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Abstract 
The accurate identification of DNA sequence variants is an important but challenging task in 
genomics. It is particularly difficult for single molecule sequencing, which has a per-
nucleotide error rate of ~5%-15%. Meeting this demand, we developed Clairvoyante, a multi-
task five-layer convolutional neural network model for predicting variant type (SNP or indel), 
zygosity, alternative allele and indel length from aligned reads. For the well-characterized 
NA12878 human sample, Clairvoyante achieved 99.73%, 97.68% and 95.36% precision on 
known variants, and 98.65%, 92.57%, 77.89% F1-score for whole-genome analysis, using 
Illumina, PacBio, and Oxford Nanopore data, respectively. Training on a second human 
sample shows Clairvoyante is sample agnostic and finds variants in less than two hours on a 
standard server. Furthermore, we identified 3,135 variants that are not yet indexed but are 
strongly supported by both PacBio and Oxford Nanopore data. Clairvoyante is available 
open-source (https://github.com/aquaskyline/Clairvoyante), with modules to train, utilize and 
visualize the model. 
 

Introduction 
A fundamental problem in genomics is to find the nucleotide differences in an individual 
genome relative to a reference sequence, i.e., variant calling. It is essential to accurately and 
efficiently call variants so that the genome sequence variants that underlie phenotypic 
differences and disease can be correctly detected1. Previous works have intensively studied 
the different data characteristics that might contribute to higher variant calling performance 
including the properties of the sequencing instrument2, the quality of preceding sequence 
aligners3 and the alignability of genome reference4. Today, these characteristics are carefully 
considered by state-of-the-art variant calling pipelines to optimize performance5,6. However, 
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most of these analyses were done for short read sequencing, especially the Illumina 
technology, and require further study for other sequencing platforms. 
 
Single Molecule Sequencing (SMS) technologies are emerging in recent years for a variety of 
important applications. These technologies generate sequencing reads two orders of 
magnitude longer than standard short-read Illumina sequencing (10kbp to 100kbp instead of 
~100bp), but they also contain 5%-15% sequencing errors rather than ~1% for Illumina. The 
two major SMS companies, Pacific Biosciences (PacBio) and Oxford Nanopore Technology 
(ONT) have greatly improved the performance of certain genomic applications, especially 
genome assembly and structural variant detection7. However, single nucleotide and small 
indel variant calling with SMS remain challenging because the traditional variant caller 
algorithms fail to handle such a high sequencing error rate, especially one enriched for indel 
errors. 
 
Artificial Neural Networks (ANNs) are becoming increasingly prominent for a variety of 
classification and analysis tasks due to their advances in speed and applicability in many 
fields. One of the most important applications of ANNs has been to image classification, with 
many successes including MNIST8 or GoogLeNet9.  The recent DeepVariant package 
repurposed the Inception convolutional neural network9 for DNA variant detection by 
applying it to analyzing images of aligned reads around candidate variants. At each candidate 
site, the network computes the probabilities of three possible zygosities (homozygous 
reference, heterozygous reference, and homozygous alternative), allowing accurate 
determination of the presence or absence of a candidate variant. However, the DeepVariant 
network is incomplete as a variant caller as it does not provide the full variant information 
including the exact alternative allele and variant type. As the authors pointed out in their 
manuscript, it is also sub-optimal to use an image classifier for variant calling, as valuable 
information that could contribute to higher accuracy are lost during the image transformation. 
 
In this study, we present Clairvoyante, a multi-task convolutional deep neural network 
specifically designed for variant calling with SMS reads. We explored different ways to 
enhance Clairvoyante’s power to extract valuable genomic features from the frequent 
background errors present in SMS. Experiments calling variants in multiple human genomes 
both at known variant sites and genome-wide show that Clairvoyante is on-par with GATK 
HaplotypeCaller on Illumina data, and greatly outperforms Nanopolish and DeepVariant on 
PacBio and ONT data.  
 

Methods 
In this section, we first introduce the DNA sequencing datasets of three different sequencing 
technologies: Illumina, PacBio, and ONT. We then formulate variant calling as a supervised 
machine learning problem. Finally, we present Clairvoyante for this problem and explain the 
key deep learning techniques used in Clairvoyante.  
 

Datasets 
While most of the variant calling in previous studies were done using a single computational 
algorithm on single sequencing technology, the Genome-in-a-Bottle (GIAB) dataset10 first 
published in 2014 has been an enabler of our work. The dataset provides high-confidence 
SNPs and indels for a standard reference sample HG001 (also referred to as NA12878) by 
integrating and arbitrating between 14 datasets from five sequencing and genotyping 
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technologies, seven read mappers and three variant callers. For our study, we as our truth 
dataset the latest dataset version 3.3.2 for HG001 (Supplementary Material, Data Source, 
Truth Variants) that comprises 3,042,789 SNPs, 241,176 insertions and 247,178 deletions 
for the GRCh38 reference genome, along with 3,209,315 SNPs, 225,097 insertions and 
245,552 deletions for GRCh37. The dataset also provides a list of regions that cover 83.8% 
and 90.8% of the GRCh38 and the GRCh37 reference genome, where variants were 
confidently genotyped. The GIAB extensive project11 published in 2016 further introduced 
four standard samples, including the Ashkenazim Jewish sample HG002 we have used in this 
work, containing 3,077,510 SNPs, 249,492 insertions and 256,137 deletions for GRCh37, 
3,098,941 SNPs, 239,707 insertions and 257,019 deletions for GRCh37. 83.2% of the whole 
genome was marked as confident for both the GRCh38 and GRCh37. 
 

Illumina Data 
The Illumina data was produced by the National Institute of Standards and Technology 
(NIST) and Illumina11. Both the HG001 and HG002 datasets were run on an Illumina HiSeq 
2500 in Rapid Mode (v1) with 2x148bp paired-end reads. Both have an approximate 300x 
total coverage and were aligned to GRCh38 decoy version 1 using Novoalign version 3.02.07. 
In our study, we further down-sampled the two datasets to 50x to match the available data 
coverage of the other two SMS technologies (Supplementary Material, Data Source, 
Illumina Data). 
 

Pacific Bioscience (PacBio) Data 
The PacBio data was produced by NIST and Mt. Sinai School of Medicine11. The HG001 
dataset has 44x coverage, and the HG002 has 69x. Both datasets comprise 90% P6-C4 and 10% 
P5-C3 sequencing chemistry and have a sequence N50 length between 10k-11kbp. Reads 
were extracted from the downloaded alignments and aligned again to GRCh37 decoy version 
5 using NGMLR version 0.2.3 (Supplementary Material, Data Source, PacBio Data). 
 

