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Figure 2  Modeling 5′ UTR sequences and ribosome loading. (A) A one-hot encoded 5′ UTR sequence is 
fed into a CNN composed of three convolution layers and a fully connected layer to produce a linear output 
predicting MRL. (B) A model trained on 280,000 UTRs and tested on 20,000 held-out sequences could explain 
93% of the variability in observed MRLs.  Blue dots represent sequences with an uAUG while red dots 
represent sequences without uAUG (C) A similar model was trained to predict the polysome profile 
distribution of an individual 5′ UTR. The observed (blue) and predicted (red) polysome distribution of 6 
example UTRs spanning MRLs from 4 to 8 (top to bottom) are shown. (D) The performance of the polysome 
profile model per fraction ranged from an r2 of 0.621 to 0.915 and an average of 0.834 across all fractions. (E) 
eGFP expression for ten UTRs selected from the library were evaluated via eGFP fluorescence using IncuCyte 
live cell imaging. Predicted MRL and fluorescence are highly correlated (r2: 0.87). (F) Visualization of four 
out of 120 filters from the first convolution layer (left) and four out of 120 filters from the second convolution 
layer. Boxes below show correlation (Pearson r) between filter activation and MRL at each UTR position. 
Filters learned important regulatory motifs such as start and stop codons, uORFs, and GC-rich regions likely 
involved in secondary structure formation. (G) IVT mRNA from the eGFP library were generated with 
pseudouridine (Ψ) or 1-methylpseudouridine (m1 Ψ) in place of uridine (U) and evaluated by polysome 
profiling and modeling. (H) Model performance trained and tested on different data sets (r-squared). The 
unmodified RNA (U) models perform best with U data, while the Ψ and m1 Ψ models perform equally well 
with Ψ and m1 Ψ test data. (I) Ribosome loading as a function of MFE. U is less dependent on secondary 
structure than Ψ and m1 Ψ (Pearson r: 0.43, 0.56, and 0.58, respectively). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2018. ; https://doi.org/10.1101/310375doi: bioRxiv preprint 



 

5 
 

To aid interpretation of the model we applied visualization techniques developed in computer 
vision and recently popularized in computational biology (4, 8, 26). Visualization of the filters in 
the first and second convolution layer revealed recognizable motifs including strong TIS sequences 
(e.g. ACCAUG), stop codons (TAA, TGA, TAG), uORFs, and sequences composed of multiples 
of CG or AU likely involved in secondary structure formation (Fig. 2F, Fig. S8 - S10). 
Intriguingly, several filters did not fall into either of these categories and also did not match 
previously described PWMs for RNA binding proteins (Tomtom (27) and the Homo sapiens RBP 
database (28)), suggesting the possibility for previously undescribed regulatory interactions. 

We then applied our method to transcripts bearing either pseudouridine (Ψ) or 1-methyl-
pseudouridine (m1Ψ) instead of uridine (U) (Fig. 2G). These RNA modifications are widely used 
for mRNA therapeutics because they can increase mRNA stability and help modulate the host 
immune response  (29, 30). We found that the model trained on the unmodified (U) library could 
explain 68% to 76% of the measured variability in the Ψ and m1Ψ polysome profiling data, 
respectively (Fig. 2H). Prediction accuracy could be further improved by training the models 
directly on data from the modified RNAs (the same held-out library sequences were used in all 
test sets to ensure consistency). This is likely due to the model learning the impact of Ψ and m1Ψ 
on the formation of secondary structure (31). Concordantly, mean ribosome load is more positively 
correlated with a UTR’s predicted minimum free energy (MFE) for Ψ (r = 0.56) and m1Ψ (r = 
0.58) than for U (r = 0.43) (Fig. 2I). 

