1 The MarR Family Regulator BmrR is involved in Bile Tolerance of *Bifidobacterium longum*

2 BBMN68 via Controlling the Expression of an ABC-Transporter

3

4 Qi Xu^a, Zhengyuan Zhai^{a,c}, Haoran An^d, Yang Yang^a, Jia Yin^a, Guohong Wang^a, Fazheng

5 Ren^{a,b}, Yanling Hao^{a,b,#}

^a The Innovation Centre of Food Nutrition and Human Health (Beijing), College of Food Science

7 and Nutritional Engineering, China Agricultural University, Beijing, China

^b Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing

9 Municipality, Beijing, China

^c Department of Food Science & Technology, University of California, Davis, California, USA

¹¹ ^dCenter for Infectious Disease Research, Tsinghua-Peking Joint Center for Life Science, School

12 of Medicine, Tsinghua University, Beijing, China

13

14 **Running Head:** BmrR in bile stress response

[#]Address correspondence to Yanling Hao, haoyl@cau.edu.cn

16 Present address: College of Food Science and Nutritional Engineering, China Agricultural

17 University, 17 Qing Hua East Road, Hai Dian District, Beijing, 100083, China

18 Qi Xu and Zhengyuan Zhai contributed equally to this work.

19 Key words: *B. longum* BBMN68, bile stress, MarR-type regulator, BmrR, ABC-transporter

20 Abstract

21	In order to colonize the human gastrointestinal tract and exert their beneficial effects,
22	bifidobacteria must effectively cope with the toxic bile salts in the intestine, but the molecular
23	mechanism underlying bile tolerance is poorly understood. In this study, heterologous expression
24	of a MarR family transcriptional regulator BmrR significantly reduced ox-bile resistance of
25	Lactococcus lactis NZ9000, suggesting that it might play a role in bile stress response. In silico
26	analysis combined with RT-PCR assay demonstrated that <i>bmrR</i> was co-transcribed with <i>bmrA</i>
27	and <i>bmrB</i> , which encoded multidrug resistance (MDR) ABC transporters. Promoter prediction
28	and EMSA assay revealed that BmrR could autoregulate the bmrRAB operon by binding to bmr
29	box (ATTGTTG-6nt-CAACAAT) in the promoter region. Moreover, heterologous expression of
30	bmrA and bmrB in L. lactis showed 20.77-fold higher tolerance to 0.10% ox-bile compared to
31	wild type strain. In addition, ox-bile could disrupt the DNA binding activity of BmrR as a ligand.
32	Taken together, our findings indicate that <i>bmrRAB</i> operon is autoregulated by transcriptional
33	regulator BmrR and ox-bile serves as an inducer to activate the bile efflux transporter BmrAB in
34	response to bile stress in <i>B. longum</i> BBMN68.
35	Importance

Bifidobacteria are natural inhabitants of the human intestinal tract. Some bifidobacterial strains
are used as probiotics in fermented dairy production because of their health-promoting effects.
Following consumption, bifidobacteria finally colonize the lower intestinal tract where the

2

39	concentration of bile salts remains nearly 0.05% to 2.0%. Bile salts as detergent-like
40	antimicrobial compounds can cause disruption of the cellular membrane, protein misfolding and
41	DNA damage. Therefore, tolerance to physiological bile stress is indeed essential for
42	bifidobacteria to survive and exert the probiotic effects in gastrointestinal tract. In B. longum
43	BBMN68, the MarR-type regulator BmrR was involved in bile stress response by
44	auto-regulating bmrRAB operon and ox-bile as an inducer could increase the expression of
45	BmrAB transporter to enhance the bile tolerance of BBMN68. This is the first report about
46	functional analysis of <i>bmrRAB</i> operon in bile stress response, which will provide new insight
47	into bile tolerance mechanisms in Bifidobacterium and other bacteria.
48	Introduction
49	Bifidobacteria are natural inhabitants of the human gastrointestinal tract (GIT), constituting up to
50	approximately 91% of the total gut microbiome during early stages of life (1). Some
51	bifidobacteria are considered as probiotics, and used as active ingredients in functional
52	dairy-based products (2). The health benefits are exerted mainly through inhibiting pathogens,
53	preventing diarrhoea, stimulating the immune response and reducing serum cholesterol levels
54	
	(3). Upon ingestion, bifidobacteria inevitably have to cope with several stress conditions, such as
55	(3). Upon ingestion, bifidobacteria inevitably have to cope with several stress conditions, such as the low pH in the stomach and bile salts in the intestine (4, 5). As detergent-like biological
55 56	

been reported to develop tolerance response to bile stress, but the comprehensive mechanism ofbile resistance remains elusive.

