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Abstract 15 
The accurate identification of DNA sequence variants is an important, but challenging task in 16 
genomics. It is particularly difficult for single molecule sequencing, which has a per-17 
nucleotide error rate of ~5%-15%. Meeting this demand, we developed Clairvoyante, a multi-18 
task five-layer convolutional neural network model for predicting variant type (SNP or indel), 19 
zygosity, alternative allele and indel length from aligned reads. For the well-characterized 20 
NA12878 human sample, Clairvoyante achieved 99.73%, 97.68% and 95.36% precision on 21 
known variants, and 98.65%, 92.57%, 87.26% F1-score for whole-genome analysis, using 22 
Illumina, PacBio, and Oxford Nanopore data, respectively. Training on a second human 23 
sample shows Clairvoyante is sample agnostic and finds variants in less than two hours on a 24 
standard server. Furthermore, we identified 3,135 variants that are missed using Illumina but 25 
supported independently by both PacBio and Oxford Nanopore reads. Clairvoyante is 26 
available open-source (https://github.com/aquaskyline/Clairvoyante), with modules to train, 27 
utilize and visualize the model. 28 
 29 

Introduction 30 
A fundamental problem in genomics is to find the nucleotide differences in an individual 31 
genome relative to a reference sequence, i.e., variant calling. It is essential to accurately and 32 
efficiently call variants so that the genomic variants that underlie phenotypic differences and 33 
disease can be correctly detected1. Previous works have intensively studied the different data 34 
characteristics that might contribute to higher variant calling performance including the 35 
properties of the sequencing instrument2, the quality of preceding sequence aligners3 and the 36 
alignability of genome reference4. Today, these characteristics are carefully considered by 37 
state-of-the-art variant calling pipelines to optimize performance5,6. However, most of these 38 
analyses were done for short read sequencing, especially the Illumina technology, and require 39 
further study for other sequencing platforms. 40 
 41 
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Single Molecule Sequencing (SMS) technologies are emerging in recent years for a variety of 42 
important applications7. These technologies generate sequencing reads two orders of 43 
magnitude longer than standard short-read Illumina sequencing (10kbp to 100kbp instead of 44 
~100bp), but they also contain 5%-15% sequencing errors rather than ~1% for Illumina. The 45 
two major SMS companies, Pacific Biosciences (PacBio) and Oxford Nanopore Technology 46 
(ONT) have greatly improved the performance of certain genomic applications, especially 47 
genome assembly and structural variant detection7. However, single nucleotide and small 48 
indel variant calling with SMS remain challenging because the traditional variant caller 49 
algorithms fail to handle such a high sequencing error rate, especially one enriched for indel 50 
errors. 51 
 52 
Artificial Neural Networks (ANNs) are becoming increasingly prominent for a variety of 53 
classification and analysis tasks due to their advances in speed and applicability in many 54 
fields. One of the most important applications of ANNs has been image classification, with 55 
many successes including MNIST8 or GoogLeNet9.  The recent DeepVariant10 package 56 
repurposed the Inception convolutional neural network for DNA variant detection by 57 
applying it to analyzing images of aligned reads around candidate variants. At each candidate 58 
site, the network computes the probabilities of three possible zygosities (homozygous 59 
reference, heterozygous reference, and homozygous alternative), allowing accurate 60 
determination of the presence or absence of a candidate variant. And then, DeepVariant uses 61 
a post-processing step to restore the other variant information including the exact alternative 62 
allele and variant type. As the authors pointed out originally in their manuscript, it might be 63 
sub-optimal to use an image classifier for variant calling, as valuable information that could 64 
contribute to higher accuracy are lost during the image transformation. In the latest version of 65 
DeepVariant, the code is built on top of the Tensorflow machine learning framework, 66 
allowing users to change the image input into any other formats by rewriting a small part of 67 
the code. However, whether it is reasonable or not to use a network (namely inception-v3) 68 
specifically designed for image-related tasks to call variants remains unclear. 69 
 70 
In this study, we present Clairvoyante, a multi-task convolutional deep neural network 71 
specifically designed for variant calling with SMS reads. We explored different ways to 72 
enhance Clairvoyante’s power to extract valuable genomic features from the frequent 73 
background errors present in SMS. Experiments calling variants in multiple human genomes 74 
both at known variant sites and genome-wide show that Clairvoyante is on-par with GATK 75 
UnifiedGenotyper on Illumina data, and substantially outperforms Nanopolish and 76 
DeepVariant on PacBio and ONT data on accuracy and speed.  77 
 78 

Methods 79 
In this section, we first introduce the DNA sequencing datasets of three different sequencing 80 
technologies: Illumina, PacBio, and ONT. We then formulate variant calling as a supervised 81 
machine learning problem. Finally, we present Clairvoyante for this problem and explain the 82 
essential deep learning techniques applied in Clairvoyante.  83 
 84 
Datasets 85 
While most of the variant calling in previous studies were done using a single computational 86 
algorithm on single sequencing technology, the Genome-in-a-Bottle (GIAB) dataset11 first 87 
published in 2014 has been an enabler of our work. The dataset provides high-confidence 88 
SNPs and indels for a standard reference sample HG001 (also referred to as NA12878) by 89 
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integrating and arbitrating between 14 datasets from five sequencing and genotyping 90 
technologies, seven read mappers and three variant callers. For our study, we used as our 91 
truth dataset the latest dataset version 3.3.2 for HG001 (Supplementary Material, Data 92 
Source, Truth Variants) that comprises 3,042,789 SNPs, 241,176 insertions and 247,178 93 
deletions for the GRCh38 reference genome, along with 3,209,315 SNPs, 225,097 insertions 94 
and 245,552 deletions for GRCh37. The dataset also provides a list of regions that cover 95 
83.8% and 90.8% of the GRCh38 and the GRCh37 reference genome, where variants were 96 
confidently genotyped. The GIAB extensive project12 published in 2016 further introduced 97 
four standard samples, including the Ashkenazim Jewish sample HG002 we have used in this 98 
work, containing 3,077,510 SNPs, 249,492 insertions and 256,137 deletions for GRCh37, 99 
3,098,941 SNPs, 239,707 insertions and 257,019 deletions for GRCh37. 83.2% of the whole 100 
genome was marked as confident for both the GRCh38 and GRCh37. 101 
 102 
Illumina Data 103 
The Illumina data was produced by the National Institute of Standards and Technology 104 
(NIST) and Illumina12. Both the HG001 and HG002 datasets were generated on an Illumina 105 
HiSeq 2500 in Rapid Mode (v1) with 2x148bp paired-end reads. Both have an approximate 106 
300x total coverage and were aligned to GRCh38 decoy version 1 using Novoalign version 107 
3.02.07. In our study, we further down-sampled the two datasets to 50x to match the available 108 
data coverage of the other two SMS technologies (Supplementary Material, Data Source, 109 
Illumina Data). 110 
 111 
Pacific Bioscience (PacBio) Data 112 
The PacBio data was produced by NIST and Mt. Sinai School of Medicine12. The HG001 113 
dataset has 44x coverage, and the HG002 has 69x. Both datasets comprise 90% P6-C4 and 114 
10% P5-C3 sequencing chemistry and have a sequence N50 length between 10k-11kbp. 115 
Reads were extracted from the downloaded alignments and aligned again to GRCh37 decoy 116 
version 5 using NGMLR13 version 0.2.3 (Supplementary Material, Data Source, PacBio 117 
Data). 118 
 119 
Oxford Nanopore (ONT) Data 120 
The Oxford Nanopore data were generated by the Nanopore WGS consortium14. Only data 121 
for sample HG001 are available to date, thus limiting the “cross sample variant calling 122 
evaluation” and “combined sampled training” on ONT data in the Result section. In our 123 
study, we used the ‘rel3’ release sequenced on the Oxford Nanopore MinION using 1D 124 
ligation kits (450bp/s) and R9.4 chemistry. The release comprises 39 flowcells and 91.2G 125 
bases, about 30x coverage. The reads were downloaded in raw fastq formatted and aligned to 126 
GRCh37 decoy version 5 using NGMLR13 version 0.2.3 (Supplementary Material, Data 127 
Source, Oxford Nanopore Data). 128 
 129 
Variant Calling as Multi-Task Regression and Classification 130 
We model each variant with four categorical variables: 131 

