assessment.  575 

 576 

Supplementary Figure 9. TP53 expression in different TP53 mutation types in comparison to TP53 577 

WT tumours and normal duodenum and gastric cardia tissues.  578 

 579 

Supplementary Figure 10. Expression of all EAC driver genes across different genomic states for the 580 

gene in question in 116 EAC tumours, and in comparison to duodenum and gastric cardia tissues. 581 

 582 

Supplementary Figure 11. Growth inhibition responses of EAC cell lines and control lines to CDK4/6 583 

inhibitors Palbociclib and Ribociclib. A subset of cell lines also received treatment with Abemaciclib 584 

which shows efficacy in such cell lines as well as in organoids (Fig 6C).   585 

 586 

Methods 587 

Cohort, sequencing and calling of genomic events 588 

380 cases (69%) of our EAC cohort were derived from the esophageal adenocarcinoma WGS ICGC 589 

study, for which samples are collected through the UK wide OCCAMS (Oesophageal Cancer 590 

Classification and Molecular Stratification) consortium. The procedures for obtaining the samples, 591 

quality control processes, extractions and whole genome sequencing are as previously described18. 592 
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Strict pathology consensus review was observed for these samples with a 70% cellularity 593 

requirement before inclusion. Comprehensive clinical information was available for the ICGC-594 

OCCAMS cases. In addition, previously published samples were included in the analysis from Dulak 595 

et al 201320 – 139 WES and 10 WGS (total 27%) and Nones et al 201421 with 22 WGS samples (4%) to 596 

total 551 genome characterised EACs. RNA-seq data was available from our ICGC WGS samples 597 

(116/380). BAM files for all samples (include those from Dulak et al 2013 and Nones et al 2014) were 598 

run through our alignment (BWA-MEM), mutation (Strelka), copy number (ASCAT) and structural 599 

variant (Manta) calling pipelines, as previously described18. Our methods were benchmarked against 600 

various other available methods and have among the best sensitivity and specificity for variant 601 

calling (ICGC benchmarking excerise53). Mutation and copy number calling on cell lines was 602 

performed as previously described46.  603 

Total RNA was extracted using All Prep DNA/RNA kit from Qiagen and the quality was checked on 604 

Agilent 2100 Bioanalyzer using RNA 6000 nano kit (Agilent). Qubit High sensitivity RNA assay kit from 605 

thermo fisher was used for quantification. Libraries were prepared from 250ng RNA, using TruSeq 606 

Stranded Total RNA Library Prep Gold (Ribo-zero) kit and ribosomal RNA (nuclear, cytoplasmic and 607 

mitochondrial rRNA) was depleted, whereby biotinylated probes selectively bind to ribosomal RNA 608 

molecules forming probe-rRNA hybrids. These hybrids were pulled down using magnetic beads and 609 

rRNA depleted total RNA was reverse transcribed. The libraries were prepared according to Illumina 610 

protocol54. Paired end 75bp sequencing on HiSeq4000 generated the paired end reads. For normal 611 

expression controls we chose gastric cardia tissue, from which some hypothesise Barrett’s may arise, 612 

and duodenum which contains intestinal histology, including goblet cells, which mimics that of 613 

Barrett’s. We did not use Barrett’s tissue itself as a normal control given the heterogeneous and 614 

plentiful phenotypic and genomic changes which it undergoes early in its pathogenesis. 615 

 616 

 617 
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 618 

Analysing EAC mutations for selection 619 

To detect positively selected mutations in our EAC cohort, a multi-tool approach across various 620 

selection related ‘Features’ (Recurrance, Functional impact, Clustering) was implemented in order to 621 

provide a comprehensive analysis. This is broadly similar to several previous approaches8,12. 622 

dNdScv22, MutsigCV9, e-Driver26, ActivedriverWGS and e-Driver3D27 were run using the default 623 

parameters. To run OncodriverFM24, Polyphen55 and SIFT56 were used to score the functional impact 624 

of each missense non-synonomous mutation (from 0, non-impactful to 1 highly impactful), 625 

synonymous mutation were given a score of 0 impact and truncating mutations (Non-sense and 626 

frameshift mutations) were given a score of 1. Any gene with less than 7 mutations, unlikely to 627 

contain detectable drivers using this method, was not considered to decrease the false discovery 628 

rate. OncodriveClust was run using a minimum cluster distance of 3, minimum number of mutations 629 

for a gene to be considered of 7 and with a stringent probability cut off to find cluster seeds of p = 630 

Ex10-13  to prevent infiltration of large numbers of, likely, false positive genes. For all tool outputs we 631 

undertook quality control including Q-Q plots to ensure no tool produces inflated q-values and each 632 

tool produced at least 30% known cancer genes. Two tools were removed from the analysis due to 633 

failure for both of these parameters at quality control (Activedriver57 and Hotspot32). For three of the 634 