As a further test of our model’s capabilities, we asked whether it could be used to engineer 
completely novel, functional 5′ UTRs. A tool capable of designing 5′ UTRs for a targeted level of 
protein expression would be a valuable asset for mRNA therapeutics and metabolic engineering. 
While there has been some success in this effort in prokaryotes and yeast (32-34),  rational design 
of 5′ UTRs in human cells has not been demonstrated. We developed a genetic algorithm that 
iteratively edits an initial random 50-mer until it is predicted by the model to load a target number 
of ribosomes and thus achieve an intended level of translation activity (Fig. 3A) The model used 
for this process was developed before the model in Figure 2 and differs slightly in terms of network 
architecture (Online Methods) and performance (r2: 0.92) (Fig. S11) (Online Methods). We 
designed two sets of UTRs for testing. The sequences in the first set were designed to target MRLs 
of 3, 4, 5, 6, 7, 8, 9, and a no-limit maximum (Fig. 3B). The second set was designed to follow the 
step-wise evolution of a UTR. We set the algorithm to first select for sequences with low ribosome 
loading and then, after 800 iterations, to select for high ribosome loading. Each unique sequence 
generated by the algorithm as the UTR evolved was synthesized and tested (Fig. 3C and Fig. S12). 
We did this for 20 sequences where upstream AUGs were allowed and another 20 in which AUGs 
were not allowed.  

Of the 12,000 total UTRs evolved for targeted expression in the first set, the median MRL for 
targets 3 through 8 followed the expected trend from low to high with low variability within each 
group. For the step-wise evolved UTRs in the second set, predicted MRLs (green) closely matched 
the trend of the observed (blue) along the trajectory. While we created sequences with high 
ribosome loading (Fig. S13), in both sets the prediction from the model and the observed MRL 
eventually diverged as the model produced UTRs with very high predicted MRLs. We suspected 
that the divergence between predictions and measurements at very high MRL values might reflect 
the unusual sequence composition of the maximally evolved UTRs which often contained multiple 
long stretches of poly-U – sequences rarely seen in the random library. We corrected the model by 
training it (Fig. 3D) for four additional iterations with 6,082 UTRs from the target MRL sub-
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library, which had a much higher frequency of homopolymers, and 2,695 previously unseen 
random UTRs. Reevaluation of held-out sequences from the ‘target MRL’ library showed a 
dramatic improvement in comparison to the original model (r2 from 0.386 to 0.772) (Fig. 3E and 
Fig. S14) as did the predicted loading of the step-wise evolved sequences (Fig. 3C red line and 
Fig. S11). Using this expanded dataset, we retrained the model in Figure 2, which showed 
increased accuracy with all sub-libraries and unchanged performance with random library 
sequences (Fig. S15). Due to this significant improvement, we used the retrained version of the 
model from this point on. 

Can a model trained only on synthetic sequences predict the translation of human mRNAs from 
their 5′ UTR sequence? Assessing model performance on endogenous transcripts is challenging 
due to confounding contributions of 3′ UTRs and coding sequence lengths. As an alternative 
approach, we synthesized and tested via polysome profiling a 5′ UTR library consisting of the first 
50 nucleotides preceding the start codon of 35,212 common human transcripts as well as 5′ UTR 
fragments carrying 3,577 variant sequences from the ClinVar database (35) that occur within these 
regions; the same eGFP context as the randomized library was used. Using the retrained model, 
we were able to explain 81% of the observed variation in MRL with the common and SNV 5′ UTR 
sequences (Fig. 4A) showing that, despite training on random sequences, the model was able to 
learn the cis-regulatory rules of human 5′ UTR sequences that lay directly upstream of a coding 
sequence.  