• 𝐴 ∈ {A,	C,	G,	T} is the alternate base at a SNP, or the reference base otherwise 132 
• 𝑍 ∈ {Homozygote,	Heterozygote} is the zygosity of the variant 133 
• 𝑇 ∈ {Reference,	SNP,	Insertion,	Deletion} is the variant type 134 
• 𝐿 ∈ {0,	1,	2,	3,	4,	>4} is the length of an INDEL, where ‘>4’ represents a gap longer 135 

than 4bp 136 
 137 
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For the truth data, each variable can be represented by a vector (i.e. 1-D tensor) using the 138 
one-hot or probability encoding, as is typically done in deep learning: ab = Pr{A = b}, zi = δ(i, 139 
Z), tj = δ(j, T) and lk = δ(k, L), where δ(p, q) equals 1 if p = q, or 0 otherwise. The four vectors 140 
(a, z, t, l) are the outputs of the network. ab is set to all zero for an insertion or deletion. In the 141 
current Clairvoyante implementation, 1) multi-allelic SNPs are excluded from training, and 142 
2) base-quality is not used (see “Discussion” below for a rationale). 143 
 144 
With deep learning, we seek a function F: x → (a, z, t, l) that minimizes the cost C:  145 
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where v iterates through all variants and a variable with a caret indicates it is an estimate from 146 
the network. Variable x is the input of the network, and it can be of any shape and contain 147 
any information. Clairvoyante uses an x that contains a summarized “piled-up” representation 148 
of read alignments. The details will be discussed in the next section named “Clairvoyante”. 149 
 151 
In our study, good performance implies correct predictions could be made even when the 152 
evidence is marginal to distinguish a genuine variant from non-variant (reference) position. 153 
To achieve the goal, we paired each truth variant with two non-variants randomly sampled 154 
from the genome at all possible non-variant and non-ambiguous sites for model training. 155 
With about 3.5M truth variants from the GIAB dataset, about 7M non-variants are added as 156 
samples for model training. 157 
 158 
We randomly partitioned all samples into 90% for training and 10% for validation. We 159 
intentionally did not hold out any sample of the data for testing as other projects commonly 160 
do because, in our study, we can use an entirely different dataset for testing samples. For 161 
example, we can use the samples of HG002 to test against a model trained on HG001, and 162 
vice versa. 163 
 164 
Clairvoyante 165 
Clairvoyante is a multi-task five-layer convolution neural network with the last two layers as 166 
feedforward layers (Figure 1). The multi-task neural network makes four groups of 167 
predictions on each input: 1) alternative alleles, 2) zygosity, 3) variant type, and 4) indel 168 
length. The predictions in groups 2, 3 and 4 are mutually exclusive while the predictions in 169 
group 1 are not. The alternative allele predictions are computed directly from the first fully 170 
connected layer (FC4), while the other three group of predictions are computed from the 171 
second fully connected layer (FC5). The indel length prediction group has six possible 172 
outputs indicating an indel with a length between 0-3bp or ≥4bp of any unbounded length. 173 
The prediction limit on indel length is configurable in Clairvoyante and can be raised when 174 
more training data on longer indels could be provided. The Clairvoyante network is succinct 175 
and fine-tuned for the variant calling purpose. It contains only 1,631,496 parameters, about 176 
13-times fewer than DeepVariant10 using the Inception-v3 network architecture, which was 177 
originally designed for general purpose image recognition. Additional details of Clairvoyante 178 
are introduced in the different subsections below. 179 
 180 
For each input sample (truth or candidate variants), the overlapping sequencing read 181 
alignments are transformed into a multi-dimensional tensor x of shape 33 by 4 by 4. The first 182 
dimension ‘33’ corresponds to the position. The second dimension ‘4’ corresponds to the 183 
count of A, C, G, or T on the sequencing reads, the way of counting is subject to the third 184 
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dimension. The third dimension ‘4’ corresponds to four different ways of counting. In the 185 
first dimension, we added 16 flanking base-pairs on both sides of a candidate (in total 33bp), 186 
which we have measured to be sufficient to manifest background noise while providing a 187 
good computational efficiency. In the second dimension, we separated any counts into four 188 
bases. In the third dimension, we used four different ways of counting, generating four 189 
tensors of shape 33 by 4. The first tensor encodes the reference sequence and the number of 190 
reads supporting the reference alleles. The second, third and fourth tensors use the relative 191 
count against the first tensor: the second tensor encodes the inserted sequences, the third 192 
tensor encodes the deleted base-pairs, and the fourth tensor encodes alternative alleles. For an 193 
exact description of how x is generated, please refer to the pseudo code in “Supplementary 194 
Material, Pseudo code for generating the input”. Figure 2 illustrates how the tensors can 195 
represent a SNP, an insertion, a deletion, and a non-variant (reference), respectively. The 196 
non-variant in Figure 2 also depicts how the matrix will show background noise. A similar 197 
but simpler read alignment representation was proposed by Jason Chin15 in mid-2017, the 198 
same time as we started developing Clairvoyante. Different from Chin’s representation, ours 199 
decouples the substitution and insertion signal into separate arrays and allows us to precisely 200 
record the allele of inserted sequence. 201 
 202 
Our study used the widely adopted TensorFlow16 as its primary programming framework. 203 
Using the 44x coverage HG001 PacBio dataset as an example, a near optimal model can be 204 
trained in three hours using the latest desktop GPU model nVidia GTX 1080 Ti. Using a 205 
trained model, about two hours is needed to call variants genome-wide using a 2 x 14-core 206 
CPU-only server (without GPU), and it takes only a few minutes to call variants at known 207 
variant sites or in an exome (>5,000 candidate sites per second). Several techniques have 208 
been applied to minimize computational and memory consumption (see the Computational 209 
Performance subsection). 210 
 211 

 212 
Figure 1. Clairvoyante network architecture and layer details. The descriptions under each 213 
layer includes 1) the layer’s function; 2) the activation function used; 3) the dimension of the 214 
layer in parenthesis (Input layer: Height x Width x Arrays, Convolution layer: Height x 215 
Width x Filters, Fully connected layer: Nodes), and; 4) kernel size in brackets (Height x 216 
Width).  217 
 218 
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 219 
Figure 2. Selected illustrations of how Clairvoyante represents the three common types of 220 
small variant, and a non-variant. The figure includes: (top left) a C>G SNP, (top right) a 9bp 221 
insertion, (bottom left) a 4bp deletion, and (bottom right) a non-variant with reference 222 
allele. The color intensity represents the strength of a certain variant signal. The SNP, 223 
insertion and deletion examples are ideal with almost zero background noise. The non-variant 224 
example illustrates how the background noises look like when not mingled with any variant 225 
signal. 226 
 227 
Model Initialization 228 
Weight initialization is important to stabilize the variances of activation and back-propagated 229 
gradients at the beginning of model training. We used a He initializer17 to initialize the 230 
weights of hidden layers in Clairvoyante, as the He initializer is optimized for training 231 
extremely deep models using rectified activation function directly from scratch. For each 232 
layer, the weight of each node is sampled from a univariate normal distribution with 𝜎 = 1 ÷233 
g𝑑\ ÷ 2
i , where 𝑑\ denote the number of in-degree of the node.  234 
 235 
Activation Function 236 
Batch normalization is a technique to ensure zero mean and unit variance in each hidden 237 
layer to avoid exploding or diminishing gradients during training. However, batch 238 
normalization has often been identified as a computational bottleneck in neural network 239 
training because computing the mean and the standard deviation of a layer is not only a 240 
dependent step, but also a reduction step that cannot be efficiently parallelized. To tackle this 241 
problem, we will use the new activation function called “Scaled Exponential Linear Units” 242 
(SELUs)18, a variant of the rectified activation function. Different from a standard batch 243 
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normalization approach that adds an implicit layer for the named purpose after each hidden 244 
layer, SELUs utilizes the Banach fixed-point theorem to ensure convergence to zero mean 245 
and unit variance in each hidden layer without batch normalization. 246 
 247 
Optimizer and Learning rate 248 
We used an Adam optimizer with default settings19 to update the weights by adaptive node-249 
specific learning rates, whereas setting a global learning rate only functions as setting an 250 
upper limit to the learning rates. This behavior allows Clairvoyante to remain at a higher 251 
learning rate for a longer time to speed up the training process. 252 
  253 
Although the Adam optimizer performs learning rate decay intrinsically, we found decreasing 254 
the global learning rate when the cost of the model in training plateaued can lead to a better 255 
model performance in our study. In Clairvoyante, we implemented two types of training 256 
modes. The fast training mode is an adaptive decay method that uses an initial learning rate at 257 
1e-3, decreases the learning rate by a factor of 0.1 when the validation rate goes up and down 258 
for five rounds and stops after two times of decay. A second nonstop training mode allows 259 
users to decide when to stop and continue using a lower learning rate. 260 
 261 
Dropout and L2 Regularization 262 
Although more than three million labeled truth variants are available for training, the scarcity 263 
of some labels, especially variants with a long indel length, could fail the model training by 264 
overfitting to abundantly labeled data. To alleviate the class imbalance, we apply both  265 
dropout20 and L2 regularization21 techniques in our study. Dropout is a powerful 266 
regularization technique. During training, dropout randomly ignoring nodes in a layer with 267 
probability p, then sums up the activations of remaining nodes and finally magnify the sum 268 
by 1/p. Then during testing, the algorithm sums up the activations of all nodes with no 269 
dropout. With probability p, the dropout technique is creating up to 1 ÷ (1 − 𝑝)k possible 270 
subnetworks during the training. Therefore, dropout can be seen as dividing a network into 271 
subnetworks with reused nodes during training. However, for a layer with just enough nodes 272 
available, applying dropout will require more nodes to be added, thus potentially increasing 273 
the time needed to train a model. In balance, we applied dropout only to the first fully 274 
connected layer (FC4) with p=0.5, and L2 regularization to all the hidden layers in 275 
Clairvoyante. In practice, we set the lambda of L2 regularization the same as the learning 276 
rate. 277 
 278 
Visualization 279 
We created an interactive python notebook accessible within a web browser or a command 280 
line script for visualizing inputs and their corresponding node activations in hidden layers and 281 
output layers. Supplementary Figure 1 shows the input and node activations in all hidden 282 
layers and output layers of an A>G SNP variant in sample HG002 test against a model 283 
trained with samples from HG001 for a thousand epochs at 1e-3 learning rate. Each of the 284 
nodes can be considered as a feature deduced through a chain of nonlinear transformations of 285 
the read alignments input. 286 
 287 
Computational Performance 288 
Making Clairvoyante a computationally efficient tool that can run on modern desktop and 289 
server computers with commodity configurations is one of our primary targets. Here, we 290 
introduce the two critical methods used for decreasing computational time and memory 291 
consumption.  292 
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 293 
Clairvoyante can be roughly divided into two groups of code, one is sample preparation 294 
(preprocessing and model training), and the second is sample evaluation (model evaluation 295 
and visualization). Model training runs efficiently because it invokes Tensorflow, which is 296 
maintained by a large developer community and has been intensively optimized with most of 297 
its performance critical code written in C, C++ or CUDA. Using the native python 298 
interpreter, sample preprocessing became the bottleneck, and the performance did not 299 
improve by using multi-threading due to the existence of Global Interpreter Lock (GIL). We 300 
solved the problem by using Pypy22, a Just-In-Time (JIT) compiler that performs as an 301 
alternative to the native python interpreter and requires no change to our code. In our study, 302 
Pypy sped up the sample preparation code by 5 to 10 times. 303 
 304 
The memory consumption in model training was also a concern. For example, with a naïve 305 
encoding, HG001 requires 40GB memory to store the variant and non-variant samples, which 306 
could prevent effective GPU utilization. We observed that these samples are immutable and 307 
follow the “write once, read many” access pattern. Thus, we applied in-memory compression 308 
using the blosc23 library with the lz4hc compression algorithm, which provides a high 309 
compression ratio, 100MB/s compression rate, and an ultra-fast decompression rate at 7GB/s. 310 
Our benchmarks show that applying in-memory compression does not impact the speed but 311 
decreased the memory consumption by five times. 312 