QC-approved tools (dNdScv, OncodriveFM, MutsigCV) where this was possible we also undertook an 635 

additional fdr reducing analysis by re-calculating q values based on analysis of known cancer genes 636 

only22,28,29 as has been previously implemented22,58. Significance cut offs were set at q<0.1 for coding 637 

genes. Tool outputs were then put through various filters to remove any further possible false 638 

positive genes. Specifically, genes where <50% of EAC cases had no expression (TPM<0.1) in our 639 

matched RNA-seq cohort were removed and, using dNdScv, genes with no significant mutation 640 

excess (observed: expected ratio > 1.5:1) of any single mutation type were also removed. We also 641 

removed two (MT-MD2, MT-MD4) mitochondrial genes which were highly enriched for truncating 642 
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mutations and were frequently called in OncodriveFM as well as other tools. This is may be due to 643 

the different mutational dynamics, caused by ROS from the mitochondrial electron transport chain, 644 

and the high number of mitochondrial genomes per cell which enables significantly more 645 

heterogeneity. These factors prevent the tools used from calculating an accurate null model for 646 

these genes however they may be worthy of functional investigation. For non-coding elements 647 

called by ActivedriverWGS filtering for expression or dnds was not possible and dispite recent 648 

benchmarking30 are not so well established. Hence we took a more cautious approach with general 649 

significance cut offs of q < 0.001 and q < 0.1  for previously identified elements in PCAWG12. Q values 650 

were not recalculated for Driver elements only but q < 0.1 for known elements was based on all 651 

elements. To calculate exome-wide mutational excess hypermutated cases (>500 exonic mutations) 652 

were removed and the global non-synonymous dnds ratios were applied to all dndscv annotated 653 

mutations excluding “synonymous” and “no SNV” annotations as described in Martincorena et al22. 654 

 655 

Detecting selection in CNVs 656 

ASCAT raw CN values were used to detected frequently deleted or amplified regions of the genome 657 

using GISTIC2.015. To determine which genes in these regions confer a selective advantage, CNVs 658 

from each gene within a GISTIC identified loci were correlated with TPM from matched RNA-seq in a 659 

sub-cohort of 116 samples and with mutations across all 551 samples. To call copy number in genes 660 

which spanned multiple copy number segments in ASCAT we considered the total number of full 661 

copies of the gene (ie the lowest total copy number). Occasionally ASCAT is unable to confidently call 662 

the copy number in a highly aberrant genomic regions. We found that the expression of genes in 663 

such regions matched well what we would expect given the surrounding copy number and hence we 664 

used the mean of the two adjacent copy number fragments to call copy number in the gene in 665 

question. We found amplification peak regions identified by GISTIC2.0 varied significantly in precise 666 

location both in analysis of different sub-cohorts and when comparing to published GISTIC data from 667 
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EACs10,16,17. A peak would often sit next to but not overlapping a well characterised oncogene or 668 

tumour suppressor. To account for this, we widened the amplification peak sizes upstream and 669 

downstream by twice the size of each peak to ensure we captured all possible drivers. Our 670 

expression analysis allows us to then remove false positives from this wider region and called drivers 671 

were still highly enriched for genes closer to the centre of GISTIC peak regions. 672 

 To detect genes in which amplification correlated with increased expression we compared 673 

expression of samples with a high CN for that gene (above 10th percentile CN/Ploidy) with those 674 

which have a normal CN (median +/- 1) using the Wilcox rank-sum test and using the specific 675 

alternative hypothesis that high CN would lead to increased expression. Q-values were then 676 

generated based on Benjamini & Hochberg method, not considering genes without significant 677 

expression in amplified samples (at least 75% amplified samples with TPM > 0.1) and considering 678 

q<0.001 as significant. We also included an additional known driver gene only FDR reduction analysis 679 

as previously described for mutational drivers with q<0.1 considered as significant given the 680 

additional evidence for these genes in other cancer types. We also included MYC despite its q= 0.11 681 

for expression correlation. This is due to frequent non-amplification associated overexpression of 682 

MYC when compared to normal controls and otherwise MYC is well evidence by a very close 683 

proximity to the peak centre (top 4 genes) and its high rate of amplification (19%). We took the 684 

same approach to detect genes in which homozygous deletion correlated with expression loss. 685 

