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Abstract

Background: Association studies use statistical links between genetic markers
and variation in a phenotype’s value across many individuals to identify genes
controlling variation in the target phenotype. However, this approach, particularly
conducted on a genome-wide scale (GWAS), has limited power to identify the
genes responsible for variation in traits controlled by complex genetic
architectures.

Results: Here we employ simulation studies utilizing real-world genotype datasets
from association populations in four species with distinct minor allele frequency
distributions, population structures, and patterns linkage disequilibrium to
evaluate the impact of variation in both heritability and trait complexity on both
conventional mixed linear model based GWAS and two new approaches
specifically developed for complex traits. Mixed linear model based GWAS rapidly
losses power for more complex traits. FarmCPU, a method based on multi-locus
mixed linear models, provides the greatest statistical power for moderately
complex traits. A Bayesian approach adopted from genomic prediction provides
the greatest statistical power to identify causal genetic loci for extremely complex
traits.

Conclusions: Using estimates of the complexity of the genetic architecture of
target traits can guide the selection of appropriate statistical methods and
improve the overall accuracy and power of GWAS.
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Background

Association studies have been widely adopted as a complement forward and re-

verse genetics approaches in identifying and characterizing the functions of specific

genes. Unlike forward and reverse genetics approaches, association studies also iden-

tify functionally variable alleles segregating in target populations. These alleles can

guide breeding efforts in crop and livestock species, as well as providing increasingly

accurate predictions of disease risk factors in humans. Advances in genotyping tech-

nology have dramatically reduced the barriers to conducting association studies with

genome-wide genetic marker datasets across natural populations. Since becoming

feasible mid-2000s, Genome Wide Association Studies (GWAS) have been success-

fully used to identify thousands of single nucleotide polymorphisms (SNPs) associ-

ated with diseases in human [1] and complex agricultural traits in plants [2, 3, 4, 5].

For most traits analyzed, loci identified by GWAS can generally explain only a

subset of total genetically controlled phenotypic variation for most traits analyzed
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[6, 7, 8]. Many explanations have been proposed for this “missing heritability” in-

cluding epigenetic effects [9], epistasis [10, 11, 12], structural variants which are not

detected by conventional SNP genotyping [13], rare alleles with large effects, and

common alleles small effect sizes [14, 15]. While the first two proposed explanations

for missing heritability are more difficult to address, both rare alleles with large

effect sizes and common alleles with small effect sizes can potentially be identified

through increases in the statistical power of GWAS to identify causal variants.

Many traits of interest to biologists are controlled by complex genetic architectures

[3, 5, 16] where hundreds, thousands, or the majority of all genes [17] may control

variation in the target trait. The most straightforward approach to increasing the

proportion of causal identified is to increase the size of genotyped and phenotyped

populations. However, increases in population size are expensive, and subject to

diminishing returns in terms of the improvement of power to detect both rare alleles

and alleles with small effect sizes. Improved statistical approaches to isolating a

larger proportion of total causal variants controlling complex traits is therefore

highly desirable.

Currently GWAS approaches based on mixed linear models (MLM) are widely

employed in both plant and animal systems. MLM based models are able to con-

trol for confounding effects of both population structure and unequal relatedness

between individuals which are left uncontrolled in approaches based on Generalized

Linear Models (GLM), at the expense of greater run times. A wide range of dif-

ferent algorithms have been proposed and developed to improve the computational

efficiency of MLM models, including EMMAX [18], Compressed-MLM [19], FaST-

LMM [20], and GEMMA-MLM [21]. However, because MLM-based methods are

ultimately evaluating the relationship between each genetic marker and the overall

variation in a given trait across a population independently, the statistical power of

these methods rapidly decreases as the total number of genes controlling variation

in a given trait increases, and the proportion of total genetic variance explained by

any one locus decreases.

Multi-locus mixed-models (MLMM) explicitly identify and control for the effects

of large effect loci as fixed effects as these loci are identified by the model [22]. This

approach increases the proportion of the remaining genetic variance explained by

the remaining unidentified loci, and increases the statistical power of the method

to detect a greater number of causal variants for complex traits. While the high

computational cost of MLMM initially acted as a barrier to widespread adoption,

a modified MLMM method, Fixed and random model Circulating Probability Uni-

fication (FarmCPU), has dramatically reduced the computational complexity and

computing time of this approach [23], and ongoing optimization and parallelization

efforts have continued to decrease real-world run times for MLMM based approaches

[24].