Results 313 
In this section, we first benchmarked Clairvoyante on Illumina, PacBio, and ONT data at 314 
known variant sites. Based on the benchmarking results, we have addressed several important 315 
questions regarding the results, the model training, and the input data. Last, we evaluated 316 
Clairvoyante’s performance to call variants genome-wide. 317 
 318 
Training Runtime Performance 319 
We recommend using GPU acceleration for model training and CPU-only for variant calling. 320 
Table 1 shows the performance of different GPU and CPU models in training. Using a high-321 
performance desktop GPU model GTX 1080 Ti, 170 seconds are needed per epoch, which 322 
leads to about 5 hours to finish training a model with the fast training mode. However, for 323 
variant calling the speed up by GPU is insignificant because CPU workloads such as VCF 324 
file formatting and I/O operations dominate. Variant calling at 3.5M known variant sites 325 
takes about 20 minutes using 28 CPU cores. Variant calling genome-wide varies between 30 326 
minutes to a few hours subject to which sequencing technology and alternative allele 327 
frequency cutoff were used.  328 
 329 
 330 
Table 1. Time per epoch of different models of GPU and CPU in model training. 331 

Equipment 
Seconds per Epoch 
per 11M samples 

GTX 1080 Ti 170 
GTX 980 250 

GTX Titan 520 
Tesla K40 w/ top power setting 580 

Tesla K40 620 
Tesla K80 (one socket) 700 

GTX 680 780 
Intel Xeon E5-2680 v4 28-core 2900 
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 332 
Call Variants at Known Sites 333 
Clairvoyante was designed targeting SMS, nevertheless, the method is generally applicable 334 
for short read data as well. We benchmarked Clairvoyante on three sequencing technologies: 335 
Illumina, PacBio, and ONT using both the fast and the nonstop training mode. In nonstop 336 
training mode, we started training the model from 0 to 999-epoch at learning rate 1e-3, then to 337 
1499-epoch at 1e-4, and finally to 1999-epoch at 1e-5. We then benchmarked the model 338 
generated by the fast mode, and all three models stopped at different learning rates in the 339 
nonstop mode. We also benchmarked variant calling on one sample (e.g., HG001) using a 340 
model trained on another sample (e.g., HG002). Further, we ran GATK UnifiedGenotyper6 341 
and GATK HaplotypeCaller6 for comparison. Noteworthy, GATK UnifiedGenotyper was 342 
superseded by GATK HaplotypeCaller, thus for Illumina data, we should refer to the results 343 
of HaplotypeCaller as the true performance of GATK. However, our benchmarks show that 344 
UnifiedGenotyper performed better than HaplotypeCaller on the PacBio and ONT data, thus 345 
we also benchmarked UnifiedGenotyper for all three technologies for users to make parallel 346 
comparisons. We also attempted to benchmark other tools for SMS reads including PacBio 347 
GenomicConsensus v5.124, and Nanopolish v0.9.025, but we only completed the benchmark 348 
with Nanopolish. The reason why the other tools failed, and the commands used for 349 
generating the results in this section are presented in Supplementary Material, Call 350 
Variants at Known Sites, Commands.  351 
 352 
The benchmarks at known GIAB truth variant sites i) provides a clear view of how 353 
sequencing technologies perform differently with Clairvoyante and other tools in the high 354 
confident genome regions, which in turn ii) enables the detailed assessment of Clairvoyante 355 
including testing for overfitting, higher data quality and network capacity. The benchmarks 356 
also iii) support the expected performance of Clairvoyante on a typical precision medicine 357 
application that only tens to hundreds of clinically relevant or actionable variants are being 358 
genotyped. This is becoming increasingly important in recent days as SMS is becoming more 359 
widely used for clinical diagnosis of structural variations, but at the same time, doctors and 360 
researchers also want to know if there exist any actionable or incidental small variants 361 
without additional short read sequencing26. So firstly, we have evaluated Clairvoyante’s 362 
performance on known GIAB truth variant sites before extending the evaluation genome-363 
wide. The latter is described in the section named “Genome-wide variant identification”. 364 
 365 
We used the submodule vcfeval in RTG Tools27 version 3.7 to benchmark our results and 366 
generate three metrics including Precision, Recall, and F1-score. From the number of true 367 
positives (TP), false positives (FP), and false negatives (FN), we compute the three metrics 368 
as Precision = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃), Recall = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁), and F1-score = 2𝑇𝑃/(2𝑇𝑃 +369 
𝐹𝑁 + 𝐹𝑃). FP are defined as variants existing in the GIAB dataset that also identified as a 370 
variant by Clairvoyante, but with discrepant variant type, alternative allele or zygosity. FN 371 
are defined as the variants existing in the GIAB dataset but identified as a non-variant by 372 
Clairvoyante. F1-score is the harmonic mean of the precision and recall. RTG vcfeval also 373 
provides the best variant quality cutoff for each dataset, filtering the variants under which can 374 
maximize the F1-score. To the best of our knowledge, RTG vcfeval was also used by the 375 
GIAB project itself. vcfeval cannot deal with Indel variant calls without an exact allele. 376 
However, in our study, Clairvoyante was set to provide the exact allele only for Indels ≤4bp. 377 
Thus, for Clairvoyante, all Indels >4bp were removed from both the baseline and the variant 378 
calls before benchmarking. The commands used for benchmarking are presented in 379 
Supplementary Material, Benchmarking, Commands. 380 
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 381 
Table 2 shows the performance of Clairvoyante on Illumina data. The best accuracy is 382 
achieved by calling variants in HG001 using the model trained on HG001 at 1499-epoch, 383 
with 99.73% precision, 99.62% recall and 99.68% F1-score. A major concern of using deep 384 
learning or any statistical learning technique for variant calling is the potential for overfitting 385 
to the training samples. Our results show that Clairvoyante is not affected by overfitting, and 386 
we validated the versatility of the trained models by calling variants in a genome using a 387 
model trained on a second sample. Interestingly, the performance of calling variants in 388 
HG002 using a model trained on HG001 (for convenience, hereafter denoted as 389 
HG002>HG001) is 0.25% higher (99.52% against 99.27%) than HG002>HG002 and similar 390 
to HG001>HG001. As we know the truth variants in HG001 were verified and rectified by 391 
more orthogonal genotyping methods than HG00212, we believe it is the higher quality of 392 
truth variants in HG001 than HG002 that gave the model trained on HG001 a higher 393 
performance. Clairvoyante achieved 0.14% higher (99.68% against 99.57%) F1-score than 394 
GATK UnifiedGenotyper on HG001 but 0.03% lower (99.52% against 99.55%) on HG002. 395 
This again corroborated the importance of high-quality truth variants for Clairvoyante to 396 
achieve superior performance.  397 
 398 
Table 3 shows the performance of Clairvoyante on PacBio data. The best performance is 399 
achieved by calling variants in HG001 using the model trained on HG001 at 1999-epoch, 400 
with 97.65% precision, 96.53% recall and 97.09% F1-score. As previously reported, 401 
DeepVariant10 has benchmarked the same dataset in their studied and reported 97.25% 402 
precision, 88.51% recall and 92.67% F1-score. We noticed our benchmark differs from 403 
DeepVariant because we have removed Indels >4bp (e.g. 52,665 sites for GRCh38 and 404 
52,709 for GRCh37 in HG001) from both the baseline and variant calls. If we assume 405 
DeepVariant can identify all the 91k Indels >4bp correctly, it’s recall will increase to 90.73%, 406 
which is still 5.8% lower than Clairvoyante. 407 
 408 
Table 4 shows the performance of Clairvoyante on ONT data. As there are no available deep 409 
coverage ONT datasets for HG002, we provided two sets of benchmarks including 1) variant 410 
calls in all chromosomes of HG001 using models trained on the same chromosomes, and 2) 411 
variant calls in the chromosome 1 of HG001 using models trained on all chromosomes of 412 
HG001 except for the chromosome 1. The first benchmark (genome-wide training and 413 
calling) achieves the best precision of 95.36% at 1499-epoch. The best recall is 88.70%, and 414 
the best F1-score is 91.83%, both achieved at 1999-epoch. The second benchmark (variant 415 
calls on Chr1 and genome-wide training) is similar to the first benchmark and is slightly 416 
better. It shows the best precision is 96.85%, the best recall is 90.69% and the best F1-score 417 
is 93.67%, all achieved at 1999-epoch. We also benchmarked Nanopolish25 using the same 418 
dataset, using 28 CPU cores we called variants in chr19 in about eleven hours. Nanopolish 419 
achieved 97.09%, 80.56% and 88.06% on precision, recall, and F1-score, respectively (SNP: 420 
98.10%, 88.91% and 93.28%, Indel: 87.49%, 33.52% and 48.47%). In addition, we have 421 
applied Nanopolish to the whole genome of HG001. Also using 28 CPU cores, it finished in 422 
40 days and achieved 97.41%, 84.46% and 90.47% on precision, recall, and F1-score, 423 
respectively (SNP: 98.28%, 92.60% and 95.36%, Indel: 88.28%, 37.50% and 52.64%). 424 
 425 
 426 
Table 2. Performance of Clairvoyante on Illumina data at known variant sites. *: fast training 427 
mode. 428 

Seq. 
Tech. 