Figure 3 Design of new 5′ UTRs. (A) Diagram of a genetic algorithm that was used in conjunction with the 5′ UTR 
model to evolve sequences to target specific levels of ribosome loading. (B) Comparison between the predicted MRLs 
and observed MRLs for ~12,000 evolved 5′ UTRs for targeted ribosome loading. (C) Step-wise evolution analysis. 
Randomly initialized UTRs were first evolved for low ribosome loading and then for high ribosome (selection change 
at dashed line). Four out of 80 (Fig. S10). examples are shown. Examples on the left were permitted to have uAUGs 
while those on the right were not. Each unique sequence that was generated during the evolution process was 
synthesized and tested by polysome profiling. The original model prediction (green) and the observed MRL 
eventually diverge, but the predictions from the retrained model (red) more accurately reflect the data. (D) The 
original model is retrained using sequences from the designed library with high poly-U, C, A, and G stretches which 
occur rarely in the random library. (E) The accuracy of the retrained model increased significantly when predicting 
the high poly-U sequences (red) generated by the genetic algorithm (r2: 0.386 to 0.772). 
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Genetic variants play a major role in phenotypic differences between individuals (36) and how 
these sequences affect translation is only beginning to be understood (37, 38). But existing 
approaches to this problem, such as quantitative trait locus (QTL) analysis and genome wide 
association studies (GWAS) are limited to common variants and cannot scale to the enormous 
number of rare 5’UTR variants occurring in the human population. In contrast, a model-based 
approach can in principle be used to score the impact of any 5’UTR variant on translation. With 
this in mind, we investigated the model’s ability to predict the effect of disease relevant-variants 
by testing its performance in predicting the ribosome load change between pairs of wild-type 
(‘common’) and SNV-
containing 5′ UTR sequences, 
measured as log2 difference. The 
majority of SNVs had little to no 
effect, but 47 had log2 
differences greater than 0.5 or 
less than -0.5 (Supplementary 
Table 1). Overall, our retrained 
model could explain 55% of the 
observed MRL change (Fig. 4B) 
and accurately predicted the 
direction of change for 64% of 
the variants. Importantly, the 
model can explain 76% of the 
change of variants with log2 
differences greater than 0.5 or 
less than -0.5 (Fig. S16A). As an 
example, one of the ClinVar 
variants with sizeable 
differences in MRL, 
rs867711777, is found in the 5′ 
UTR of the CPOX gene and 
shows a log2 difference of -0.89. 
The depletion of CPOX reduces 
heme biosynthesis and is the 
cause of hereditary 
coproporphyria (HCP) (39). The 
large MRL difference suggests 
that this SNV, labeled as 
uncertain in the ClinVar 
database, could be pathogenic. 
The variant rs376208311 lies in 
the 5′ UTR of the ribosomal 
subunit gene RPL5 and shows a 
-0.87 log2 difference in MRL. 
This variant is associated with 
Diamond-Blackfan anemia 
(BDA). One cause of the disease 

Figure 4 Model performance with human 5′ UTRs and SNVs. The first 
50 nucleotides preceding the CDS of 35,212 human transcripts and an 
additional 3,577 UTRs with SNVs (ClinVar) were evaluated using our 
polysome profiling method with eGFP used as the CDS. (A) The retrained 
model could explain 81.1% of the observed variation in MRL. (B) The log2

change in MRL between an SNV and its common sequence was compared 
to the predicted change between the two (r2: 0.555). SNV classification 
labels are from the ClinVar database. (C) In silico saturation mutagenesis 
and model prediction of MRL change for all 5’ UTR variants of CPOX, 
TMEM127 and RPL5. The three annotated Clinvar variants, rs867711777 
(CPOX, G > A), rs121908813 (TMEM127, C > U), and rs376208311 
(RPL5, C > A), are predicted to have the most dramatic effect on ribosome 
loading. 
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is a result of either the disruption or downregulation of RPL5 (40). Another SNV, rs121908813, 
is implicated in familial pheochromocytoma, a condition characterized by tumors found in the 
neuroendocrine system that secrete high levels of catecholamines (41). In our assay, the variant 
UTR shows a -1.5 log2 difference in MRL compared to the wild type 5′ UTR sequence. TMEM127 
acts as a tumor suppressor and decreased expression of it could explain the observed pathogenicity 
of this variant. For the three examples, the model predicts that, of all possible variants, these 
specific SNVs, all of which introduce an upstream start codon, would most dramatically affect 
ribosome loading (Fig. 4C). 

The method developed here, which combines polysome profiling of a randomized 5′ UTR library 
with deep learning, has provided a wealth of information detailing the relationship between the 5′ 
UTR sequence preceding a CDS and regulation of translation. The data and model enabled the 
quantitative assessment of secondary structure, uAUGs and uORFs, Kozak sequences, and other 
cis-regulatory sequence elements in the context of unmodified mRNA, Ψ, and m1Ψ-modified 
mRNA. The CNN trained on the data performed exceedingly well, explaining up to 93% of mean 
ribosome load variation in the test set and up to 81% of variation for 38,789 truncated human 
UTRs. The model also proved capable of predicting the effect of disease-relevant 5′ UTR variants 
on translation, even suggesting mechanisms of action. Importantly, predictions are not limited to 
common variants or even those that have been previously described; instead the model can be used 
to screen every possible SNV, insertion or deletion in the 50 bases upstream of the start codon – 
there are millions in the human genome - and select those for further study that have the strongest 
impact on ribosome loading and thus the highest likelihood of being pathogenic.  Finally, using 
the model and a genetic algorithm, we were also able to engineer new 5′ UTR sequences for 
targeted ribosome loading, enabling even more forward-looking applications in synthetic biology 
and precision medicine.  
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