A second potential approach to accurately identifying individual causal variants

for traits controlled by complex genetic architectures is the use of Bayesian multiple-

regression methods. The Bayesian-based models fit all the available markers simul-

taneously, which makes them especially suitable to study highly polygenic traits.

While Bayesian approaches including BayesA, BayesB, BayesC, and BayesCπ has

been widely employed in genomic prediction and selection [25, 26, 27, 28], in princi-

pal the same statistical approaches can be employed to identify the individual loci
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controlling variation in target traits [29]. Several studies have employed Bayesian

multiple-regression methods to identify putative causal variants [30, 31, 32], how-

ever the performance of these bayesian methods when employed in GWAS have not

been extensively evaluated relative to current non-bayesian approaches.

Here we compare the performance of MLM, MLMM (FarmCPU), and Bayesian

GWAS approaches across simulated trait datasets containing 2 - 1024 causal vari-

ants and heritability ranging from 0.1 to 1. To capture realistic patterns of minor

allele frequency distributions, population structure and linkage disequilibrium, real

world genotype datasets from four widely studied crop species: rice (Oryza sativa),

foxtail millet (Setaria italica), sorghum (Sorghum bicolor), and maize (Zea mays)

[4, 5, 33, 34] (Table 1). We demonstrate that the power and accuracy of both Farm-

CPU and BayesCπ to identify causal variants for complex traits exceed conventional

MLM approaches. Of the three methods, FarmCPU generally provides the most fa-

vorable trade off between power and low false positive rates for moderately complex

traits controlled by several dozen loci, while the BayesCπ approach provides a more

favorable trade off for traits controlled by hundreds of loci. However, the number

of casual loci where the crossover between the comparative advantages of these

two methods occurred varied across species. The results presented here, including

a set of 4,000 simulated phenotypic datasets generated using real world genotype

datasets, will provide both a resource for evaluating future innovations in GWAS

software, and information to help researchers select the most effective experimental

design and statistical approach for their particular research projects.

Results

Each of the four populations employed in this study presented a different combina-

tion of linkage disequilibrium, minor allele frequency distribution, and population

structure (Figure 1, Table 1). These differences may result from differences in pop-

ulation demographics, criteria used to assemble the populations, and genotyping

technologies employed each of the genotype datasets. For example, the compar-

atively low frequency of rare alleles in rice results from selection loci with more

frequent minor alleles prior to microarray design [34], while the low frequency of

rare alleles in foxtail millet resulted from a post-genotyping, prepublication filter

for loci with relatively more common minor alleles [4]. With the exception of rice,

where an absence of strong LD was incorporated into the selection criteria for mark-

ers prior to genotyping [34], the pattern of LD decay observed across populations

of the remaining three species exhibited a negative correlation with reported out-

crossing frequencies for each species, suggesting that this difference is the result of

biological variation rather than genotyping strategy [35, 36, 37, 38, 39] (Figure S1).

Table 1 Statistical summary of each genotype dataset

Species Genotyping technology Genome size (Mb) LD Decay (Kb) Number of Accessions Number of Markers
Sorghum bicolor GBS 732 2 2,327 354,940
Setaria italica Low coverage WGS 406 794 916 663,985
Oryza sativa Microarray 372 0.004 1,568 629,019
Zea mays GBS 2,300 0.063 2,503 560,515
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Figure 1 Characterization of the four association populations and associated genotype datasets
employed in this study. (A) Distribution of minor allele frequencies across all genotyped markers
in each population. (B) Patterns of linkage disequilibrium decay in each population based on
average pairwise r2 between genetic markers (Methods). (C) Cumulative proportion of total
genotypic variance explained up to ten principal components in each population. (D) PCA
distribution for individuals in each population.

Evaluation mixed linear model based GWAS

A total of 1,000 phenotype datasets were generated per species, with ten indepen-

dent replicates with different sets of causal SNPs for each possible combination of

10 different levels of heritability and 10 different levels genetic architecture com-

plexity. A causal variant was considered to be identified if either the causal genetic

marker selected by the simulations, or one or more markers with an LD ≥ with

the causal SNP was identified by a given GWAS analysis. As expected, power to

detect true positives decreased in response to both increases in the number of sim-

ulated causal variants controlling the trait and decreases in simulated heritability.