60	Among the bile resistance mechanisms employed by bifidobacteria, bile salt hydrolysis (BSH)
61	and bile efflux transporter are well documented. Bile salt hydrolases (BSHs) are responsible for
62	deconjugation of glycine- or taurine-conjugated bile salts, therefore decreasing the toxicity of
63	conjugated bile salts (7). The bile efflux system is mediated by a multidrug resistance (MDR)
64	transporter located on the cell membrane, such as Ctr of <i>B. longum</i> NCIMB 702259 ^T (8), BetA in
65	B. longum NCC2705 (9) and BbmAB in B. breve UCC2003 (10). Several studies have shown
66	that bifidobacteria modulated the cell envelope including fatty acid composition and membrane
67	proteins to decrease membrane permeability in response to bile salts (11, 12). In addition, a
68	hemolysin-like protein TlyC1 functions as a barrier to protect the strain from bile toxicity and
69	provides resistance to sodium taurocholate and sodium taurodeoxycholate in B. longum
70	BBMN68 (13). Two-component system <i>senX3-regX3</i> was reported to promote the expression of
71	the <i>pstS</i> gene to maintain a high-level of P _i uptake and produce more ATP to resist bile stress in
72	B. longum BBMN68 (14).
73	B. longum BBMN68 was isolated from healthy centenarians in Bama longevity villages of
74	Guangxi province in China, which may enhance innate and adaptive immunity, alleviate allergic
75	response and improve intestinal function in mice (15, 16). In our study, RNA-Seq transcriptomic

analysis showed that the BBMN68_1796 gene encoding MarR-type transcriptional regulator was

77	1.85-fold up-regulated under bile stress in BBMN68 (unpublished). It has been reported that the
78	MarR family transcriptional regulators are involved in the regulation in response to diverse
79	environmental signals, such as synthesis of virulence factors and antibiotic stress (17, 18). Martin
80	et al. found that transcription of multiple antibiotic resistance (marORAB) operons was
81	repressed by the MarR protein (19). Furthermore, another MarR type repressor EmrR has been
82	reported to control the EmrAB efflux transporter in E. coli (20). In the present work, we
83	investigated the regulatory mechanism of protein BBMN68_1796 designated as BmrR
84	(Bifidobacterium multidrug resistance regulator) in ox-bile stress response in B. longum
85	BBMN68. The data suggests that BmrR autorepresses the transcription of <i>bmrR</i> operon and
86	ox-bile serves as ligand of BmrR to attenuate this binding to enhance the expression of efflux
87	transporter genes to export ox-bile in <i>B. longum</i> BBMN68.
88	Results
	Kesuits
89	Heterologous expression of <i>bmrR</i> in <i>L. lactis</i> NZ9000 increases its sensitivity to bile stress
89 90	
	Heterologous expression of <i>bmrR</i> in <i>L. lactis</i> NZ9000 increases its sensitivity to bile stress
90	Heterologous expression of <i>bmrR</i> in <i>L. lactis</i> NZ9000 increases its sensitivity to bile stress DNA sequencing showed that the length of the amplified gene <i>bmrR</i> was 534 bp, which was
90 91	Heterologous expression of <i>bmrR</i> in <i>L. lactis</i> NZ9000 increases its sensitivity to bile stress DNA sequencing showed that the length of the amplified gene <i>bmrR</i> was 534 bp, which was 100% homologous to the <i>bmrR</i> gene from <i>B. longum</i> BBMN68 (BBMN68_1796; GenBank
90 91 92	Heterologous expression of <i>bmrR</i> in <i>L. lactis</i> NZ9000 increases its sensitivity to bile stress DNA sequencing showed that the length of the amplified gene <i>bmrR</i> was 534 bp, which was 100% homologous to the <i>bmrR</i> gene from <i>B. longum</i> BBMN68 (BBMN68_1796; GenBank Accession No. NC_014656.1). SDS-PAGE analysis revealed that the production of an expected

96 of *L. lactis* NZCK (*P*<0.0001, Figure 1B). These results showed that the heterologous expression
97 of *bmrR* in *L. lactis* NZ9000 significantly reduced its resistance to ox-bile, indicating that BmrR
98 played a critical role in bile stress response.