Oxford Nanopore (ONT) Data 
The Oxford Nanopore data were generated by the Nanopore WGS consortium12. Only data 
for sample HG001 are available to date, thus limiting the “cross sample variant calling 
evaluation” and “combined sampled training” on ONT data in the Result section. In our study, 
we used the ‘rel3’ release sequenced on the Oxford Nanopore MinION using 1D ligation kits 
(450bp/s) and R9.4 chemistry. The release comprises 39 flowcells and 91.2G bases, about 
30x coverage. The reads were downloaded in raw fastq formatted and aligned to GRCh37 
decoy version 5 using NGMLR13 version 0.2.3 (Supplementary Material, Data Source, 
Oxford Nanopore Data). 
 

Variant Calling as Multi-Task Regression and Classification 
Assume there are N truth variants V and their corresponding read alignments B as training 
samples; the training dataset is expressed as ��� , �� , �� , �� , ������

� , where: 
• �� 	 
�����

	  denotes a three-dimensional tensor of real numbers that represents a 
piled-up form of read alignments in the ith sample 

• �� 	 


�  denotes the probability of four possible reference and alternative alleles - A, 

C, G and T of truth variants (w=4) 
• �� 	 ��

� denotes the zygosity (homozygous or heterozygous) of truth variants (x=2) 
• �� 	 �


� denotes the variant type (reference, SNP, insertion or deletion) of truth 
variants (y=4) 
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• �� 	 ��
� denotes the length of Indel, or 0 otherwise, of truth variants (z is set to 6 in 

our study to support six different Indel lengths including 0, 1, 2, 3, 4 and ≥4bp).  
 
Our target is to infer the functional mapping � 
  
�����

	 � �


� , ��

� , �

� , ��

�� that fits 
��� , �� , �� , �� , ������

� , which can be viewed as a multi-task regression and classification problem.  
 
We use mean squared error on ��  and cross-entropy loss on �� , �� and ��  to evaluate the 
predictive performance of each truth variant v, 

���� � 1��
� 	�
��� � �
����

�

� � �̂�� log
����
�

� � �̂�� log�����
�

� � ����log 
����
�

���

�	


 

, where �� is the number of testing samples and the variables with a caret are predicted values 
of the ith truth variant. We define cost as the average of all sample losses and use it as the cost 
function for model training. 
 
In our study, good performance implies correct predictions could be made even when the 
evidence is marginal to distinguish a genuine variant from non-variant (reference). To 
achieve the goal, we paired each truth variant with two non-variants randomly sampled from 
the genome at all possible non-variant and non-ambiguous sites for model training. With 
about 3.5M truth variants from the GIAB dataset, about 7M non-variants are added as 
samples for model training. 
 
We randomly partitioned all samples into 90% for training and 10% for validation. We 
intentionally did not hold out any sample of the data for testing as other projects commonly 
do because, in our study, we can use an entirely different dataset for testing samples. For 
example, we can use the samples of HG002 to test against a model trained on HG001, and 
vice versa. 
 

Clairvoyante 
Clairvoyante is a multi-task five-layer convolution neural network with the last two layers as 
feedforward layers (Figure 1). The multi-task neural network makes four groups of 
predictions on each input: 1) alternative alleles, 2) zygosity, 3) variant type, and 4) indel 
length. The predictions in 2, 3 and 4 are mutually exclusive while the predictions in 1 are not. 
The alternative allele predictions are computed directly from the first fully connected layer 
(FC4), while the other three group of predictions are computed from the second fully 
connected layer (FC5). The indel length prediction group has six possible outputs indicating 
an indel with a length between 0-3bp or ≥4bp of any unbounded length. The prediction limit 
on indel length is configurable in Clairvoyante and can be raised when more training data on 
longer indels could be provided. The Clairvoyante network is succinct and fine-tuned for the 
variant calling purpose. It contains only 1,631,496 parameters, about 13-times fewer than 
DeepVariant 14 using the Inception-v3 network architecture, which was originally designed 
for general purpose image recognition. Additional details of Clairvoyante are introduced in 
the different subsections below. 
 
For each input sample (truth or candidate variants), the overlapping sequencing read 
alignments are transformed into a multi-dimensional tensor of order 33 by 4 by 4. We added 
16 flanking base-pairs on both sides of a candidate (yielding 33 bp of total context), which 
we have measured to be sufficient to manifest background noise while providing a good 
computational efficiency. For each base-pair, we use one-hot encoding and its depth as the 
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value that assigns the depth to the active base and other inactive bases as zero. The first 
tensor in the third dimension encodes the reference sequence and the number of reads 
supporting the reference alleles. The second, third and fourth tensors use the relative count 
against the first tensor: the second tensor encodes the inserted sequences, the third tensor 
encodes the deleted base-pairs, and the fourth tensor encodes alternative alleles. Figure 2 
illustrates how the tensors can represent a SNP, an insertion, a deletion, and a non-variant 
(reference), respectively. The non-variant in figure 2 also depicts how the matrix will show 
background noise. A similar but simpler read alignment representation was proposed by 
Jason Chin15 in mid-2017, the same time as we started developing Clairvoyante. Different 
from Chin’s representation, ours decouples the substitution and insertion signal into separate 
arrays and allows us to precisely record the allele of inserted sequence. 
 
Our study used the widely adopted Tensorflow16 as its primary programming framework. 
Using the 44x coverage HG001 PacBio dataset as an example, a near optimal model can be 
trained in three hours using the latest desktop GPU model nVidia GTX 1080 Ti. Using a 
trained model, about two hours is needed to call variants genome-wide using a 2 x 14-core 
CPU-only server, and it takes only a few minutes to call variants at known variant sites or in 
an exome (>5,000 candidate sites per second). Several techniques have been applied to 
minimize computational and memory consumption (see the Computational Performance 
subsection). 
 

 
Figure 1. Clairvoyante network architecture and layer details. The descriptions under each 
layer includes 1) the layer’s function; 2) the activation function used; 3) the dimension of the 
layer in parenthesis (Input layer: Height x Width x Arrays, Convolution layer: Height x 
Width x Filters, Fully connected layer: Nodes), and; 4) kernel size in brackets (Height x 
Width).  
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Figure 2. Illustrations of how Clairvoyante representations four variant types including: (top 
left) a C>G SNP, (top right) a 9bp insertion, (bottom left) a 4bp deletion, and (bottom right) 
a non-variant with reference allele. 
 

Model Initialization 
Weight initialization is important to stabilize the variances of activation and back-propagated 
gradients at the beginning of model training. We used a He initializer17 to initialize the 
weights of hidden layers in Clairvoyante, as the He initializer is optimized for training 
extremely deep models using rectified activation function directly from scratch. For each 
layer, the weight of each node is sampled from a univariate normal distribution with 

, where  denote the number of in-degree of the node.  
 