The MLM-based approach failed to identify the vast majority of causal variants

for traits controlled by 256 or more loci (Figure 2). Consist with both theory and

previous studies both rare alleles and alleles assigned smaller absolute effect sizes

were the least likely to be identified in the MLM based GWAS analysis (Figure

S4, Table S1). Subsampling of each population was used to evaluation how rapidly

the proportion of total causal SNPs identified increases with increased population

size. The effect of increasing population size was relatively more pronounced when

genetic architecture was less complex, and smaller increases were observed with in-

creasing population size for more complex genetic architectures controlled by >100

causal variants (Figure 3, Figure S5).
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Figure 2 Changes in the power of conventional (MLM based) GWAS to identify causal variants
in response to changes in heritability and the complexity of the genetic architecture controlling
the target trait. Data shown is from foxtail millet. Comprehensive results from all four populations
in Supplementary Figures S2, S3. (A) Change in power to detect true positives as the number of
causal variants increases under high (0.9), medium (0.5), and low (0.1) levels of heritability. (B)
Change in power to detect true positives as heritability decreases for traits controlled by simple
(N=8), moderately complex (N=32), and complex (N=256) genetic architectures. Positive calls
were defined as those above a Bonferroni corrected p-value cutoff of 0.05.

A B

Figure 3 Changes in the power of conventional (MLM-based) GWAS to identify causal variants
for complex traits in response to increases in population size in each of the four association
populations evaluated. (A) a moderately complex trait controlled by 32 loci (B) a complex trait
controlled by 256 loci. Both analyses used data from traits with heritability of 0.7. Positive calls
were defined as those above a Bonferroni corrected p-value cutoff of 0.05.

Alternative GWAS methods for complex traits

As shown above, MLM-based GWAS identifies only a small proportion of causal

genetic variants for complex traits controlled by hundreds or thousands of distinct

genetic loci. We next evaluated two methods specifically developed to analyze poly-

genic trait: FarmCPU [23] and BayesCπ [40]. To avoid confounding effects from

different approaches to scoring the strength of associations between markers and

trait variation, cross-method comparisons are made based on selecting equivalent

numbers of positive genetic markers in each analysis. The proportion of causal

variants detected for a given total number of positive genetic markers declines in

each species as heritability decreases and as the total number of causal variants

controlling the trait increases. However, FarmCPU and BayesCπ both consistently

outperformed MLM-based analysis in terms of both overall proportion of causal
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variants identified and FDR control (Figure 4, 5). For moderately complex traits

(QTN = 32, 64) the statistical power of BayesCπ and FarmCPU provided approxi-

mately equivalent statistical power, however FarmCPU tends to provide lower false

discovery rates than BayesCπ for these genetic architectures. For complex traits

(128, 256 causal variants), the BayesCπ approach outperforms FarmCPU on both

power and false discovery rate metrics (Figures 4, 5, S7, S9), although the difference

in performance between the two methods is less apparent for traits with lower levels

of heritability (Figures S10, S11, S12, S13)

Figure 4 Changes in the power of three statistical approaches to GWAS across all four
association populations in response to changes in changes in the statistical threshold employed.
To enable comparisons across different methods with different approaches to reporting statistical
significance, the x-axis is ordered by the total number of positive genetic markers accepted at a
given statistical threshold. Data shown is for traits with increasingly complex genetic architectures
with near-best-case assumptions for trait heritability (0.9). Results for all other simulated genetic
architectures are provided in Supplemental Figures S6, S7.

For sets of simulation parameters where BayesCπ and FarmCPU identified equiv-

alent proportions of true causal variants, the specific causal variants identified by

each algorithm were different. Causal SNPs classified into four mutually exclu-
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Figure 5 Relationship between power and false discovery rate using each GWAS method to
analyze simple, medium and complex traits in each population. Data shown is for traits with
increasingly complex genetic architectures with near-best-case assumptions for trait heritability
(0.9). Results for all other simulated genetic architectures are provided in Supplemental Figures
S8, S9.

sive categories: those identified by both algorithms, those identified by either only