99 Bioinformatics analysis revealed that BmrR was a MarR family regulator

100 In *B. longum* BBMN68, BmrR is annotated as a putative MarR family regulator. Although the

amino acid sequence similarity between MarR family members was usually less than 25% as

102 described previously (21), secondary structure prediction of BmrR revealed a high structural

103 homology with the MarR family members used in the alignment (Figure 2). The core of the

104 domain consists of three α -helices (α 1, α 2 and α 3) and two antiparallel beta sheets (β 2 and β 3),

105 which is stabilized in part by a short beta strand (β 1), creating a three-stranded beta sheet (17,

106 22). These MarR proteins have been described as winged helix proteins that bind directly to the

107 DNA to control a wide range of biological processes in both bacteria and archaea (23, 24). The

108 region spanning amino acids 61–121 in MarR are required for its DNA binding activity (25). The

109 DNA binding motif is composed of $\beta 1 - \alpha 3 - \alpha 4 - \beta 2 - \beta 3$, which adopts the winged-helix fold.

Helices $\alpha 1$, $\alpha 5$ and $\alpha 6$ are involved in dimerization (23, 26), which indicates that they could bind

111 to the promoter region of their target genes as dimers leading to either transcriptional repression

112 and/or activation (17).

113 In silico analysis of the bmrR gene and determination of bmrRAB operon

114	We noticed that the start codon of <i>bmrR</i> , <i>bmrA</i> and <i>bmrB</i> genes were overlapped with the stop
115	codon of the proceeding gene. A putative promoter sequence was found 64 bp upstream of the
116	potential <i>bmrR</i> start codon by the online promoter prediction tools NNPP and BPROM (27, 28),
117	but no other promoter was predicted upstream the <i>bmrA</i> or <i>bmrB</i> gene. The first gene <i>bmrR</i>
118	possessed a putative ribosome-binding site 8 bp (TGGTAC) upstream of its start codon, while
119	the third gene <i>bmrB</i> was followed by a transcription terminator-like sequence (Figure 2A). Based
120	on these observations, we hypothesized that these three genes were co-transcribed in the same
121	cluster. RT-PCR assay with cDNA as template further confirmed that genes from <i>bmrR</i> to <i>bmrB</i>
122	formed a polycistronic operon, designated as <i>bmrRAB</i> (Figure 3B). MarR family regulators were
123	reported to bind recognizable palindromic sequences within the promoter region upstream the
124	target genes (29). Bioinformatics analysis revealed that an IR sequence
125	(ATTGTTG-6nt-CAACAAT) was also found within the <i>bmrRAB</i> promoter in BBMN68.
126	Identification of the DNA-binding specificity of BmrR by EMSA
127	In order to further confirm DNA-binding specificity of BmrR with its promoter, a 69 bp DNA
128	probe was synthesized and labeled by biotin at 3'end for EMSA. The BmrR with a C-terminal
129	His tag was expressed in L. lactis NZ9000 and purified by affinity chromatography. SDS-PAGE
130	revealed a single protein band with a molecular mass of approximate 20 kDa, indicating that the
131	recombinant BmrRHis was successfully expressed and purified for subsequent EMSAs (Figure
132	4A, lane 4). The EMSA results indicated that the purified BmrRHis bounded to biotin-labeled

133 bmrR probe and retarded its mobility (Figure 4C, lane 2). Moreover, the quantity of 134 DNA-protein binding bands was enhanced with an increasing concentration of BmrR (Figure 4C, 135 lane 2 to lane 4). BmrRHis could not bound to either mutated probe up or probe down (Figure 136 4D), indicating the palindromic sequence (ATTGTTG-6nt-CAACAAT), designated as bmr box 137 in *bmrRAB* promoter region was essential for BmrR binding. These findings indicated that BmrR 138 could specifically bind to *bmr* box upstream the *bmrRAB* operon. 139 Heterodimer ABC-transporter BmrAB was involved in ox-bile tolerance 140 In order to determine whether the ABC-transporter BmrAB was involved in the ox-bile 141 resistance, *bmrA*, *bmrB* and *bmrAB* were amplified and cloned into pNZ8147 vector. The 142 recombinant plasmids were verified by DNA sequencing and then transformed into heterologous 143 host L. lactis NZ9000, resulting in L. lactis BmrA, L. lactis BmrB and L. lactis BmrAB, 144 respectively. Survival assay showed that there was no significant difference between the 145 recombinant strain L. lactis BmrA and control strain L. lactis NZCK under bile stress (P>0.05, 146 Figure 5), but the survival rate of L. lactis BmrB was 16-fold lower than that of L. lactis NZCK 147 in presence of 0.10% wt/vol ox-bile. It is noteworthy that the survival rate of BmrA and BmrB 148 co-expressed strain L. lactis BmrAB was significantly increased, which was 20.77-fold higher 149 than that of the control in GM17 supplemented with 0.10% wt/vol ox-bile (P<0.05, Figure 5). 150 These results indicated that BmrA and BmrB together can enhance the bile resistance of host 151 strain probably by forming a heterodimer ABC-transporter to pump out the intracellular bile.