Ending 
Learnin

Best 
Varian Overall SNP Indel 
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Model 
Traine
d on 

Traine
d 

Epochs 

g Rate 
and 

Lambda 

Call 
Variant

s in 

t 
Quality 
Cutoff 

Precisio
n Recall F1 

Score 
Precisio

n Recall F1 
Score 

Precisio
n Recall F1 

Score 

Illumin
a 

HG001 

67* 1.E-05 

HG001 

54 99.68% 99.50% 99.59% 99.94% 99.92% 99.93% 97.85% 96.81% 97.33% 
999 1.E-03 72 99.71% 99.58% 99.65% 99.94% 99.93% 99.94% 98.07% 97.24% 97.65% 

1499 1.E-04 93 99.73% 99.62% 99.68% 99.94% 99.93% 99.93% 98.24% 97.52% 97.88% 
1999 1.E-05 91 99.73% 99.62% 99.68% 99.94% 99.93% 99.93% 98.23% 97.51% 97.87% 

HG001 

67* 1.E-05 

HG002 

54 99.63% 99.38% 99.50% 99.90% 99.81% 99.85% 97.63% 96.44% 97.03% 
999 1.E-03 82 99.64% 99.41% 99.52% 99.90% 99.82% 99.86% 97.72% 96.60% 97.16% 

1499 1.E-04 118 99.60% 99.38% 99.49% 99.89% 99.81% 99.85% 97.44% 96.44% 96.93% 
1999 1.E-05 129 99.58% 99.37% 99.47% 99.89% 99.81% 99.85% 97.33% 96.33% 96.83% 

HG002 

66* 1.E-05 

HG001 

60 99.26% 98.98% 99.12% 99.50% 99.87% 99.68% 97.48% 93.22% 95.30% 
999 1.E-03 83 99.26% 99.04% 99.15% 99.51% 99.88% 99.70% 97.45% 93.43% 95.40% 

1499 1.E-04 121 99.21% 99.00% 99.11% 99.49% 99.87% 99.68% 97.12% 93.18% 95.11% 
1999 1.E-05 141 99.20% 98.98% 99.09% 99.50% 99.87% 99.68% 97.04% 93.06% 95.01% 

HG002 

66* 1.E-05 

HG002 

51 99.29% 99.07% 99.18% 99.51% 99.85% 99.68% 97.56% 93.59% 95.53% 
999 1.E-03 76 99.32% 99.15% 99.24% 99.53% 99.87% 99.70% 97.76% 94.05% 95.87% 

1499 1.E-04 75 99.33% 99.21% 99.27% 99.52% 99.88% 99.70% 97.82% 94.30% 96.03% 
1999 1.E-05 85 99.33% 99.21% 99.27% 99.52% 99.88% 99.70% 97.83% 94.30% 96.03% 

GATK UnifiedGenotyper, HG001 6 99.74% 99.41% 99.57% 99.89% 99.92% 99.90% 98.82% 96.28% 97.54% 
GATK HaplotypeCaller, HG001 5 99.90% 99.81% 99.85% 99.99% 99.96% 99.97% 99.34% 98.92% 99.13% 

GATK UnifiedGenotyper, HG002 3 99.74% 99.36% 99.55% 99.86% 99.84% 99.85% 98.97% 96.29% 97.61% 
GATK HaplotypeCaller, HG002 5 99.91% 99.80% 99.86% 99.97% 99.90% 99.93% 99.51% 99.19% 99.35% 

 429 
Table 3. Performance of Clairvoyante on PacBio data at known variant sites. *: fast training 430 
mode. 431 

Seq. 
Tech. 

Model 
Trained 

on 

Trained 
Epochs 

Ending 
Learning 

Rate 
and 

Lambda 

Call 
Variants 

in 

Best 
Variant 
Quality 
Cutoff 

Overall SNP Indel 

Precision Recall F1 
Score Precision Recall F1 

Score Precision Recall F1 
Score 

PacBio 

HG001 

50* 1.E-05 

HG001 

45 96.91% 94.35% 95.62% 99.57% 99.47% 99.52% 70.99% 60.14% 65.12% 
999 1.E-03 52 97.46% 95.42% 96.43% 99.69% 99.65% 99.67% 76.69% 67.04% 71.54% 

1499 1.E-04 55 97.68% 96.38% 97.03% 99.74% 99.72% 99.73% 79.84% 73.45% 76.51% 
1999 1.E-05 52 97.65% 96.53% 97.09% 99.73% 99.72% 99.72% 79.91% 74.32% 77.01% 

HG001 

50* 1.E-05 

HG002 

48 96.65% 94.16% 95.39% 99.38% 99.28% 99.33% 70.67% 60.19% 65.01% 
999 1.E-03 58 96.94% 94.43% 95.67% 99.40% 99.30% 99.35% 73.40% 61.82% 67.12% 

1499 1.E-04 63 96.66% 94.35% 95.49% 99.38% 99.28% 99.33% 71.08% 60.31% 65.26% 
1999 1.E-05 60 96.54% 94.37% 95.44% 99.38% 99.29% 99.33% 70.21% 60.11% 64.76% 

HG002 

72* 1.E-05 

HG001 

38 96.97% 93.11% 95.00% 99.33% 99.20% 99.27% 69.94% 52.43% 59.93% 
999 1.E-03 68 97.50% 92.72% 95.05% 99.29% 99.12% 99.21% 74.47% 51.93% 61.19% 

1499 1.E-04 75 96.94% 92.98% 94.92% 99.04% 98.97% 99.00% 72.28% 52.23% 60.64% 
1999 1.E-05 75 96.68% 92.85% 94.73% 98.91% 98.85% 98.88% 70.92% 51.38% 59.59% 

HG002 

72* 1.E-05 

HG002 

34 96.83% 94.46% 95.63% 99.53% 99.47% 99.50% 71.18% 60.74% 65.55% 
999 1.E-03 36 96.83% 95.51% 96.17% 99.64% 99.62% 99.63% 72.85% 66.60% 69.58% 

1499 1.E-04 68 98.13% 95.73% 96.91% 99.74% 99.75% 99.74% 82.76% 70.96% 76.40% 
1999 1.E-05 51 97.65% 96.33% 96.99% 99.67% 99.77% 99.72% 80.21% 72.87% 76.36% 

GATK UnifiedGenotyper, HG001 1 68.54% 23.82% 35.36% 68.54% 27.40% 39.14% - - - 
GATK HaplotypeCaller, HG001 1 64.66% 1.95% 3.79% 65.30% 2.24% 4.33% 7.02% 0.02% 0.04% 

GATK UnifiedGenotyper, HG002 1 69.08% 23.77% 35.37% 69.08% 27.39% 39.23% - - - 
GATK HaplotypeCaller, HG002 1 66.82% 1.19% 2.33% 66.82% 1.37% 2.68% 52.00% 0.003% 0.006% 

 432 
Table 4. Performance of Clairvoyante on ONT data at known variant sites. *: fast training 433 
mode. 434 

Seq. 
Tech. 

Model 
Traine
d on 

Traine
d 

Epoch
s 

Ending 
Learnin
g Rate 

and 
Lambd

a 

Call 
Variant

s in 

Best 
Varian

t 
Qualit

y 
Cutoff 

Overall SNP Indel 

Precisio
n Recall F1 

Score 
Precisio

n Recall F1 
Score 

Precisio
n Recall F1 

Score 

Oxford 
Nanopor

e 

HG001 

110* 1.E-05 

HG001 

33 94.90% 84.35% 89.34% 96.40% 92.73% 94.53% 62.49% 25.53% 36.25% 
999 1.E-03 33 94.07% 85.87% 89.79% 96.02% 93.23% 94.60% 63.49% 34.49% 44.70% 

1499 1.E-04 37 95.36% 88.12% 91.59% 97.31% 95.18% 96.23% 66.91% 40.10% 50.15% 
1999 1.E-05 37 95.20% 88.70% 91.83% 97.28% 95.55% 96.41% 66.67% 42.06% 51.58% 

HG001 
(excep

t for 
chr1) 

110* 1.E-05 
HG001 
(chr1) 

29 95.71% 84.83% 89.94% 96.62% 93.02% 94.79% 64.42% 27.45% 38.50% 
999 1.E-03 29 95.88% 87.74% 91.63% 96.11% 93.55% 94.81% 65.27% 37.29% 47.47% 

1499 1.E-04 31 95.85% 89.58% 92.61% 97.71% 95.63% 96.66% 69.09% 43.13% 53.11% 
1999 1.E-05 33 96.85% 90.69% 93.67% 97.47% 95.78% 96.62% 68.63% 43.37% 53.15% 

Nanopolish, HG001, chr19 only - 97.09% 80.56% 88.06% 98.10% 88.91% 93.28% 87.49% 33.52% 48.47% 
Nanopolish, HG001 - 97.41% 84.46% 90.47% 98.28% 92.60% 95.36% 88.28% 37.50% 52.64% 