FarmCPU or only BayesCπ, and those missed by both. Causal SNPs identified

by both algorithms tended to have higher MAFs (p=0.0197, p=0.0065, shared vs

FarmCPU only, shared vs Bayesian only, Mann–Whitney U test), and larger effect

sizes (p=1.17e-05, p=1.23e-14, shared vs FarmCPU only, shared vs Bayesian only,

Mann–Whitney U test). SNPs identified only by FarmCPU tended to have lower

MAF frequencies than those identified only by Bayesπ (p=0.0008, Mann-Whitney U

test), and did not exhibit a statistically significant different in effect size (p=0.2185,

Mann-Whitney U test). Overall, the two approaches appear to have complementary

strengths for identifying different subsets of allelic variants missed by conventional

GWAS methods.
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A B

Figure 6 Differences in the characteristics of causal SNPs identified using either BayesCπ or
FarmCPU. Distribution of MAF (A) and absolute effect size (B) for causal variants identified by
both BayesCπ or FarmCPU, only Bayesπ, only FarmCPU, or neither method. Data shown are
from the rice population, with 256 total causal variants per simulation, and a heritability of 0.7.
Equivalent analyses from other species and varying levels of heritability are provided in
Supplemental Figure S14 and Supplemental Table S2.

Discussion
In this study, we employed four genotype datasets with different population struc-

tures from different crop species. Mixed linear models showed substantial reductions

in power as the complexity of the genetic architecture of the trait being analyzed in-

creased. Two approaches developed to address the challenge of GWAS in traits con-

trolled by complex architectures (FarmCPU, a modified MLMM) and an approach

based on BayesCπ show complementary strengths and higher power and lower false

discovery rates for complex traits. FarmCPU provided a more favorable trade off

between power and FDR for moderately complex traits and a greater likelihood

of identifying rare causal variants, while BayesCπ based GWAS provided greater

power for extremely complex traits and a greater likelihood of identifying variants

with smaller absolute effect sizes but which are more common within the study pop-

ulation. Present statistical approaches to GWAS have the greatest statistical power

to identify SNPs which are both common, and control a large proportion of total

genetic variation in the target populations. As a result, few previously unknown loci

with utility for plant breeding have been discovered through GWAS-based analysis

[41]. The identification of common alleles with moderate effect sizes and rare alleles

with large effects would improve the utility for GWAS for both basic biological and

applied applications.

Methods to determine the complexity of the genetic architectures controlling dif-

ferent traits are clearly also needed, given the differences in the relative strengths

of MLM, MLMM and Bayesian approaches for traits controlled by genetic archi-

tectures different levels of complexity. The BayesCπ method includes a statistical

approach to estimate the number of causal variants controlling a given trait prior

to fitting a model to the data [40]. These estimates serve as a prior for model fitting

in BayesCπ. However, as different GWAS approaches provide the most favorable

results for traits with different complexities, estimation of the number of genetic

loci controlling a trait can also guide which statistical approach is best suited to

analyze a given dataset. The accuracy of the estimates of the number of causal

variants generated by the BayesCπ algorithm were estimated across varying levels
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Figure 7 Relationship between estimated complexity of genetic architectures generated by
BayesCπ and true genetic architecture complexity given different levels of heritability in each
species. Grey areas indicate 95% confidence bands around each estimate.

of heritability and trait complexity. In all four species, while BayesCπ was able to

accurately estimate heritability for traits controlled by different numbers of causal

variants S15 and also provided relatively accurate and unbiased estimated of the

number of causal variants when the heritability of the trait was high and/or the

total number of causal variants was smaller, the number of causal variants was sys-

tematically overestimated for complex traits with lower levels of heritability (Figure

7). The reduced accuracy in estimating the number of causal variants for traits with

low levels of heritability and complex genetic architectures may explain why the dif-

ferences in performance between FarmCPU and BayesCπ is less apparent analyses

of datasets will lower heritability. One potential explanation for this observation is

that the model is attempting to explain residual error – not heritable phenotypic

variation – by including additional, noncausal SNPs in the model. However, with
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awareness of this limitation, estimation of the number of causal variants controlling

a given trait can aid researchers in determining which GWAS method is likely to

provide the most informative result for a given dataset.