Activation Function 
Batch normalization is a technique to ensure zero mean and unit variance in each hidden 
layer to avoid exploding or diminishing gradients during training. However, batch 
normalization has often been identified as a computational bottleneck in neural network 
training because computing the mean and the standard deviation of a layer is not only a 
dependent step but also a reduction step that cannot be efficiently parallelized. To tackle this 
problem, we will use the new activation function called “Scaled Exponential Linear Units” 
(SELUs)18, a variant of the rectified activation function. Different from a standard batch 
normalization approach that adds an implicit layer for the named purpose after each hidden 
layer, SELUs utilizes the Banach fixed-point theorem to ensure convergence to zero mean 
and unit variance in each hidden layer without batch normalization. 
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Optimizer and Learning rate 
We used an Adam optimizer with default settings 19 to update the weights by adaptive node-
specific learning rates, whereas setting a global learning rate only functions to set an upper 
limit to the learning rates. This behavior allows Clairvoyante to use a higher learning rate for 
longer to speed up the training process. 
  
Although the Adam optimizer performs learning rate decay intrinsically, we found decreasing 
the global learning rate when the cost of the model in training plateaued can lead to better 
model performance in our study. In Clairvoyante, we implemented two types of training 
modes. The fast training mode is an adaptive decay method that uses an initial learning rate at 
1e-3, decreases the learning rate by a factor of 0.1 when the validation rate goes up and down 
for five rounds and stops after two times of decay. The nonstop training mode allows users to 
decide when to stop and continue using a lower learning rate. 
 

Dropout and L2 Regularization 
Although more than three million labeled truth variants are available for training, the scarcity 
of some labels, especially variants with a long indel length, could fail the model training by 
overfitting to abundantly labeled data. To alleviate the class imbalance, we apply both  
dropout20 and L2 regularization21 techniques in our study. Dropout is a powerful 
regularization technique. During training, dropout randomly ignoring nodes in a layer with 
probability p, then sums up the activations of remaining nodes and finally magnify the sum 
by 1/p. Then during testing, sums up the activations of all nodes with no dropout. With 
probability p, the dropout technique is creating up to 1 � �1 � ��� possible subnetworks 
during the training. Therefore, dropout can be seen as dividing a network into subnetworks 
with reused nodes during training. However, for a layer with just enough nodes, applying 
dropout will require more nodes to be added, thus potentially increasing the time needed to 
train a model. In balance, we applied dropout only to the first fully connected layer (FC4) 
with p=0.5, and L2 regularization to all the hidden layers in Clairvoyante. In practice, we set 
the lambda of L2 regularization the same as the learning rate. 
 

Visualization 
We created an interactive python notebook accessible within a web browser or a command 
line script for visualizing inputs and their corresponding node activations in hidden layers and 
output layers. Supplementary Figure 1 shows the input and node activations in all hidden 
layers and output layers of an A>G SNP variant in sample HG002 test against a model 
trained with samples from HG001 for a thousand epochs at 1e-3 learning rate. Each of the 
nodes can be considered as a feature deduced through a chain of nonlinear transformations of 
the read alignments input. 
 

Computational Performance 
Making Clairvoyante a computationally efficient tool that can run on modern desktop and 
server computers with commodity configurations is one of our primary targets. Here we 
introduce the two critical methods used for decreasing computational time and memory 
consumption.  
 
Clairvoyante can be roughly divided into two group of code, one is sample preparation 
(preprocessing and model training), and the second is sample evaluation (model evaluation 
and visualization). Model training runs efficiently because it invokes Tensorflow, which is 
maintained by a large developer community and has been intensively optimized with most of 
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its performance critical code written in C, C++ or CUDA. Using the native python interpreter, 
sample preprocessing became the bottleneck, and the performance did not improve by using 
multi-threading due to the existence of Global Interpreter Lock (GIL). We solved the 
problem by using Pypy22, a Just-In-Time (JIT) compiler that performs as an alternative to the 
native python interpreter and requires no change to our code. In our study, Pypy sped up the 
sample preparation code by 5 to 10 times. 
 
The memory consumption in model training was also a concern. For example, with a naïve 
encoding HG001 requires 40GB memory to store the variant and non-variant samples, which 
could prevent effective GPU utilization. We observed that these samples are immutable and 
follow the “write once, read many” access pattern. Thus, we applied in-memory compression 
using the blosc23 library with the lz4hc compression algorithm, which provides high 
compression ratio, 100MB/s compression rate, and an ultra-fast decompression rate at 7GB/s. 
Our benchmarks show that applying in-memory compression makes no difference to the 
speed but decreased the memory consumption by five times. 

Results 
In this section, we first benchmarked Clairvoyante on Illumina, PacBio, and ONT data at 
known variant sites. Based on the benchmarking results, we have addressed several important 
questions regarding the results, the model training, and the input data. Last, we evaluated 
Clairvoyante’s performance to call variants genome-wide. 
 

Training Runtime Performance 
We recommend using GPU acceleration for model training and CPU-only for variant calling. 
Table 1 shows the performance of different GPU and CPU models in training. Using a high-
performance desktop GPU model GTX 1080 Ti, 170 seconds are needed per epoch, which 
leads to about 5 hours to finish training a model with the fast training mode. However, for 
variant calling the speed up by GPU is insignificant because CPU workloads such as VCF 
file formatting and I/O operations dominate. Variant calling at 3.5M known variant sites 
takes about 20 minutes using 28 CPU cores. Variant calling genome-wide varies between 30 
minutes to a few hours subject to which sequencing technology and alternative allele 
frequency cutoff were used (see Results).  
 
Table 1. Time per epoch of different models of GPU and CPU in model training. 

Equipment 

Seconds per Epoch 

per 11M samples 

GTX 1080 Ti 170 

GTX 980 250 

GTX Titan 520 

Tesla K40 w/ top power setting 580 

Tesla K40 620 

Tesla K80 (one socket) 700 

GTX 680 780 

Intel Xeon E5-2680 v4 28-core 2900 

 

Call Variants at Known Sites 
Although Clairvoyante was designed targeting SMS, the method is generally applicable for 
short read data as well. We tested Clairvoyante on three sequencing technologies: Illumina, 
PacBio, and ONT. We tested both the fast and the nonstop training mode. In nonstop training 
mode, we firstly trained a model from 0 to 999-epoch at learning rate 1e-3, then to 1499-
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epoch at 1e-4, and finally to 1999-epoch at 1e-5. We then benchmarked the model generated 
by the fast mode, and all three models stopped at different learning rates in the nonstop mode. 
We also benchmarked variant calling on one sample (e.g. HG001) using a model trained on 
another sample (e.g. HG002). Further, we ran GATK UnifiedGenotyper6 and GATK 
HaplotypeCaller6 for comparison. We also tried running three other tools including PacBio 
GenomicConsensus v5.124, the paftools in minimap2 r76325 and Nanopolish v0.9.026, but we 
only succeeded in Nanopolish. The reason why the other tools failed, and the commands used 
for generating the results in this section are presented in Supplementary Material, Call 
Variants at Known Sites, Commands. 
 