GATK UnifiedGenotyper, HG001 0 82.15% 15.43% 25.99% 82.15% 17.75% 29.19% - - - 
GATK HaplotypeCaller, HG001 1 75.13% 1.26% 2.48% 75.52% 1.45% 2.84% 16.50% 0.01% 0.03% 

 435 
Characterization of potential false positives and false negatives 436 
While we have arrived at a highly optimized version of Clairvoyante for the experiments in 437 
this paper, it is essential to study the remaining FP and FN variant calls and how they are 438 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 26, 2018. ; https://doi.org/10.1101/310458doi: bioRxiv preprint 

https://doi.org/10.1101/310458
http://creativecommons.org/licenses/by-nc-nd/4.0/


distributed to support for future improvements. To achieve this, on Illumina data, we have 439 
randomly picked 100 FP and 100 FN from the variants called in HG002 using the model 440 
trained on HG001 using the fast training mode (stopped at 67-epoch), generated plots on their 441 
input and output and manually inspected each one. A summary of the results is shown in 442 
Figure 3. The most significant category of FP and FN variants, accounting for 71 FP and 42 443 
FN, are variants with two or more alternative alleles at the same position. Clairvoyante does 444 
not currently support this type of variant, and instead, only one allele will be reported (this 445 
limitation is further discussed in the Discussion). Except for 1 FP and 7 FN that have no read 446 
coverage at all (because we have downsampled from 300x to 50x), the other 28 FP and 51 447 
FN are errors that Clairvoyante should avoid. Among them, 13 FP and 2 FN failed because of 448 
relatively “difficult reference” (low complexity sequence, tandem repeat or homopolymer 449 
run), 3 FP and 18 FN because of “lack of evidence” (depth ≤ 20 or even ≤ 3). The results 450 
suggest that to improve Clairvoyante further, we should increase the accuracy of the variants 451 
in the “difficult reference” regions and increase the sensitivity of the variants “lack of 452 
evidence”. Noteworthy, the 1 FP Clairvoyante made with no read coverage at all is specific to 453 
the “Call variant at known sites” mode since Clairvoyante will decide on each known site 454 
regardless of covered or not. This type of FP could be easily eliminated by filtering the 455 
variants with zero depth, but we have retained it in our study to show a complete spectrum of 456 
errors Clairvoyante has made. More details for each FP and FN are shown in Supplementary 457 
Tables 1, and 2 and the plots are available online (Supplementary Material, Call Variants 458 
at Known Sites, Resources, FP/FN plots). 459 
 460 

 461 
Figure 3. Summary of the reason for failure on 100 randomly picked false positive variants, 462 
and 100 randomly picked false negative variants.  463 
 464 
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Can lower learning rate and longer training provide better performance? 465 
The benchmarking results on the three models stopping at different learning rates allow us to 466 
study whether lower learning rate can provide better results and derive how much training is 467 
enough. For ONT, both from 999-epoch to 1499-epoch and from 1499-epoch to 1999-epoch, 468 
significant improvements were observed. However, in PacBio (Table 3), from 1499-epoch to 469 
1999-epoch, the F1-Score increased (97.03% to 97.09%, 96.91% to 96.99%) when both 470 
variant calling and model training is using the same sample, but decreased (95.49% to 471 
95.44%, 94.92% to 94.73%) when using different samples. The results suggest that 472 
Clairvoyante was overfitting the training data with a too low learning rate. The same behavior 473 
is also observed in Illumina data (Table 2). Thus, we suggest the Clairvoyante users to 1) 474 
stop at a higher learning rate for less noisy data; 2) train multiple samples stopping at 475 
different learning rates and select the best through performance evaluation; or 3) use a model 476 
trained on truth variants from multiple samples. 477 
 478 
Can a model train on truth variants from multiple samples provide better 479 
performance? 480 
Intuitively, a model trained on truth variants from two or more samples should perform better 481 
than those trained on just a single sample, provided that the truth variants from different 482 
samples have similar high quality. The model might even be more versatile if the 483 
characteristics of input, such as average depth, differ between samples. To verify our 484 
hypothesis, we benchmarked the variants called in HG003 (Supplementary Material, Data 485 
Source, PacBio Data) on three different models trained on 1) HG001; 2) HG002, and; 3) 486 
HG001+HG002. All three models were trained for 1000 epochs at learning rate 1e-3, then 487 
another 500 epochs at learning rate 1e-4. Noteworthy, the time used for training the 488 
HG001+HG002 model doubled, as it doubled the number of true variants and paired non-489 
variants. If our hypothesis is correct, the variant calling performance should increase for 490 
HG003 when using the HG001+HG002 model than the HG001 model or the HG002 model. 491 
The results are shown in Table 5. Using the HG001+HG002 model, the F1-score is 0.55% 492 
higher than using HG001 only and 2.88% higher than using the HG002 only. We conclude 493 
that using multiple samples for model training can increase the performance of Clairvoyante, 494 
although we expect marginal improvement gains when using more than a few samples. 495 
 496 
 497 
Table 5. Performance of variant calls in HG003 on three different models including HG001 498 
only, HG002 only and HG001+HG002. 499 

Train 
using 

Variants 
in 

Best 
Variant 
Quality 
Cutoff 

Overall SNP Indel 

Precision Recall F1 
Score Precision Recall F1 

Score Precision Recall F1 
Score 

HG001 72 95.61% 90.51% 92.99% 95.61% 90.51% 92.99% 95.61% 90.51% 92.99% 
HG002 71 93.38% 88.09% 90.66% 93.38% 88.09% 90.66% 93.38% 88.09% 90.66% 

HG001 + 
HG002 56 95.91% 91.29% 93.54% 95.91% 91.29% 93.54% 95.91% 91.29% 93.54% 

 500 
Can a higher input data quality improve the variant calling performance? 501 
In Table 4, we used the ‘rel3’ ONT dataset generated by the Nanopore WGS consortium. 502 
Very recently, the consortium released an augmented dataset labeled ‘rel5’ (see 503 
Supplementary Material, Data Source, Oxford Nanopore Data). The ‘rel5’ data are a 504 
merge of NA12878 DNA sequencing data from ‘rel3’ (regular sequencing protocols, about 505 
30x) and ‘rel4’ (ultra-read set, 7.7x extra), recalled with the latest base-caller. Thus, we 506 
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expect to see improved performance, given that the input data quality limited the 507 
performance of Clairvoyante on ONT. We trained a model on ‘rel5’ for 999 epochs at 508 
learning rate 1e-3. Compare to ‘rel3’, the precision improved from 94.07% to 97.21%, the 509 
recall improved from 85.87% to 88.80%, and the F1-Score improved from 89.79% to 510 
92.81%. Thus, the results reflect our intuition that Clairvoyante’s performance on ONT data 511 
is limited by the input data quality and thus will improve over time as the technology, base-512 
calling mature, and more data become available. 513 
 514 
Network topology and capacity evaluation 515 
In the previous subsection, we have shown Clairvoyante’s capacity to perform better on noisy 516 
PacBio and ONT data when trained with more data of higher quality. We next evaluated the 517 
performance by considering a “slim version” of Clairvoyante with smaller capacity that could 518 
potentially improve computational requirements. With the slim version, we expect to see a 519 
greater performance in higher quality Illumina data than noisy data like ONT and PacBio 520 
data as the classification problem is easier with less noisy data. The slim version includes 521 
165k parameters, which is about ten times fewer than the original version. Instead of 522 
isometrically scaling down the original network, we evaluated several different designs 523 
resulting in some network components with significantly reduced runtime than others or even 524 
reducing the parameters by ten times while still achieving the best runtime and F1-Score 525 
possible.  526 
 527 
Our final slim network design removes the pooling between convolutional layers, slightly 528 
enlarged the kernel size in convolution and reduced the number of nodes in the two fully-529 
connected layers by ten times. We trained models using the fast training mode on HG001 and 530 
benchmarked the Illumina, PacBio and ONT data on both HG001 and HG002. The results are 531 
shown in Table 6. As expected, the F1-scores degraded least in the Illumina datasets (0.82% 532 
and 0.73%) and degraded most in the ONT dataset (2.23%), with PacBio in the middle 533 
(1.68% and 1.90%). The slim version is available as a part of the Clairvoyante toolset and can 534 
be enabled with option ‘--slim.’ 535 
 536 
 537 
Table 6. F1-scores of different datasets on different network designs. Both the original 538 
models and slim models were trained on HG001 using the fast training mode. 539 

  Illumina PacBio ONT 
 Models: HG001 HG002 HG001 HG002 HG001 

Original 99.59% 99.50% 95.62% 95.39% 89.34% 
Slim 98.77% 98.77% 93.94% 93.49% 87.11% 