Expression modulation was a highly specific marker for known CN driver genes and was not a 686 

widespread feature in most recurrently copy number variant genes. However, while expression 687 

modulation is a requirement for selection of CNV only drivers, it is not sufficient evidence alone and 688 

hence we grouped such genes into those which have been characterised as drivers previously in 689 

other cancer types (high confidence EAC CN drivers) and other genes (Candidate EAC CN drivers) 690 

which await functional validation. We used fragile site regions detected in Wala et al 201759. We also 691 

defined regions which may be recurrently heterozygous deleted, without any significant expression 692 

modulations, to allow LOH of tumour suppressor gene mutations. To do this we analysed genes with 693 
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at least 5 mutations in the matched RNA cohort for association between LOH (ASCAT minor allele = 694 

0) and mutation using fisher’s exact test and generated q values using the Benjamini & Hochberg 695 

method. The analysis was repeated on known cancer genes only for reduced FDR and q < 0.05 696 

considered significant for both analyses. For those high confidence drivers we chose to define 697 

amplification as CN/ploidy (referred to as Ploidy adjusted copy number) this produces superior 698 

correlation with expression. We chose a cut off for amplification at CN/ploidy = 2 as has been 699 

previously used, and as causes a highly significant increase in expression in our CN-driver genes.  700 

 701 

Pathways and relative distributions of genomic events 702 

The relative distribution of driver events in each pathway was analysed using a fisher’s exact test in 703 

the case of pair-wise comparisons including WT cases. In the case of multi-gene comparisons such as 704 

the Cyclins we calculate the p value and odds ratio for each pair in the group by fisher’s exact test 705 

and combine p values using the Fisher method, Genes without comparable Odds ratios to the rest of 706 

the genes in question were removed. For this analysis we also remove highly mutated cases (>500 707 

exonic mutations, 41/551) as they bias distribution of genes towards co-occurrence. We repeated 708 

this analyses across all pairs of driver genes using BH multiple hypothesis correction. We validated 709 

these relationships in independent TGCA cohorts of other GI cancers where we could find cohorts 710 

with reasonable numbers of the genomic events in question (not possible for GATA4/6 for instance) 711 

using the cBioportal web interface tool60.  712 

 713 

Correlating genomics with the clinical phenotype 714 

To find genomic markers for prognosis we undertook univariate Cox regression for those driver 715 

genes present in >5% of cases (16) along with Benjamini & Hochberg false discovery correction. We 716 

considered only these genes to reduce our false discover rate and because other genes were unlikely 717 
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to impact on clinical practise given their low frequency in EAC. We validated SMAD4, in the TCGA 718 

gastroesophageal cohort which had a comparable frequency of these events, but notably is 719 

composed mainly of gastric cancers, and GATA4 in the TCGA pancreatic cohort using the cBioportal 720 

web interface tool. We also validated these markers as independent predictors of survival both in 721 

respect of each other and stage using a multivariate Cox regression in our 551 case cohort. When 722 

assessing for genomic correlates with differentiation phenotypes we found only very few cases with 723 

well differentiated phenotypes (<5% cases) and hence for statistical analyses we collapse these cases 724 

with moderate differentiation to allow a binary fisher’s exact test to compare poorly differentiated 725 

with well-moderate differentiated phenotypes.  726 

 727 

Therapeutics 728 

The cancer biomarker database was filtered for drugs linked to biomarkers found in EAC drivers and 729 

supplementary table 6 constructed using the cohort frequencies of EAC biomarkers. 10 EAC cell lines 730 

(SKGT4, OACP4C, OACM5.1, ESO26, ESO51, OE33, MFD, OE19, Flo-1 and JHesoAD) and 3 BE high 731 

grade dysplasia cell lines (CP-B, CP-C and CP-D) with WGS data46 were used in proliferation assays to 732 

determine drug sensitivity to CDK4/6 inhibitors, Palbociclib (Biovision) and Ribociclib (Selleckchem). 733 

Cell lines were grown in their normal growth media (methods table 1). Proliferation was measured 734 

using the Incucyte live cell analysis system (Incucyte ZOOM Essen biosciences). Each cell line was 735 

plated at a starting confluency of 10% and growth rate measured across 4-7 days depending on basal 736 

proliferation rate. For each cell-line drug combination concentrations of 16, 64, 250, 1000 and 4000 737 

nanomolar were used each in 0.3% DMSO and compared to 0.3% DMSO only. Each condition was 738 

performed in at least triplicate. The time period of the exponential growth phase in the untreated 739 

(0.3% DMSO) condition was used to calculate GI50 and AUC. Accurate GI50s could not be calculated 740 

in cases where a cell line had >50% proliferation inhibition even with the highest drug concentration 741 

and hence AUC was used to compare cell line sensitivity. T47D had a highly similar GI50 for 742 
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Palbociclib to that previously calculated in other studies (112 nM vs 127 nM)61. Primary organoid 743 

cultures were derived from EAC cases included in the OCCAMS/ICGC sequencing study. Detailed 744 

organoid culture and derivation method have been previously described (cite nat comms Li et al). 745 