We used the submodule vcfeval in RTG Tools27 version 3.7 to benchmark our results and 
generate three metrics including Precision, Recall, and F1-score. From the number of true 
positives (TP), false positives (FP), and false negatives (FN), we compute the three metrics 
as Precision = �� � ��� � ���, Recall = �� � ��� � ���, and F1-score = 2��/�2�� �

�� � ���. FP are defined as variants existing in the GIAB dataset that also identified as a 
variant by Clairvoyante, but with discrepant variant type, alternative allele or zygosity. FN 
are defined as the variants existing in the GIAB dataset but identified as a non-variant by 
Clairvoyante. F1-score is the harmonic mean of the precision and recall. RTG vcfeval also 
provides the best variant quality cutoff for each dataset, filtering the variants under which can 
maximize the F1-score. To the best of our knowledge, RTG vcfeval was also used by the 
GIAB project itself. Vcfeval cannot deal with Indel variant calls without an exact allele. 
However, in our study, Clairvoyante was set to provide the exact allele only for Indels ≤4bp. 
Thus, all Indels >4bp were removed from both the baseline and the variant calls before 
benchmarking. The commands used for benchmarking are presented in Supplementary 
Material, Benchmarking, Commands. 
 
Table 2 shows the performance of Clairvoyante on Illumina data. The best accuracy is 
achieved by calling variants in HG001 using the model trained on HG001 at 1499-epoch, 
with 99.73% precision, 99.62% recall and 99.68% F1-score. A major concern of using deep 
learning or any statistical learning technique for variant calling is the potential for overfitting 
to the training samples. Our results show Clairvoyante is not affected by overfitting, and we 
validated the versatility of the trained models by calling variants in a genome using a model 
trained on a second, independent sample. Interestingly, the performance of calling variants in 
HG002 using a model trained on HG001 (for convenience, hereafter denoted as 
HG002>HG001) is 0.25% higher (99.52% against 99.27%) than HG002>HG002 and similar 
to HG001>HG001. As we know the truth variants in HG001 were verified and rectified by 
more orthogonal genotyping methods than HG00211, we believe it is the higher quality of 
truth variants in HG001 than HG002 that gave the model trained on HG001 a higher 
performance. Clairvoyante achieved 0.14% higher (99.68% against 99.54%) F1-score than 
GATK HaplotypeCaller on HG001 but almost the same (99.52% against 99.53%) on HG002. 
This again corroborated the importance of high-quality truth variants for Clairvoyante to 
achieve superior performance.  
 
Table 3 shows the performance of Clairvoyante on PacBio data. The best performance is 
achieved by calling variants in HG001 using the model trained on HG001 at 1999-epoch, 
with 97.65% precision, 96.53% recall and 97.09% F1-score. DeepVariant14 was benchmarked 
the same dataset in their studied and reported 97.25% precision, 88.51% recall and 92.67% 
F1-score. We noticed our benchmark differs from DeepVariant because we have removed 
Indels >4bp from both the baseline and variant calls. If we simply assume DeepVariant can 
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identify all the 91k Indels >4bp correctly, the recall will increase to 90.73%, which is still 5.8% 
lower than Clairvoyante. 
 
Table 4 shows the performance of Clairvoyante on ONT data. As there are no available deep 
coverage ONT data sets for HG002, we only provided the benchmarks of variant calls in 
HG001 using models also trained on HG001. The best precision is 95.36%, achieved at 1499-
epoch. The best recall is 88.70%, and the best F1-score is 91.83%, both achieved at 1999-
epoch. We also benchmarked Nanopolish26 using the same dataset, but due to its high 
computational resource requirement, we only called variants in chr19, which finished in 
about eleven hours with the peak memory at 125GB. Nanopolish achieved 97.09%, 80.56% 
and 88.06% on precision, recall, and F1-score, respectively. 
 

 
Table 2. Performance of Clairvoyante on Illumina data at known variant sites. *: fast training 
mode. 

Sequencing 

Technology 

Train 

using 

Variant 

in 

Trained 

Epochs 

Ending 

Learning Rate 

and Lambda 

Call 

Variants 

in 

Best Variant 

Quality 

Cutoff Precision Recall 

F1 

Score 

Illumina 

HG001 

67 1.E-05 

HG001 

54 99.68% 99.50% 99.59% 

999 1.E-03 72 99.71% 99.58% 99.65% 

1499 1.E-04 93 99.73% 99.62% 99.68% 

1999 1.E-05 91 99.73% 99.62% 99.68% 

HG001 

67 1.E-05 

HG002 

54 99.63% 99.38% 99.50% 

999 1.E-03 82 99.64% 99.41% 99.52% 

1499 1.E-04 118 99.60% 99.38% 99.49% 

1999 1.E-05 129 99.58% 99.37% 99.47% 

HG002 

66 1.E-05 

HG001 

60 99.26% 98.98% 99.12% 

999 1.E-03 83 99.26% 99.04% 99.15% 

1499 1.E-04 121 99.21% 99.00% 99.11% 

1999 1.E-05 141 99.20% 98.98% 99.09% 

HG002 

66 1.E-05 

HG002 

51 99.29% 99.07% 99.18% 

999 1.E-03 76 99.32% 99.15% 99.24% 

1499 1.E-04 75 99.33% 99.21% 99.27% 

1999 1.E-05 85 99.33% 99.21% 99.27% 

GATK UnifiedGenotyper, HG001 99.84% 87.36% 93.18% 

GATK HaplotypeCaller, HG001 99.88% 99.19% 99.54% 

GATK UnifiedGenotyper, HG002 99.82% 87.80% 93.42% 

GATK HaplotypeCaller, HG002 99.88% 99.19% 99.53% 

 
 
Table 3. Performance of Clairvoyante on PacBio data at known variant sites. *: fast training 
mode. 