Degraded 0.82% 0.73% 1.68% 1.90% 2.23% 

 540 
Genome-wide Variant Identification 541 
Beyond benchmarking variants at sites known to be variable in a sample, in this section, we 542 
benchmarked Clairvoyante’s performance on calling variants genome-wide. Calling variants 543 
genome-wide is challenging because it tests not only how good Clairvoyante can derive the 544 
correct variant type, zygosity and alternative allele of a variant when evidence is marginal, 545 
but also in reverse, how good Clairvoyante can filter/suppress a non-variant even in the 546 
presence of sequencing errors or other artificial signals. Instead of naively evaluating all three 547 
billion sites of the whole genome with Clairvoyante, we tested the performance at different 548 
alternative allele cutoffs for all three sequencing technologies. As expected, a higher allele 549 
cutoff speeds up variant calling by producing fewer candidates to be tested by Clairvoyante 550 
but worsens recall especially for noisy data like PacBio and ONT. Our experiments provide a 551 
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reference point on how to choose a cutoff for each sequencing technology to achieve a good 552 
balance between recall and running speed. All models were trained for 1000 epochs with 553 
learning rate at 1e-3. All the experiments were performed on two Intel Xeon E5-2680 v4 554 
using all 28 cores. The commands used for generating the results in this section are presented 555 
in Supplementary Material, Call Variants Genome-wide, Commands. 556 
 557 
The results are shown in Table 7. As expected, with higher alternative allele frequency 558 
threshold (0.2), the precision was higher while the recall and time consumption was reduced 559 
in all experiments. For Illumina data, the best F1-score (with 0.2 allele frequency) for 560 
Clairvoyante was 98.65% for HG001 and 98.61% for HG002. The runtime varied between 561 
half and an hour (40 minutes for the best F1-score). As expected, GATK HaplotypeCaller 562 
topped the performance on Illumina data - achieved F1-score 99.76% for HG001 and 99.70% 563 
for HG002; both ran for about 8 hours. GATK UnifiedGenotyper ran as fast as Clairvoyante 564 
on Illumina data and achieved F1-score 99.43% for HG001 and 99.08% for HG002. 565 
Inspecting the false positive and false negative variant calls for Clairvoyante, we found about 566 
0.19% in FP, and 0.15% in FN was because of scenarios of two alternative alleles. We 567 
realized, on Illumina data, Clairvoyante is not performing on-par with the state-of-the-art 568 
GATK HaplotypeCaller, which was intensively optimized for Illumina data. However, as 569 
Clairvoyante uses an entirely different algorithm than GATK, Clairvoyante’s architecture 570 
could be used as an orthogonal method, emulating how geneticists manually validate a 571 
variant using a genome browser, for filtering or validating GATK’s results to increase 572 
GATK’s accuracy further. We implemented this in a method called Skyhawk. It repurposed 573 
Clairvoyante’s neural network to work on the GATK’s variants, give them another quality 574 
score in addition to the existing one by GATK, and give suggestion on disagreed answers. 575 
More details are available in Skyhawk’s preprint 28. With the success of developing 576 
Skyhawk, we expect to see in the future, more applications would be developed upon 577 
Clairvoyante’s network architecture. 578 
 579 
For the PacBio data, the best F1-scores were also achieved at 0.2 allele frequency cutoff. The 580 
best F1-score is 92.57% for HG001 and 93.05% for HG002 running Clairvoyante for ~3.5 581 
hours. In contrast, as reported in their paper10, DeepVariant has achieved 35.79% F1-score 582 
(22.14% precision, 93.36% recall) on HG001 with PacBio data. The runtime for Clairvoyante 583 
at 0.25 frequency cutoff is about 2 hours, which is about half the time consumption at 0.2 584 
frequency cutoff, and about 1/5 the time consumption at 0.1 frequency cutoff. For ONT data 585 
(rel3), the best F1-score 77.89% was achieved at 0.1 frequency cutoff. However, the F1-score 586 
at 0.25 frequency cutoff is just slightly lower (76.95%), but ran about five times faster, from 587 
13 hours to less than three hours. Thus, we suggest using 0.25 as the frequency cutoff. The 588 
runtime is on average about 1.5 times longer than PacBio, due to the higher level of noise in 589 
data. Using the new rel5 ONT data with better base calling quality, the best F1-score has 590 
increased from 87.26% (9.37% higher than rel3). The recall of SNP and the precision of Indel 591 
were the most substantially increased. 592 
 593 
 594 
Table 7. Performance of using Clairvoyante for variant calling genome-wide on Illumina, 595 
PacBio and ONT datasets. All models were trained for 1000 epochs with learning rate at 1e-3. 596 

Seq. 
Tech 

Train 
using 

Variant
s in  

Call 
Variant

s in  

Alt. 
Allele 
Freq. 
Cutof

f 

Best 
Varian

t 
Qualit

y 
Cutoff 

Time 
Consumptio

n 

Overall SNP Indel 

Precisio
n Recall F1 

Score 
Precisio

n Recall F1 
Score 

Precisio
n Recall F1 

Score 

Illumina HG001 HG001 
0.1 189 1:08 98.16% 98.93% 98.55% 98.10% 99.92% 99.00% 98.63% 96.96% 97.79% 
0.2 182 0:43 98.41% 98.88% 98.65% 98.38% 99.90% 99.13% 98.70% 95.10% 96.86% 

0.25 180 0:26 98.71% 97.95% 98.33% 98.72% 99.82% 99.27% 98.62% 87.33% 92.63% 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 26, 2018. ; https://doi.org/10.1101/310458doi: bioRxiv preprint 

https://doi.org/10.1101/310458
http://creativecommons.org/licenses/by-nc-nd/4.0/


HG002 
0.1 192 1:11 98.13% 98.77% 98.45% 98.08% 99.81% 98.94% 98.50% 96.54% 97.51% 
0.2 183 0:41 98.35% 98.77% 98.56% 98.33% 99.78% 99.05% 98.51% 94.90% 96.67% 

0.25 182 0:30 98.67% 97.88% 98.27% 98.70% 99.69% 99.19% 98.43% 87.34% 92.55% 

HG002 

HG001 
0.1 198 1:16 98.59% 98.50% 98.54% 98.68% 99.88% 99.27% 97.98% 93.37% 95.62% 
0.2 192 0:47 98.75% 98.39% 98.57% 98.84% 99.86% 99.35% 98.07% 91.69% 94.78% 

0.25 184 0:25 98.94% 97.60% 98.27% 99.07% 99.78% 99.42% 97.91% 85.01% 91.00% 

HG002 
0.1 195 1:07 98.53% 98.59% 98.56% 98.59% 99.85% 99.22% 98.12% 93.78% 95.90% 
0.2 188 0:44 98.71% 98.50% 98.61% 98.77% 99.81% 99.29% 98.22% 92.24% 95.14% 

0.25 182 0:25 98.95% 97.73% 98.33% 99.05% 99.71% 99.38% 98.11% 85.73% 91.50% 
GATK UnifiedGenotyper, 

HG001 51 0:46 99.43% 99.42% 99.43% 99.53% 99.91% 99.72% 98.76% 96.47% 97.60% 

GATK HaplotypeCaller, 
HG001 5 8:45 99.69% 99.83% 99.76% 99.77% 99.97% 99.87% 99.22% 98.97% 99.09% 

GATK UnifiedGenotyper, 
HG002 4 0:46 98.76% 99.41% 99.08% 98.73% 99.85% 99.29% 98.91% 96.57% 97.73% 

GATK HaplotypeCaller, 
HG002 5 8:23 99.59% 99.81% 99.70% 99.62% 99.90% 99.76% 99.39% 99.24% 99.32% 

PacBio 

HG001 

HG001 
0.1 157 9:46 96.31% 88.63% 92.31% 96.72% 99.49% 98.09% 79.19% 31.13% 44.69% 
0.2 130 3:53 98.12% 87.62% 92.57% 98.96% 96.60% 97.77% 75.87% 31.50% 44.52% 

0.25 125 2:01 98.62% 83.11% 90.20% 99.39% 91.38% 95.22% 78.55% 27.10% 40.30% 

HG002 
0.1 153 9:24 97.00% 89.08% 92.87% 97.90% 99.15% 98.52% 71.57% 34.26% 46.34% 
0.2 132 3:34 97.93% 88.30% 92.86% 99.03% 97.05% 98.03% 73.37% 34.06% 46.53% 

0.25 116 1:46 98.06% 84.69% 90.89% 99.18% 92.53% 95.74% 75.56% 31.24% 44.21% 

HG002 

HG001 
0.1 163 14:55 95.58% 86.69% 90.92% 96.64% 98.96% 97.79% 59.19% 24.52% 34.67% 
0.2 147 3:29 97.49% 85.64% 91.18% 98.94% 96.13% 97.51% 58.24% 23.65% 33.64% 

0.25 139 1:39 98.16% 81.47% 89.04% 99.27% 90.90% 94.90% 66.31% 21.11% 32.02% 

HG002 
0.1 150 15:31 97.10% 89.31% 93.04% 98.33% 99.14% 98.73% 69.19% 39.77% 50.51% 
0.2 134 3:34 98.09% 88.51% 93.05% 99.35% 97.30% 98.32% 72.20% 36.59% 48.57% 

0.25 118 1:46 98.20% 84.76% 90.98% 99.47% 92.77% 96.00% 72.94% 31.44% 43.94% 

Oxford 
Nanopor
e (rel3) 

HG001 HG001 

0.1 140 13:01 86.24% 71.01% 77.89% 86.79% 91.85% 89.25% 55.36% 10.69% 17.93% 
0.2 139 4:47 87.24% 70.21% 77.80% 87.72% 87.97% 87.85% 59.05% 9.90% 16.96% 

0.25 136 2:40 87.76% 68.51% 76.95% 88.25% 82.86% 85.47% 59.41% 9.26% 16.03% 
0.35 130 1:30 90.96% 57.43% 70.41% 91.34% 65.82% 76.51% 67.35% 6.62% 12.06% 

Oxford 
Nanopor
e (rel5) 