Evaluations of GWAS approaches can be performed using either real data or

simulated data. Here simulated data was employed, as it provided comprehensive

ground truth information for comparison across methods, something unavailable for

real world phenotype datasets for complex traits. The use of real world genotype

datasets captured minor allele frequency distributions and population structures

comparable to those observed in the real world. However, it is also important to

acknowledge the limitations of simulation based studies. The simulated phenotype

datasets employed here assumed the effect sizes of minor alleles are drawn from a

normal distribution, which is supported by real world observations (as shown in

Figure S18) [42, 43]. More significantly, the simulation parameters used assumed

no correlation between the minor allele frequency of an allele and its effect size,

which does not match predictions from population genetic theory or observation

that rare alleles tend to be associated with larger molecular phenotypes in maize

[44] In addition, the statistical model used to generate phenotype datasets here

did not incorporate epistatic interactions between causal variants. Finally, we did

not model errors in genotyping or phenotyping, and thus cannot evaluate whether

the different statistical approaches to GWAS evaluated here show different levels of

robustness to errors in data collection.

While the results presented here for the use of BayesCπ to identify causal vari-

ants are promising, additional work is needed to further adapt BayesCπ for use in

GWAS applications. The model employed here did not yet incorporate any controls

for population structure. Integrating such a control might marginally reduce power,

but should substantially reduce type I error rates in the Bayesian model. The model

we employed also provided a ranking of genetic markers but not a straightforward

method of establishing a cutoff between candidate causal variants and non-candidate

loci. While ranking enabled comparisons of power, type I error, and false discovery

rate, the application of BayesCπ-based GWAS in a real world setting will require

methods to establish such cutoffs. One promising approach recently discussed in the

literature is to estimate posterior type I error rates [45]. Approaches using machine

learning to identify cutoffs, such in NeuralFDR, also seem a promising avenue of

investigation [46]. In addition computational resource requirements play an substan-

tial role in which statistical approaches become widely adopted over time. With the

largest of the four genotype datasets employed here (maize) BayesCπ required ap-

proximately 4.5 Gb of RAM and 2 hours to analyze one dataset. For comparison, the

MLM implementation in GEMMA required only 1 Gb of RAM and approximately

40 minutes to analyze the same dataset and FarmCPU required approximately 30

minutes and 5.5 Gb RAM (Supplemental Figures S16, S17). However, optimization

of computational pipelines can reduce run times dramatically without the need for

changes to statistical models. Modifications to the reference implementation of the

FarmCPU algorithm have been shown to produce the same results while reducing

runtime by approximately two-thirds [24].
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Conclusion
Association studies have been and seem likely to remain an important tool for in-

vestigating how genotype determines phenotype. While certain diseases and target

traits for breeding efforts are controlling by a small number of large effect loci seg-

regating in Mendelian fashion, many traits of interest are controlled by moderately

or extremely complex genetic architectures. Here we have shown that different ap-

proaches to GWAS have complementary strengths, and the complexity of the genetic

architecture controlling a target trait should be determined prior to the selection

of an appropriate statistical approach for analyzing a given dataset. Further im-

provements in both statistical approaches and computational optimization hold the

promise of dramatically expanding our understanding of the role that both rare

alleles with large consequences and common alleles with small consequences play in

determining how genotype determines phenotype across species.

Methods
Genotype dataset sources and filtering parameters

Genotype dataset for foxtail millet (Setaria italica) [4], maize (Zea mays) [33],

sorghum (Sorghum bicolor)[5], and rice (Oryza sativa) [34] were taken from pub-

lished sources. Foxtail millet SNPs were discovered and scored using low cover-

age (0.5x) whole-genome resequencing reads aligned to the Setaria italica refer-

ence genome (v2 from Phytozome v7.0) [47]. The partially imputed SNP dataset

was downloaded from Millet GWAS Project website: http://202.127.18.221/

MilletHap1/GWAS.php [4]. The downloaded genotype data included 916 diverse

varieties and 726,080 SNPs. SNPs with minor allele frequencies lower than 5% had

been removed prior to the publication of the dataset. After downloading, SNPs

without calls in >10% of samples were removed from the dataset. A sorghum GBS

dataset which included 404,627 SNPs scored relative to the v1.4 of the sorghum

reference genome [48] across a set of 1,943 accessions were downloaded from Data

Dryad http://datadryad.org/resource/doi:10.5061/dryad.jc3ht/1 [5]. After

downloading, SNPs without genotype calls in >30% of samples and SNPs with

heterozygous calls in >5% of samples with genotype calls were removed from the

dataset. A maize GBS dataset which included calls for 681,257 SNPs relative to

B73 RefGen V1 [49] across a set of 2,815 accessions was downloaded from Panzea

https://www.panzea.org/ [33]. After downloading, SNPs without genotype calls

in >30% of samples and SNPs with heterozygous calls in >5% of samples with geno-

type calls were removed from the dataset. After any filtering parameters described