Sequencing 

Technology 

Train 

using 

Variant 

in 

Trained 

Epochs 

Ending 

Learning Rate 

and Lambda 

Call 

Variants 

in 

Best Variant 

Quality 

Cutoff Precision Recall 

F1 

Score 

PacBio 

HG001 

50 1.E-05 

HG001 

45 96.91% 94.35% 95.62% 

999 1.E-03 52 97.46% 95.42% 96.43% 

1499 1.E-04 55 97.68% 96.38% 97.03% 

1999 1.E-05 52 97.65% 96.53% 97.09% 

HG001 

50 1.E-05 

HG002 

48 96.65% 94.16% 95.39% 

999 1.E-03 58 96.94% 94.43% 95.67% 

1499 1.E-04 63 96.66% 94.35% 95.49% 

1999 1.E-05 60 96.54% 94.37% 95.44% 
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HG002 

72 1.E-05 

HG001 

38 96.97% 93.11% 95.00% 

999 1.E-03 68 97.50% 92.72% 95.05% 

1499 1.E-04 75 96.94% 92.98% 94.92% 

1999 1.E-05 75 96.68% 92.85% 94.73% 

HG002 

72 1.E-05 

HG002 

34 96.83% 94.46% 95.63% 

999 1.E-03 36 96.83% 95.51% 96.17% 

1499 1.E-04 68 98.13% 95.73% 96.91% 

1999 1.E-05 51 97.65% 96.33% 96.99% 

GATK UnifiedGenotyper, HG001 68.74% 24.23% 35.83% 

GATK HaplotypeCaller, HG001 64.73% 1.98% 3.85% 

GATK UnifiedGenotyper, HG002 69.28% 24.19% 35.86% 

GATK HaplotypeCaller, HG002 66.84% 1.21% 2.37% 

 
 
Table 4. Performance of Clairvoyante on ONT data at known variant sites. *: fast training 
mode. 

Sequencing 

Technology 

Train 

using 

Variant 

in 

Trained 

Epochs 

Ending 

Learning Rate 

and Lambda 

Call 

Variants 

in 

Best Variant 

Quality 

Cutoff Precision Recall 

F1 

Score 

Oxford 

Nanopore 
HG001 

110
*

 1.E-05 

HG001 

33 94.90% 84.35% 89.34% 

999 1.E-03 33 94.07% 85.87% 89.79% 

1499 1.E-04 37 95.36% 88.12% 91.59% 

1999 1.E-05 37 95.20% 88.70% 91.83% 

GATK UnifiedGenotyper, HG001 82.65% 15.70% 26.38% 

GATK HaplotypeCaller, HG001 75.23% 1.28% 2.52% 

 

What are those false positives and false negatives? 
While we have settled on a highly optimized version of Clairvoyante for the experiments in 
this paper, it is still interesting to study the remaining FP and FN variant calls and how they 
are distributed. To achieve this, we have randomly picked 100 FP and 100 FN from the 
variants called in HG002 using the model trained on HG001 using the fast training mode 
(stopped at 67-epoch), generated plots on their input and output and manually inspected each 
one. A summary of the results are shown in Figure 3. The most problematic category of FP 
and FN variants, accounting for 71FP and 42 FN, are variants with two or more alternative 
alleles at the same position. This type of variant is not currently supported by Clairvoyante 
and instead only one allele will be reported (this limitation is further discussed in the 
Discussion section). Another 17 FP and 47 FN failed either because of “difficult reference” 
(low complexity sequence, tandem repeat or homopolymer run) or “lack of evidence” (low 
depth or even zero coverage). Among the 100 FP and 100 FN variants, we successfully 
determined 12.06% (12 FP and 11 FN) are truly wrongly classified by Clairvoyante, 20.50% 
(17 FP and 24 FN) suggest either an alignment artifact or were wrongly missed by GIAB 
dataset, and the remainders were undecidable even manually or with multiple alternative 
alleles. More details for each FP and FN are shown in Supplementary Tables 1 and 2 and 
the plots are available online (Supplementary Material, Call Variants at Known Sites, 
Resources, FP/FN plots). 
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Figure 3. Summary of the reason for failure on 100 randomly picked false positive variants, 
and 100 randomly picked false negative variants.  
 

Can lower learning rate and longer training provide better performance? 
The benchmarking results on the three models stopping at different learning rates allow us to 
study whether lower learning rate can provide better results and derive how much training is 
enough. For ONT, both from 999-epoch to 1499-epoch and from 1499-epoch to 1999-epoch, 
significant improvements were observed. However, in PacBio (Table 3), from 1499-epoch to 
1999-epoch, the F1-Score increased (97.03% to 97.09%, 96.91% to 96.99%) when both 
variant calling and model training are using the same sample, but decreased (95.49% to 
95.44%, 94.92% to 94.73%) when using different samples. The results suggest that 
Clairvoyante was overfitting the training data with a too low learning rate. The same behavior 
is also observed with Illumina data (Table 2). Thus, we suggest the Clairvoyante users to 1) 
stop at a higher learning rate for less noisy data; 2) train multiple samples stopping at 
different learning rates and select the best through performance evaluation; or 3) use a model 
trained on truth variants from multiple samples. 

 
Can a model train on truth variants from multiple samples provide better 
performance? 
Intuitively, a model trained on truth variants from two or more samples should perform better 
than those trained on just a single sample, provide that the truth variants from different 
samples have similiarly high quality. The model might even be more versatile if the 
characteristics of input, such as average depth, differ between samples. To verify our 
hypothesis, we benchmarked the variants called in HG003 (Supplementary Material, Data 
Source, PacBio Data) on three different models trained on 1) HG001; 2) HG002, and; 3) 
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HG001+HG002. All three models were trained for 1000 epochs at learning rate 1e-3, then 
another 500 epochs at learning rate 1e-4. Noteworthy, the time used for training the 
HG001+HG002 model doubled, with doubling the number of true variants and paired non-
variants. If our hypothesis is correct, the variant calling performance should increase for 
HG003 when using the HG001+HG002 model than the HG001 model or the HG002 model. 
The results are shown in Table 5. Using the HG001+HG002 model, the F1-score is 0.55% 
higher than using HG001 only and 2.88% higher than using the HG002 only. We conclude 
that using multiple samples for model training can increase the performance of Clairvoyante, 
although we expect marginal improvement gains when using more than a few samples. 
 
Table 5. Performance of variant calls in HG003 on three different models including HG001 
only, HG002 only and HG001+HG002. 

Train using 

Variant in 

Best Variant 

Quality Cutoff Precision Recall F1 Score 

HG001 72 95.61% 90.51% 92.99% 

HG002 71 93.38% 88.09% 90.66% 

HG001 + 

HG002 
56 95.91% 91.29% 93.54% 

 
 

Can a higher input data quality improve the variant calling performance? 
In Table 4, we used the ‘rel3’ ONT dataset generated by the Nanopore WGS consortium. 
Very recently, the consortium released an augmented dataset labeled ‘rel5’ (see 
Supplementary Material, Data Source, Oxford Nanopore Data). The ‘rel5’ data are a merger 
of NA12878 DNA sequencing data from ‘rel3’ (regular sequencing protocols, about 30x) and 
‘rel4’ (ultra-read set, 7.7x extra), recalled with the latest base-caller. Thus, we expect to see 
improved performance, given that the performance of Clairvoyante on ONT was limited by 
the input data quality. We trained a model on ‘rel5’ for 999 epochs at learning rate 1e-3. 
Compare to ‘rel3’, the precision improved from 94.07% to 97.21%, the recall improved from 
85.87% to 88.80%, and the F1-Score improved 89.79% to 92.81%. Thus, the result reflects 
our intuition that Clairvoyante’s performance on ONT data is limited by the input data 
quality and thus will improve over time as the technology and basecalling mature. 
 