HG001 HG001 

0.2 162 5:53 88.76% 85.81% 87.26% 88.95% 93.76% 91.29% 72.10% 8.32% 14.92% 

0.25 159 3:12 89.14% 82.20% 85.53% 89.34% 90.09% 89.71% 72.45% 8.02% 14.45% 

0.35 148 1:51 91.22% 67.88% 77.83% 91.48% 75.18% 82.53% 71.25% 6.54% 11.98% 

 597 
For readers to compare the whole-genome benchmarks to those at the GIAB known sites 598 
more efficiently, we summarized the best precision, recall, and F1-score of both types of 599 
benchmarks in Supplementary Table 3. 600 
 601 
Benchmarks of other state-of-the-art variant callers 602 
DeepVariant is the first deep neural network based variant caller10. After the first preprint of 603 
Clairvoyante was available, Google released a new version of DeepVariant (v0.6.1). On 604 
Illumina data, the new version was reported to be outperforming the previous versions. We 605 
benchmarked the new version to see how it performs on Illumina data and especially on SMS 606 
data. We used DeepVariant version 0.6.1 for benchmarking following guide "Improve 607 
DeepVariant for BGISEQ germline variant calling" written by Pi-Chuan Chang available at 608 
link https://goo.gl/tg4FWG with specific guidelines for how to run DeepVariant, including 1) 609 
model training using transfer-learning and multiple depths, and 2) variant calling. 610 
 611 
On Illumina data, DeepVariant performed extraordinarily (Table 8) and matched with the 612 
figures previously reported. Following the guide, we applied transfer-learning using both the 613 
truth variants and reference calls in chromosome 1 upon the trained model named 614 
"DeepVariant-inception_v3-0.6.0+cl-191676894.data-wgs_standard/model.ckpt" that was 615 
delivered together with the software binaries. Using a nVidia GTX1080 Ti GPU, we kept 616 
running the model training process for 24 hours and picked the model with the best F1-score 617 
(using chromosome 22 for validation purpose), which was achieved at about 65 minutes after 618 
the training had started. The variant calling step comprises three steps: 1) create calling 619 
candidates, 2) variant calling, and 3) post-processing. Using 24 CPU cores, step one ran for 620 
392 minutes and generated 42GB of data. The second step utilized GPU and took 166 621 
minutes. Step 3 ran for only 25 minutes and occupied significantly more memory (15GB) 622 
than the previous two steps. For the HG001 sample, the precision rate is 0.9995, and the 623 
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recall rate is 0.9991, both extraordinary and exceeding all other available variant callers 624 
including Clairvoyante on Illumina datasets. 625 
 626 
DeepVariant requires base-quality, thus failed on the PacBio dataset, in which base-quality is 627 
not provided. On ONT data (rel5), DeepVariant performed much better than the traditional 628 
variant callers that were not designed for long reads, but it performed worse than 629 
Clairvoyante (Table 8). We also found that DeepVariant's computational resource 630 
consumption on long reads is prohibitively high and we were only able to call variants in few 631 
chromosomes. The details are as follows. Using transfer-learning, we trained two models for 632 
ONT data on chromosome 1 and 21 respectively, and we called variants in chromosome 1 633 
and 22 against the different models. In total we have benchmarked three settings, 1) call 634 
variants in chromosome 1 against the chromosome 21 model, 2) call variants in chromosome 635 
22 against the chromosome 21 model, and 3) call variants in chromosome 22 against the 636 
chromosome 1 model. Training the models required about 1.5 days until the validation 637 
showed a decreasing F1-score with further training. Using 24 CPU cores, the first step of 638 
variant calling generated 337GB candidate variants data in 1,683 minutes for chromosome 1 639 
and generated 53G data in 319 minutes for chromosome 21. The second step of variant 640 
calling took 1,171 and 213 minutes to finish for chromosome 1 and 22, respectively. The last 641 
step took 160 minutes and was very memory intensive, requiring 74GB of RAM for 642 
chromosome 1. In terms of F1-score, DeepVariant has achieved 83.05% in chromosome 1, 643 
and 77.89% in chromosome 22, against the model trained on chromosome 21. We verified 644 
that more samples for model training do not lead to better variant calling performance - using 645 
the model trained on chromosome 1, the F1-score dropped slightly to 77.09% for variants in 646 
chromosome 22. Using the computational resource consumption on chromosome 1, we 647 
estimate the current version of DeepVariant would require 4TB storage and about one month 648 
for whole genome variant calling of a genome sequenced with long reads. 649 
 650 
We further benchmarked three additional variant callers29, including Vardict30 (v20180724), 651 
LoFreq31 (v2.1.3.1), and FreeBayes32 (v1.1.0-60-gc15b070) (Table 8). The performance of 652 
Vardict on Illumina data matches the previous study29. Vardict requires base quality, thus 653 
failed on the PacBio dataset, in which base quality is not provided. Vardict identified only 654 
62,590 variants in the ONT dataset, among them only 231 variants are true positives. The 655 
results match with Vardict's paper that was tested on the Illumina data but not yet ready for 656 
Single Molecule Sequencing long reads. The performance of LoFreq on Illumina data 657 
matches the previous study29 calling SNP only. To enable Indel calling in LoFreq, BAQ 658 
(Base Alignment Quality)33 needs to be calculated in advance. However, the BAQ calculation 659 
works only for Illumina reads, thus for LoFreq, we only benchmarked its performance in 660 
SNP calling. Meanwhile, LoFreq does not provide zygosity in the result, prohibited us from 661 
using "RTG vcfeval" for performance evaluation. Thus, we considered a true positive in 662 
LoFreq as having a matched truth record in 1) chromosome, 2) position and 3) alternative 663 
allele. LoFreq requires base quality, thus failed on the PacBio dataset, in which base quality 664 
is not provided. The results suggest that LoFreq is capable of SNP detection in Single 665 
Molecule Sequencing long reads. Unfortunately, we were unable to finish running Freebayes 666 
on both the PacBio dataset and the ONT dataset after they failed to complete on either dataset 667 
after running for one month. According to the percentage of genome covered with variant 668 
calls, we estimate several months, 65 and 104 machine days on a latest 24-core machine, are 669 
required for a single PacBio and ONT dataset, respectively. 670 
 671 
GIAB datasets were constructed from a consensus of multiple short-variant callers, thus tend 672 
to bias toward easy regions that are accessible by these algorithms34. So, we next 673 
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benchmarked the Syndip dataset, which is a recent benchmark dataset from the de novo 674 
PacBio assemblies of two homozygous human cell lines. As reported, the dataset provides a 675 
relatively more accurate and less biased estimate of small-variant-calling error rates in a 676 
realistic context 34. The results are in Table 8 and show that, when using Syndip variants for 677 
training, the performance of calling variants in both HG001 and HG002 at known variants 678 
remains as good as previously reported. However, using the same model (Syndip), the 679 
performance dropped both at the Syndip known sites (excluding variants >4bp, from 99.51% 680 
(HG001) to 98.52%) and for the whole genome (excluding variants >4bp, from 94.88% 681 
(HG001) to 94.02%). The results support that Syndip contains variants that are harder to 682 
identify. To improve Clairvoyante’s performance in the hard regions, we suggest users to also 683 
include Syndip for creating models. 684 
 685 
Table 8. Additional benchmark performance of using Clairvoyante and other state-of-the-art 686 
variant callers. 687 

Seq. 
Tech. Tool 

Model 
Traine
d on 

Call 
Variants 

in  

Exclu
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Indel 
>4bp 
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nt 
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ty 
Cutof

f 

Time 
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mptio

n 

Overall SNP Indel 

Precisio
n Recall F1 

Score 
Precisio

n Recall F1 
Score 

Precisio
n Recall F1 

Score 

Illumin
a 

Vardict N.A. HG001   N.A. 2:51 90.56% 98.13% 94.19% 94.09% 99.46% 96.70% 70.64% 88.85% 78.71% 
LoFreq N.A. HG001   N.A. 4:03 SNP only 75.88% 94.24% 84.07% - - - 

FreeBayes N.A. HG001   43 4:54 98.71% 97.95% 98.33% 98.72% 99.82% 99.27% 98.62% 87.33% 92.63% 

DeepVariant TL + 
Chr1 HG001   3 9:43 99.94% 99.91% 99.93% 99.99% 99.96% 99.98% 99.64% 99.59% 99.62% 

FreeBayes N.A. Syndip   19 5:42 96.00% 94.21% 95.10% 98.91% 97.17% 98.03% 78.20% 74.54% 76.32% 
Clairvoyante Syndip Syndip   70 1:23 91.95% 93.05% 92.49% 93.49% 96.32% 94.88% 80.00% 71.13% 75.30% 
Clairvoyante Syndip Syndip Y 70 1:23 92.75% 95.32% 94.02% 93.60% 96.22% 94.89% 84.76% 86.94% 85.83% 

Clairvoyante Syndip 
Syndip 
(Known 
Sites) 

Y 20 0:09 98.83% 98.22% 98.52% 99.23% 98.69% 98.96% 94.97% 93.82% 94.39% 

Clairvoyante Syndip HG001   76 1:05 92.17% 96.05% 94.07% 92.63% 97.71% 95.10% 89.08% 85.91% 87.46% 
Clairvoyante Syndip HG001 Y 76 1:05 92.77% 97.09% 94.88% 92.64% 97.72% 95.11% 93.71% 92.67% 93.18% 

Clairvoyante Syndip 
HG001 
(Known 
Sites) 

Y 6 0:08 99.53% 99.50% 99.51% 99.81% 99.83% 99.82% 97.58% 97.16% 97.37% 

Clairvoyante Syndip HG002   74 1:11 92.19% 96.07% 94.09% 92.61% 97.55% 95.02% 89.25% 86.64% 87.93% 
Clairvoyante Syndip HG002 Y 74 1:11 92.73% 97.06% 94.85% 92.62% 97.56% 95.02% 93.63% 93.43% 93.53% 

Clairvoyante Syndip 
HG002 
(Known 
Sites) 