above for individual datasets, missing data points in foxtail millet, sorghum, and

maize dataset were imputed using Beagle v4.1 with default parameters [50]. Data

from genotyping 1,568 diverse rice accessions using the 700,000 marker HDRA mi-

croarray platform was downloaded from GEO (ID: GSE71553) [34]. After download

SNPs with heterozygous genotype calls in >5% of samples were removed from the

dataset. Statistics on the final number of marker and samples in each dataset are

provided in Table 1.

Characteristics and summary statistics of genotype datasets used in this study

The minor allele frequency was calculated for each SNP in each dataset. Patterns

of minor allele frequency distributions for each dataset were assessed and visual-

ized using kernel density plots generated using the the function ‘kdeplot’ from the
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Python package ‘seaborn.’ For each dataset, the top ten principal components were

calculated using Tassel 5.2 [51]. The top three principal components from the same

analyses were used to plot population structure using the R package scatterplot3d.

Plink 1.9 was used to calculated r2 between all pairs of SNP markers separated

by less than 10 kilobases [52]. For windows greater than 10 kilobases markers were

subsampled to retain approximately equal numbers of pairwise comparisons in the

0-10 kilobase internal, in the 10 to 100 kilobase internal, in the 100 kilobases to 1

megabase interval, and in the 1 megabase to 10 megabase internal. In each dataset

average r2 values were calculated from 100.1 to 107 using a logarithmic step size of

0.1. A regression curve was fit to these values using the function ‘regplot’ from the

Python package ‘seaborn.’

Phenotype simulation

Phenotype datasets were simulated using an additive genetic model derived from

the underlying genotype datasets:

Yj =
∑

(ai × Sij) + ej (1)

In the model, Yj is the simulated phenotype for plant j; ai is the effect of the ith

causal SNP; Sij is the SNP genotype (coded with 0, 1, 2) for the ith causal SNP of

the jth plant; and ej is the normal residual error for jth plant with mean of 0 and

standard deviation of
V ar(

∑
Sijai)

1/h2−1 , where h2 denotes the heritability.

An R function ‘simcrop’ was implemented within the open source ‘g3tools’ R

package (https://github.com/jyanglab/g3tools). Results presented above em-

ploy phenotype datasets where the effect value for each causal SNP was drawn

from a normal distribution, however the software package also provides the option

to specify other effect size distribution models. Phenotype datasets were simulated

for scenarios where the number of causal genetic loci ranged from 21 to 210 (2 ∼
1,024 QTNs) and where the heritability of trait values ranged 0.1 to 1.0 in steps of

0.1. For each combination of heritability and number of causal variants, ten inde-

pendent datasets with different randomly selected causal variants were selected.

Genome-wide association studies

The kinship matrix applied in all methods was generated using “-gk 1” option

in GEMMA for each genotype dataset. All GEMMA-MLM based GWAS anal-

ysis were performed using the “gemma” command (version 0.95alpha) with op-

tions “-lmm” and “-k” to specify kinship matrix [21]. FarmCPU was run us-

ing the command FarmCPU(Y=myY, GD=myGD, GM=myGM, CV=myCV,

method.bin=”optimum”) in R. The parameter method.bin=”optimum” allows the

FarmCPU to selected optimized possible QTN window size and number of possible

QTNs in the model [23]. The BayesCπ was conducted using GenSel software pack-

age [40]. For each run, chain length was set to 11,000 with the first 1,000 as burn