Network topology and capacity evaluation 
In the previous subsection, we have shown Clairvoyante’s capacity to perform better on noisy 
PacBio and ONT data when trained with more data of higher quality. We next evaluated the 
performance by considering a “slim version” of Clairvoyante with smaller capacity that could 
potentially improve computational requirements. With the slim version, we expect to see 
greater performance in higher quality Illumina data than noisy data like ONT and PacBio 
data as the classification problem is easier with less noisy data. The slim version includes 
165k parameters, which is about ten times lower than the original version. Instead of 
isometrically scaling down the original network, we evaluated several different designs 
resulting in some network components with significantly reduced runtime than others or even 
reducing the parameters by 10 times while still achieving the best runtime and F1-Score 
possible.  
 
Our final slim network design removes the pooling between convolutional layers, slightly 
enlarged the kernel size in convolution and reduced the number of nodes in the two fully-
connected layers by ten times. We trained models using the fast training mode on HG001 and 
benchmarked the Illumina, PacBio and ONT data on both HG001 and HG002. The results are 
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shown in Table 6. As expected, the F1-scores degraded least in the Illumina datasets (0.82% 
and 0.73%), while degraded most in the ONT dataset (2.23%), with PacBio in the middle 
(1.68% and 1.90%). The slim version is available as a part of the Clairvoyante toolset and can 
be enabled with option ‘--slim.’ 
 
Table 6. F1-scores of different datasets on different network designs. Both the original 
models and slim models were trained on HG001 using the fast training mode. 

  Illumina PacBio ONT 

  HG001 HG002 HG001 HG002 HG001 

Original 99.59% 99.50% 95.62% 95.39% 89.34% 

Slim 98.77% 98.77% 93.94% 93.49% 87.11% 

Degraded 0.82% 0.73% 1.68% 1.90% 2.23% 

 

Genome-wide Variant Identification 
Beyond benchmarking variants at known sites, in this section we benchmarked 
Clairvoyante’s performance on calling variants genome-wide. Calling variants genome-wide 
is challenging because it tests not only how good Clairvoyante can derive the correct variant 
type, zygosity and alternative allele of a variant when evidence is marginal, but also in 
reverse, how good Clairvoyante can deny a non-variant when evidence is also marginal. 
Instead of naively evaluating all three billion sites of the whole genome with Clairvoyante, 
we tested the performance at different alternative allele cutoffs for all three sequencing 
technologies. As expected, a higher allele cutoff speeds up variant calling by producing fewer 
candidates to be tested by Clairvoyante, but worsens recall especially for noisy data like 
PacBio and ONT. Our experiments provide a reference point on how to choose a cutoff for 
each sequencing technology to achieve a good balance between recall and running speed. All 
models were trained for 1000 epochs with learning rate at 1e-3. All the experiments were 
performed on two Intel Xeon E5-2680 v4 using all the 28 cores. The commands used for 
generating the results in this section are presented in Supplementary Material, Call 
Variants Genome-wide, Commands. 
 
The results are shown in Table 7. As expected, with higher alternative allele frequency 
cutout (20%), in all experiments the precision was higher while the recall and time 
consumption were lower. For Illumina data, the best F1-score (with 0.2 allele frequency) for 
Clairvoyante was 98.65% for HG001 and 98.61% for HG002. The run time varied between 
half and an hour, being 40 minutes for the best F1-score. Using the same configuration, 
GATK HaplotypeCaller achieved F1-score 98.82% for HG001 and 98.86% for HG002; both 
ran for about 8 hours. Clairvoyante achieved a higher recall but a lower precision than GATK 
HaplotypeCaller. Inspecting the false positive and false negative variant calls for 
Clairvoyante, we found about 0.19% in FP, and 0.15% in FN were because of scenarios of 
two alternative alleles. Future works include extending Clairvoyante to support variants with 
multiple alternative alleles could increase the F1-score to about 98.82% if all variants with 
two alternative alleles can be correctly identified. As reported, DeepVariant did the same 
experiment on a 60x HG001 dataset (10x deeper than our experiment) and achieved 95.21% 
F1-score14, which is 3.44% lower than Clairvoyante. 
 
For the PacBio data, the best F1-scores were also achieved at 0.2 allele frequency cutoff. The 
best F1-score is 92.57% for HG001 and 93.05% for HG002. In contrast, DeepVariant has 
achieved 35.79% F1-score (22.14% precision, 93.36% recall) on HG001 as reported in their 
paper14. The run time for Clairvoyante at 0.25 frequency cutoff is about 2 hours, which is 
about half the time consumption at 0.2 frequency cutoff, and about 1/5 the time consumption 
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at 0.1 frequency cutoff. For ONT data, the best F1-score 77.89% was achieved at 0.1 
frequency cutoff. However, the F1-score at 0.25 frequency cutoff is just slightly lower 
(76.95%), but ran about 5 times faster, thus we suggest using 0.25 as the frequency cutoff. 
The run time is on average about 1.5 times longer than PacBio, suggesting a higher level of 
noise in data. As discussed in the previous section, we expect the performance over Oxford 
Nanopore data will further improve in the near future with improved base calling. 
 
Table 7. Performance of using Clairvoyante for variant calling genome-wide on Illumina, 
PacBio and ONT datasets. All models were trained for 1000 epochs with learning rate at 1e-3. 

Sequencing 

Technology 

Train 

using 

Variants 

in  

Call 

Variants 

in  

Alt. Allele 

Freq. 