Y 9 0:08 99.51% 99.43% 99.47% 99.77% 99.74% 99.75% 97.64% 97.13% 97.38% 

Oxford 
Nanop

ore 

Vardict N.A. HG001   N.A. 17:12 0.42% 0.01% 0.01% 2.56% 0.01% 0.01% 0.04% 0.00% 0.01% 
LoFreq N.A. HG001   N.A. 6:58 SNP only 82.69% 54.75% 65.88% - - - 

DeepVariant TL + 
Chr1 

HG001 
(Chr22)   3 9:19 90.97% 66.77% 77.02% 91.61% 76.70% 83.50% 65.54% 8.12% 14.45% 

DeepVariant TL + 
Chr21 

HG001 
(Chr1)   3 50:14 93.47% 74.62% 82.99% 94.36% 84.39% 89.10% 65.68% 12.06% 20.38% 

DeepVariant TL + 
Chr21 

HG001 
(Chr22)   3 9:11 92.19% 67.34% 77.83% 92.87% 77.06% 84.23% 69.87% 10.33% 17.99% 

 688 
Potential novel variants unraveled by PacBio and ONT 689 
The truth SNPs and Indels provided by GIAB were intensively called and meticulously 690 
curated, and the accuracy and sensitivity of the GIAB datasets are unmatched. However, 691 
since the GIAB variants were generated without incorporating any SMS technology12, it is 692 
possible that we can consummate GIAB by identifying variants not yet in GIAB, but 693 
specifically detected both by using the PacBio and the ONT data. For the HG001 sample 694 
(variants called in HG001 using a model trained on HG001), we extracted the so-called “false 695 
positive” variants (identified genome-wide with a 0.2 alternative allele frequency cutoff) 696 
called in both the PacBio and ONT dataset. Then we calculated the geometric mean of the 697 
variant qualities of the two datasets, and we filtered the variants with a mean quality lower 698 
than 135 (calculated as the geometric mean of the two best variant quality cutoffs, 130 and 699 
139). The resulting catalog of 3,135 variants retained are listed in Supplementary Table 4. 700 
2,732 are SNPs, 298 are deletions, and 105 are insertions. Among the SNPs, 1,602 are 701 
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transitions, and 1,130 are transversions. The Ti/Tv ratio is ~1.42, which is substantially 702 
higher than random (0.5), suggesting a true biological origin. We manually inspected the top 703 
ten variants in quality using IGV35 to determine their authenticity (Figure 4a and 704 
Supplementary Figure 2a-2i). Among the ten variants, we have one convincing example at 705 
2:163,811,179 (GRCh37) that GIAB has previously missed (Supp. Fig. 2h). Another seven 706 
examples have weaker supports that need to be further validated using other orthogonal 707 
methods. Possible artifacts including 1) 7:89,312,043 (Supp. Fig. 2g) has multiple SNPs in 708 
its vicinity, which is a typical sign of false alignment, 2) 1:566,371 (Supp. Fig. 2a), 709 
20:3,200,689 (Figure 4a) are located in the middle of homopolymer repeats, which could be 710 
caused by misalignment, 3) X:143,214,235 (Supp. Fig. 2b) shows significant strand bias in 711 
Illumina data, and 4) X:140,640,513 (Supp. Fig. 2d), X:143,218,136 (Supp. Fig. 2e), and 712 
9:113,964,088 (Supp. Fig. 2f) are potential heterozygous variants but with allele frequency 713 
notably deviated from 0.5. Two examples are because of the difference in representation - 714 
13:104,270,904 (Supp. Fig. 2c) and 10:65,260,789 (2i) have other GIAB truth variants in 715 
their 5bp flanking regions. Manually inspecting all the 3,135 variants is beyond the scope of 716 
this paper. However, our analysis suggests SMS technologies, including both PacBio and 717 
ONT, can indeed generate some variants that are not identifiable by short read sequencing. 718 
We advocate for additional efforts to look into these SMS specific candidate variants 719 
systematically. The targets include not only shortlisting truth variants not yet in GIAB, but 720 
also new alignment and variant calling methods and algorithms to avoid detecting spurious 721 
variants in SMS data. Our analysis also serves as another piece of evidence that the GIAB 722 
datasets are of superior quality and are the enabler of machine learning based downstream 723 
applications such as Clairvoyante. 724 
 725 

 726 
Figure 4. The IGV screen capture of (a) a heterozygote SNP from T to G at chromosome 11, 727 
position 98,146,409 called only in the PacBio and ONT data, (b) a heterozygote deletion AA 728 
at chromosome 20, position 3,200,689 not called in all three technologies, (c) a heterozygote 729 
insertion ATCCTTCCT at chromosome 1, position 184,999,851 called only in the Illumina 730 
data, and; (d) a heterozygote deletion G at chromosome 1, position 5,072,694 called in all 731 
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three technologies. The tracks from top to down show the alignments of the Illumina, PacBio, 732 
and ONT reads from HG001 aligned to the human reference GRCh37. 733 
 734 
We also analyzed why the PacBio and ONT technologies cannot detect some variants. 735 
Figure 5 shows the number of known variants undetected by different combinations of 736 
sequencing technologies. We inspected the genome sequence immediately after the variants 737 
and found among the 12,331 variants undetected by all three sequencing technologies, 3,289 738 
(26.67%) are located in homopolymer runs, and 3,632 (29.45%) are located in short tandem 739 
repeats. Among the 178,331 variants that cannot be detected by PacBio and ONT, 102,840 740 
(57.67%) are located in homopolymer runs, and 33,058 (18.54%) are located in short tandem 741 
repeats. For Illustration, Figure 4b to d depicted b) a known variant in homopolymer runs 742 
undetected by all three sequencing technologies, c) a known variant in short tandem repeats 743 
that cannot be detected PacBio and ONT, and d) a known variant flanked by random 744 
sequenced detected by all three sequencing technologies. It is a known problem that single 745 
molecule sequencing technologies have significantly increased error rates at homopolymer 746 
runs and short tandem repeats36. Future improvements to the base-calling algorithm and 747 
sequencing chemistries will lead to raw reads with higher accuracy at these troublesome 748 
genome regions and hence, further decrease the number of known variants undetected by 749 
Clairvoyante. 750 
  751 

 752 
Figure 5. A Venn diagram that shows the number of undetected known variants by different 753 
sequencing technologies or combinations. 754 
 755 

Discussion 756 
In this paper, we presented Clairvoyante, a multi-task convolutional deep neural network for 757 
variant calling using single molecule sequencing. Its performance is on-par with GATK 758 
UnifiedGenotyper on Illumina data and outperforms Nanopolish and DeepVariant on PacBio 759 
and ONT data. We analyzed the false positive and false negative variant calls in depth and 760 
found complex variants with multiple alternative alleles to be the dominant source of error in 761 
Clairvoyante. We further evaluated several different aspects of Clairvoyante to assess the 762 
quality of the design and how we can further improve its performance by training longer with 763 
lower learning rate, combining multiple samples for training, or improving the input data 764 
quality. Our experiments on using Clairvoyante to call variants genome-wide suggested a 765 
range to search for the best alternative allele cutoff to balance the run time and recall for each 766 
sequencing technology. To the best of our knowledge, Clairvoyante is the first method for 767 
SMS to finish a whole genome variant calling within two hours on a single CPU-only server, 768 
while providing better precision and recall than other state-of-the-art variant callers such as 769 
Nanopolish. A deeper look into the so-called “false positive” variant calls has identified 770 
3,135 variants in HG001 that are not yet in GIAB but detected by both PacBio and ONT 771 
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independently. Inspecting ten of these variants manually, we identified one strongly 772 
supported variant that should be included by GIAB, seven variants with weak or uncertain 773 
supports that call for additional validation in a future study, and two variants actually exist in 774 
GIAB but with different representation. 775 
 776 
Clairvoyante relies on high-quality training samples to provide accurate and unbiased variant 777 
calling. This hinders Clairvoyante from being applied to completely novel sequencing 778 
technologies and chemistries, for which high-quality sequencing dataset on standard samples 779 
such as GIAB has yet been produced. Nevertheless, with the increasing agreement for 780 
NA12878 as a gold-standard reference, this requirement seems to be quite manageable. 781 
Although Clairvoyante performed well on detecting SNPs, it still has a large room to be 782 
improved in detecting Indels, especially for ONT data, in which the Indel F1-score remains 783 
around 50%. To make the Indel results also practically usable, our target is to improve 784 
Clairvoyante further to reach an Indel F1-score over 80%. The current design of Clairvoyante 785 
ignore variants with two or more alternative alleles. Although the number of variants with 786 
two or more alternative alleles is small, a few thousands of the 3.5M total sites, the design 787 
will be improved in the future to tackle this small but important group of variants. Due to the 788 
rareness of long indel variants for model training, Clairvoyante was set to provide the exact 789 
alternative allele only for indel variants ≤4bp. The limitation can be lifted with more high-790 
quality training samples available. The current Clairvoyante implementation also does not 791 
consider the base quality of the sequencing reads as Clairvoyante was targeting SMS, which 792 
do not have meaningful base quality values to improve the quality of variant calling. 793 
Nevertheless, Clairvoyante can be extended to consider base quality by imposing it as a 794 
weight on depth or add it as an additional tensor to the input. We do not suggest removing 795 
any alignment by their mapping quality because low-quality mappings will be learned by the 796 
Clairvoyante model to be unreliable. This provides valuable information about the 797 
trustworthiness of certain genomic regions. In future work, we plan to extend Clairvoyante to 798 
support somatic variant calling and trio-sample based variant calling. Based on GIAB’s high 799 
confidence region lists for variant calling, we also plan on making PacBio-specific, and 800 
ONT-specific high confidence region lists by further investigating the false positive and false 801 
negative variant calls made by Clairvoyante on the two technologies. 802 
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