in, and π=0.9999. All the GWAS jobs were run on HCC’s (the Holland Computing

Center) Crane cluster at University of Nebraska-Lincoln.
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Table S1 Mann-Whitney U test between SNP groups detected and undetected by GEMMA. Data
shown are from simulations where the number of causal variants is 64 and heritability is 0.7
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neither. Number of causal SNPs is 256 and heritability is 0.5.
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Figure S1 Relationship between LD decay and outcrossing rates reported from the literature
for maize, sorghum, and foxtail millet. Estimated outcrossing rates for each species are taken
from [35, 36, 37, 38, 39].
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Figure S2 Relationship between the proportion of causal variants identified and heritability for
traits controlled by different numbers of causal variants (2-1024 causal variants) in each
species in an MLM-based GWAS. Positive calls were defined as those above a Bonferroni
corrected p-value cutoff of 0.05.
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Figure S3 Relationship between the proportion of causal variants identified and the number of
causal variants controlling a trait given different levels of heritability (0.1-1) in each species in
an MLM-based GWAS. Positive calls were defined as those above a Bonferroni corrected
p-value cutoff of 0.05.
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Figure S4 Distribution of minor allele frequency and effect size for true positive and false
negative causal variants in each species. Data shown are from simulation here heritability is 0.7
and the number of simulated causal variants is 64. Positive calls were defined as those above a
Bonferroni corrected p-value cutoff of 0.05.
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Figure S5 Proportion of causal variants identified by MLM based analysis at different
population sizes in each species with 128 causal variants per simulation and heritability of 0.7.
Positive calls were defined as those above a Bonferroni corrected p-value cutoff of 0.05.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2018. ; https://doi.org/10.1101/310391doi: bioRxiv preprint 

https://doi.org/10.1101/310391
http://creativecommons.org/licenses/by-nc-nd/4.0/


Miao et al. Page 20 of 30

Figure S6 Relationship between the proportion of causal variants identified and the number of
associated SNPs selected for MLM, MLMM, and Bayesian analysis for 4, 8, and 32 causal
variants. Data shown are from simulations where trait heritability is 0.9.
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Figure S7 Relationship between the proportion of causal variants identified and the number of
associated SNPs selected for MLM, MLMM, and Bayesian analysis for 128, 512, and 1024
causal variants. Data shown are from simulations where trait heritability is 0.9.
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Figure S8 Relationship between false discovery rate and the number of associated SNPs
selected for MLM, MLMM, and Bayesian analysis for 4, 8, and 32 causal variants. Data shown
are from simulations where trait heritability is 0.9.
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Figure S9 Relationship between false discovery rate and the number of associated SNPs
selected for MLM, MLMM, and Bayesian analysis for 128, 512, and 1024 causal variants. Data
shown are from simulations where trait heritability is 0.9.
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Figure S10 Relationship between the proportion of causal variants identified and the number
of associated SNPs selected for MLM, MLMM, and Bayesian analysis for 16, 64, and 256
causal variants. Data shown are from simulations where trait heritability is 0.5.
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Figure S11 Relationship between the proportion of causal variants identified and the number
of associated SNPs selected for MLM, MLMM, and Bayesian analysis for 16, 64, and 256
causal variants. Data shown are from simulations where trait heritability is 0.7.
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Figure S12 Relationship between false discovery rate and the number of associated SNPs
selected for MLM, MLMM, and Bayesian analysis for 16, 64, and 256 causal variants. Data
shown are from simulations where trait heritability is 0.5.
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Figure S13 Relationship between false discovery rate and the number of associated SNPs
selected for MLM, MLMM, and Bayesian analysis for 16, 64, and 256 causal variants. Data
shown are from simulations where trait heritability is 0.7.
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Figure S14 Differences in the characteristics of causal SNPs identified using either BayesCπ or
FarmCPU for all populations in simulations with 256 causal variants and heritability of 0.5.
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Figure S15 Relationship between simulated heritability and heritability estimates generated by
BayesCπ for traits controlled by different numbers of causal variants. Grey lines indicate the
95% confidence intervals.

Figure S16 Average run time of a single GWAS analysis using each of the three methods
evaluation in each of the four populations tested.
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Figure S17 Average maximum memory use of a single GWAS analysis using each of the three
methods evaluation in each of the four populations tested.
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Figure S18 Empirically determined effect sizes for loci control seven different traits in maize.
The SNP effects were obtained from [43]. In each case effects were normalized to a mean of 0 and
a standard deviation of 1. In most cases, the distribution of effect sizes approximates the two tails
of a normal distribution, with a missing center of unidentified small effect value SNPs. BN, branch
number; BZ, branch zone; CD, cob diameter; CL, cob length; ERN, ear row number; SL, spike
length; TL tassel length.
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