Cutoff 

Best 

Variant 

Quality 

Cutoff Precision Recall 

F1 

Score 

Time 

Consumption 

Illumina 

HG001 

HG001 

0.1 189 98.16% 98.93% 98.55% 1:08 

0.2 182 98.41% 98.88% 98.65% 0:43 

0.25 180 98.71% 97.95% 98.33% 0:26 

HG002 

0.1 192 98.13% 98.77% 98.45% 1:11 

0.2 183 98.35% 98.77% 98.56% 0:41 

0.25 182 98.67% 97.88% 98.27% 0:30 

HG002 

HG001 

0.1 198 98.59% 98.50% 98.54% 1:16 

0.2 192 98.75% 98.39% 98.57% 0:47 

0.25 184 98.94% 97.60% 98.27% 0:25 

HG002 

0.1 195 98.53% 98.59% 98.56% 1:07 

0.2 188 98.71% 98.50% 98.61% 0:44 

0.25 182 98.95% 97.73% 98.33% 0:25 

GATK UnifiedGenotyper, HG001 57 99.23% 84.82% 91.46% 0:46 

GATK HaplotypeCaller, HG001 2 99.10% 98.54% 98.82% 8:45 

GATK UnifiedGenotyper, HG002 54 99.07% 85.35% 91.70% 0:46 

GATK HaplotypeCaller, HG002 2 99.05% 98.68% 98.86% 8:23 

PacBio 

HG001 

HG001 

0.1 157 96.31% 88.63% 92.31% 9:46 

0.2 130 98.12% 87.62% 92.57% 3:53 

0.25 125 98.62% 83.11% 90.20% 2:01 

HG002 

0.1 153 97.00% 89.08% 92.87% 9:24 

0.2 132 97.93% 88.30% 92.86% 3:34 

0.25 116 98.06% 84.69% 90.89% 1:46 

HG002 

HG001 

0.1 163 95.58% 86.69% 90.92% 14:55 

0.2 147 97.49% 85.64% 91.18% 3:29 

0.25 139 98.16% 81.47% 89.04% 1:39 

HG002 

0.1 150 97.10% 89.31% 93.04% 15:31 

0.2 134 98.09% 88.51% 93.05% 3:34 

0.25 118 98.20% 84.76% 90.98% 1:46 

Oxford 

Nanopore 
HG001 HG001 

0.1 140 86.24% 71.01% 77.89% 13:01 

0.2 139 87.24% 70.21% 77.80% 4:47 

0.25 136 87.76% 68.51% 76.95% 2:40 

0.35 130 90.96% 57.43% 70.41% 1:30 

 

Novel variants unraveled by PacBio and ONT 
Although the truth SNPs and Indels provided by GIAB were intensively called and 
meticulously curated, they are not yet complete, and they were generated without any SMS 
technology11. Bearing in mind that some false positive variant calls in the previous 
experiments might actually be real, we tried to identify a set of variants that are only 
approachable with the PacBio and ONT data, but not yet indexed in GIAB. For the HG001 
sample (variants called in HG001 using a model trained on HG001), we extracted the “false 
positive” variants (identified genome-wide with a 0.2 alternative allele frequency cutoff) 
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called in both the PacBio and ONT dataset. Then we calculated the geometric mean of the 
variant qualities of the two datasets, and we filtered the variants with a mean quality lower 
than 135 (calculated as the geometric mean of the two best variant quality cutoffs, 130 and 
139). Finally, we removed those “false positive” variants within the flanking one base of the 
known variants in GIAB. The resulting catalog of 3,135 variants retained are listed in 
Supplementary Table 3. 2,732 are SNPs, 298 are deletions, and 105 are insertions. Among 
the SNPs, 1,602 are transitions, and 1,130 are transversions. The Ti/Tv ratio is ~1.42, which 
is significantly higher than random (0.5). We manually inspected the top ten variants in 
quality using IGV28 to verify their authenticity (Figure 4a and Supplementary Figure 2a-2i). 
All ten variants were visually reviewed, and are strongly supported by the data.  
 

 
Figure 4. The IGV screen capture of (a) a heterozygote SNP from T to G at chromosome 11, 
position 98,146,409 only detectable by PacBio and ONT, (b) a heterozygote deletion AA at 
chromosome 20, position 3,200,689 undetectable by all three technologies, (c) a heterozygote 
insertion ATCCTTCCT at chromosome 1, position 184,999,851 only detectable by Illumina, 
and; (d) a heterozygote deletion G at chromosome 1, position 5,072,694 detectable by all 
three technologies. The tracks from top to down show the alignments of the Illumina, PacBio 
and ONT reads from HG001 aligned to the human reference GRCh37. 
 
We also analyzed why some variants cannot be detected by the PacBio and ONT 
technologies. Figure 5 shows the number of known variants undetected by different 
combinations of sequencing technologies. We inspected the genome sequence immediately 
after the variants and found among the 12,331 variants undetected by all three sequencing 
technologies, 3,289 (26.67%) are located in homopolymer runs, and 3,632 (29.45%) are 
located in short tandem repeats. Among the 178,331 variants that cannot be detected by 
PacBio and ONT, 102,840 (57.67%) are located in homopolymer runs, and 33,058 (18.54%) 
are located in short tandem repeats. For Illustration, Figure 4b to d depicted b) a known 
variant in homopolymer runs undetected by all three sequencing technologies, c) a known 
variant in short tandem repeats that cannot be detected PacBio and ONT, and d) a known 
variant flanked by random sequenced detected by all three sequencing technologies. It is a 
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known problem that single molecule sequencing technologies including PacBio and ONT has 
significantly increase error rate at homopolymer runs and short tandem repeats29. Future 
improvements to the base-calling algorithm or sequencing chemistry will lead to raw reads 
with higher accuracy at these troublesome genome regions and hence, further decrease the 
number of known variants undetected by Clairvoyante. 
  

 
Figure 5. A Venn diagram that shows the number of undetected known variants by different 
sequencing technologies or combinations. 
 

Discussion 
In this paper, we presented Clairvoyante, a multi-task convolutional deep neural network for 
variant calling using single molecule sequencing. By first benchmarking on the Illumina data, 
we show Clairvoyante performance was on-par to the gold-standard GATK HaplotypeCaller. 
We analyzed the false positive and false negative variant calls in depth and found complex 
variants with multiple alternative alleles to be the dominate source of error. We further 
evaluated several different aspects of Clairvoyante to assess the quality of the design and how 
can we further improve its performance by training longer with lower learning rate, 
combining multiple samples for training, or improving the input data quality. Our 
experiments on using Clairvoyante to call variants genome-wide suggested a range to search 
for the best alternative allele cutoff to balance the run time and recall for each sequencing 
technology. To the best of our knowledge, Clairvoyante is the first method for SMS to finish 
a whole genome variant calling within two hours on a single CPU-only server, while 
providing better precision and recall than other state-of-the-art variant callers such as 
Nanopolish. A deeper look into the “false positive” variant calls has identified 3,135 variants 
in HG001 that are not yet indexed in GIAB and are only approachable by Single Molecule 
Sequencing technologies like PacBio and ONT. 
 