Regarding the drug treatment, the seeding density for each line was optimised to ensure cell growth 746 

in the logarithmic growth phase. Cells were seeded in complete medium for 24 hours then treated 747 

with compounds at a 5-point 4-fold serial dilutions for 6 days or 12 days. Cell viability was assessed 748 

using CellTiter-Glo (Promega) after drug incubation. 749 
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Figure 2. Copy number variation under positive selection. 
a. Recurrent copy number changes across the genome 
identi�ed by GISTIC. Frequency of di�erent CNV types 
are indicated as well as the position of CNV high 
con�dence driver genes and candidate driver genes. The 
q value for expression correlation with ampli�cation and 
homozygous deletion is shown for each gene within each 
ampli�cation and deletion peaks respectively and 
occasions of signi�cant association between LOH and 
mutation are indicated in green. Purple deletion peaks 
indicate fragile sites. b. Examples of extrachromosomal-like 
ampli�cations suggested by very high read support SVs at 
the boundaries of highly ampli�ed regions produced from 
a single copy number step. In the �rst example (bi) two 
populations of extrachromosomal DNA are apparent 
(biii), one amplifying only MYC and the second also 
incorporating ERBB2 from a di�erent chromosome. 
In the second example (bii) an inversion has occurred 
before circularization and ampli�cation around KRAS (biv). 
c. Relationship between copy number and expression in 
CN driver genes. 
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Figure 3. The driver gene landscape of Esophageal Adenocarcinoma. a. Driver mutations or CNVs are shown for each patient.
Ampli�cation is de�ned as >2 Copy number adjusted ploidy (2 x ploidy of that case) and extrachromosomal ampli�cation as >10
Copy number adjusted ploidy (10 x ploidy for that case). Driver associated features for each driver gene are displayed to the left. 
On the right the percentages of di�erent mutation and copy number changes are displayed, di�erentiating between driver and 
passenger mutations using dNdScv, and the % of predicted drivers by mutation type is shown. Above the plot are the number of 
driver mutations per sample with an indication of the median (red line = 5). b. Assessment of driver event types per case and
comparison to exome-wide excess of mutations generated by dNdScv.  c. Expression changes in EAC driver genes in comparison 
to normal intestinal tissues. Only genes with signifcant expression changes of note are shown. 
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Figure 4. Biological pathways undergoing selective dysregulation 
in EAC. a. Biological Pathways dysregulated by driver gene mutation 
and/or CNVs. WT cases for a pathway are not shown.  Mutual 
exclusivities and/or associations between genes in a pathway are 
annotated.  GATA4/6 ampli�cations have a mutually exclusive 
relationship (ie GATA4 ampi�cation is more common in GATA6 WT 
cases) although this does not reach statistical signi�cance (�sher’s 
exact test p=0.07 OR =0.52). b. Pairwise assessment of mutual 
exclusivity and association in EAC driver genes and pathways. 
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Figure 5. Clinical signi�cance of Driver events in EAC. a. Hazard ratios and 95% con�dence intervals for Cox regression analysis 
across all drivers genes with at least a 5% frequency of driver alterations. P values are generated from the wald test and q values 
generated using BH correction. b. Kaplan-Meier curves for EACs with di�erent status of signi�cant prognostic indicators (GATA4 
and SMAD4). c. Kaplan-Meier curves for di�erent alterations in the TGFbeta pathway. d. Kaplan-Meier curves showing veri�cation 
GATA4 prognostic value in GI cancers using a pancreatic TCGA cohort. e. Kaplan-Meier curves showing veri�cation SMAD4 
prognostic value in gastroesophageal cancers using a gastroesophageal TCGA cohort. f. Di�erentiation bias in tumours containing 
events in Wnt pathway driver genes. g.  Relative frequency of KRAS mutations and TP53 mutations driver gene events in females vs 
males (�sher’s exact test).
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Figure 6. CDK4/6 inhibitors in EAC. a. Drug classes for which sensitivity is indicated by EAC driver genes with data 
from the Cancer Biomarkers database. b. Sensitivity (1-AUC) for FDA approved CDK4/6 inhibtors is shown for a panel of 
13 EAC or BE high grade dysplasia cell lines with thier corresponding driver events, based on primary tumour analysis. 
Also AUC is shown for two control lines T47D, an ER +ve breast cancer line (+ve control) and MDA-MB-468 a Rb negative
breast cancer (-ve control). *CCNE1 is a known marker of resistance to CDK4/6 inhibitors due to its regulation of Rb 
downstream of CDK4/6 hence bypassing the need for CDK4/6 activity (see �gure 4). c. Reponse of organiod cultures to 
three FDA approved CDK4/6 inhibitors and corresponding driver events.  
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