Clairvoyante relies on high-quality training samples to provide accurate and unbiased variant 
calling. This hinders Clairvoyante from being applied to completely novel sequencing 
technologies and chemistries, for which high-quality sequencing dataset on standard GIAB 
samples has yet been produced. Nevertheless, with the increasing agreement for NA12878 as 
a gold-standard reference this requirement seems to be quite manageable. The current design 
of Clairvoyante ignore variants with two or more alternative alleles. Although the number of 
variants with two or more alternative alleles is small, a few thousands of the 3.5M total sites, 
the design will be improved in the future to tackle this small but important group of variants. 
Due to the rareness of long indel variants for model training, Clairvoyante was set to provide 
the exact alternative allele only for indel variants ≤4bp. The limitation can be lifted with 
more and more high-quality training samples available. The current Clairvoyante 
implementation also does not consider the base quality of the sequencing reads as 
Clairvoyante was targeting SMS, which do not have meaningful base quality values to 
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improve the quality of variant calling. Nevertheless, Clairvoyante can be extended to 
consider base quality by imposing it as a weight on depth or add it as an additional tensor to 
the input. We do not suggest removing any alignment by their mapping quality because low 
quality mappings will be learned by the Clairvoyante model to be unreliable. This provides 
valuable information about the trustworthiness of certain genomic regions. In future work, we 
plan to extend Clairvoyante to support somatic variant calling and trio-sample based variant 
calling. Based on GIAB’s high confidence region lists for variant calling, we also plan on 
making PacBio-specific, and ONT-specific high confidence region lists by further 
investigating the false positive and false negative variant calls made by Clairvoyante on the 
two technologies. 
 

Acknowledgments 
We thank Guangyu Yang for adding code to Clairvoyante to enable visualization using 
TensorBoard. We thank Chi-Man Liu and Yifan Zhang for benchmarking Nanopolish. R. L. 
and T. L. were partially supported by Innovative and Technology Fund ITS/331/17FP from 
the Innovation and Technology Commission, HKSAR. This work was also supported, in part, 
by awards from the National Science Foundation (DBI-1350041) and the National Institutes 
of Health (R01-HG006677 and UM1-HG008898). 
 

Author Contributions 
R.L. and M.S. conceived the study. All authors analyzed the data and wrote the manuscript. 
 

References 
1 Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of 

next-generation sequencing technologies. Nat Rev Genet 17, 333-351, 
doi:10.1038/nrg.2016.49 (2016). 

2 Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers. Nucleic 
Acids Res 39, e90, doi:10.1093/nar/gkr344 (2011). 

3 Hatem, A., Bozdag, D., Toland, A. E. & Catalyurek, U. V. Benchmarking short 
sequence mapping tools. BMC Bioinformatics 14, 184, doi:10.1186/1471-2105-14-
184 (2013). 

4 Li, H. Toward better understanding of artifacts in variant calling from high-coverage 
samples. Bioinformatics 30, 2843-2851, doi:10.1093/bioinformatics/btu356 (2014). 

5 Luo, R., Schatz, M. C. & Salzberg, S. L. 16GT: a fast and sensitive variant caller 
using a 16-genotype probabilistic model. GigaScience (2017). 

6 Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the 
Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43, 11 
10 11-33, doi:10.1002/0471250953.bi1110s43 (2013). 

7 Sedlazeck, F. J., Lee, H., Darby, C. A. & Schatz, M. C. Piercing the dark matter: 
bioinformatics of long-range sequencing and mapping. Nat Rev Genet, 
doi:10.1038/s41576-018-0003-4 (2018). 

8 LeCun, Y. The MNIST database of handwritten digits. 
http://yann.lecun.com/exdb/mnist/ (1999). 

9 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition.  2818-2826. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2018. ; https://doi.org/10.1101/310458doi: bioRxiv preprint 

https://doi.org/10.1101/310458
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 Zook, J. M. et al. Integrating human sequence data sets provides a resource of 
benchmark SNP and indel genotype calls. Nat Biotechnol 32, 246-251, 
doi:10.1038/nbt.2835 (2014). 

11 Zook, J. M. et al. Extensive sequencing of seven human genomes to characterize 
benchmark reference materials. Sci Data 3, 160025, doi:10.1038/sdata.2016.25 
(2016). 

12 Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long 
reads. Nat Biotechnol 36, 338-345, doi:10.1038/nbt.4060 (2018). 

13 Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single 
molecule sequencing. bioRxiv, doi:10.1101/169557 (2017). 

14 Poplin, R. et al. Creating a universal SNP and small indel variant caller with deep 
neural networks. bioRxiv, 092890 (2016). 

15 Chin, J. Simple Convolutional Neural Network for Genomic Variant Calling with 
TensorFlow, <https://towardsdatascience.com/simple-convolution-neural-network-
for-genomic-variant-calling-with-tensorflow-c085dbc2026f> (2017). 

16 Abadi, M. et al. Tensorflow: Large-scale machine learning on heterogeneous 
distributed systems. arXiv preprint arXiv:1603.04467 (2016). 

17 He, K., Zhang, X., Ren, S. & Sun, J. in Proceedings of the 2015 IEEE International 
Conference on Computer Vision (ICCV)    1026-1034 (IEEE Computer Society, 2015). 

18 Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-Normalizing Neural 
Networks. arXiv preprint arXiv:1706.02515 (2017). 

19 Kingma, D. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint 
arXiv:1412.6980 (2014). 

20 Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. 
Improving neural networks by preventing co-adaptation of feature detectors. arXiv 
preprint arXiv:1207.0580 (2012). 

21 Cortes, C., Mohri, M. & Rostamizadeh, A. in Proceedings of the Twenty-Fifth 
Conference on Uncertainty in Artificial Intelligence.  109-116 (AUAI Press). 

22 Rigo, A. et al. Pypy, <https://pypy.org/> (2018). 
23 Alted, F. Blosc: A blocking, shuffling and lossless compression library, 

<http://blosc.org/> (2018). 
24 Biosciences, P. Genomic Consensus, 

<https://github.com/PacificBiosciences/GenomicConsensus> (2018). 
25 Li, H. Minimap2: versatile pairwise alignment for nucleotide sequences. arXiv 1708 

(2017). 
26 Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de 

novo using only nanopore sequencing data. Nature methods 12, 733 (2015). 
27 Cleary, J. G. et al. Joint variant and de novo mutation identification on pedigrees from 

high-throughput sequencing data. J Comput Biol 21, 405-419, 
doi:10.1089/cmb.2014.0029 (2014). 

28 Robinson, J. T., Thorvaldsdottir, H., Wenger, A. M., Zehir, A. & Mesirov, J. P. 
Variant Review with the Integrative Genomics Viewer. Cancer Res 77, e31-e34, 
doi:10.1158/0008-5472.CAN-17-0337 (2017). 

29 Lu, H., Giordano, F. & Ning, Z. Oxford Nanopore MinION sequencing and genome 
assembly. Genomics, proteomics & bioinformatics 14, 265-279 (2016). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2018. ; https://doi.org/10.1101/310458doi: bioRxiv preprint 

https://doi.org/10.1101/310458
http://creativecommons.org/licenses/by-nc-nd/4.0/