152 BmrR dissociates from DNA in the presence of ox-bile

153	The DNA binding activity of some transcriptional regulators from MarR family was reported to
154	be affected by specific ligands, which dissociate the regulator from DNA with a consequent
155	modulation of gene expression (30). In our study, the mRNA level of <i>bmrR</i> was upregulated
156	1.85-fold under ox-bile stress in BBMN68 (unpublished). Therefore, we hypothesized that
157	ox-bile might be a ligand of BmrR and affect the interaction between BmrR and its binding site.
158	To verify this hypothesis, different concentrations of ox-bile were applied to EMSA reactions.
159	The addition of 0.15% wt/vol ox-bile led to complete dissociation of BmrR from its target DNA
160	(Figure 6, Lane 5). These results indicated that ox-bile was an effector for BmrR and could
161	disrupt the DNA binding activity of BmrR in BBMN68.
162	Discussion
162 163	Discussion In bacteria, multiple antibiotic resistance regulator (MarR) family proteins constitute a diverse
163	In bacteria, multiple antibiotic resistance regulator (MarR) family proteins constitute a diverse
163 164	In bacteria, multiple antibiotic resistance regulator (MarR) family proteins constitute a diverse group of transcriptional regulators that modulate the expression of genes encoding proteins
163 164 165	In bacteria, multiple antibiotic resistance regulator (MarR) family proteins constitute a diverse group of transcriptional regulators that modulate the expression of genes encoding proteins involved in metabolic pathways, stress responses, virulence and degradation or efflux of harmful
163 164 165 166	In bacteria, multiple antibiotic resistance regulator (MarR) family proteins constitute a diverse group of transcriptional regulators that modulate the expression of genes encoding proteins involved in metabolic pathways, stress responses, virulence and degradation or efflux of harmful chemicals (22). Some MarR family transcription factors involved in bile stress response have
163 164 165 166 167	In bacteria, multiple antibiotic resistance regulator (MarR) family proteins constitute a diverse group of transcriptional regulators that modulate the expression of genes encoding proteins involved in metabolic pathways, stress responses, virulence and degradation or efflux of harmful chemicals (22). Some MarR family transcription factors involved in bile stress response have been identified in multiple bacterial species, including <i>Salmonella Typhimurium</i> , <i>L. lactis</i> and

171	and the growth of <i>slyA</i> mutant strain was significantly impaired in the presence of bile salts (33).
172	In this study, heterologous expression of <i>bmrR</i> gene in <i>L. lactis</i> NZ9000 decreased the bile
173	tolerance of host strain, suggesting that it might play a role in bile stress response. The <i>bmrR</i>
174	gene was co-transcribed with <i>bmrA</i> and <i>bmrB</i> , which encoded the multidrug resistance (MDR)
175	ABC transporters. This ABC transporter BmrAB was observed to enhance the bile tolerance of
176	host strain, when bmrAB gene was expressed in L. lactis NZ9000. Therefore, we supposed that
177	the bmrRAB operon in bifidobacteria played a critical role in enhancing the resistance to bile
178	stress.
179	The <i>bmrA</i> and <i>bmrB</i> gene were predicted to encode 652 and 671 amino acid protein as putative
180	ABC transporters by a database enquiry (BLASTP). The hydropathic profile analysis
181	demonstrated that both proteins possessed a transmembrane domain with six putative helices,
182	followed by cytoplasmically localized NBD domain with a putative ATP-binding domain and the
183	ABC signature sequence (34, 35). The ATP-hydrolyzing domains are characterized by two short
184	sequence motifs in their primary structure ('Walker' site A and 'Walker' site B) that constitute a
185	nucleotide binding fold (Figure S1). These analyses suggested that BmrA and BmrB might also
186	serve as ABC half-transporter. The ABC transporter utilized the free energy of ATP hydrolysis
187	to drive substrate transport across lipid bilayer. It has been proved that several prokaryotic ABC
188	transporters act as dimers. Homodimeric ABC transporters have been experimentally identified,
189	such as LmrA in L. lactis (36) and MsbA in E. coli (37). Meanwhile, heterodimeric ABC

190	transporters are also found in some species, such as LmrCD in <i>L. lactis</i> (38) and BbmAB in <i>B</i> .
191	breve UCC2003 (10). BbmA and BbmB were further reported to be induced by 3.21±1.3 fold
192	and 5.00±0.9 fold in the presence of bile salts, respectively (9). In agreement with these MDR
193	transporters, BmrA and BmrB were found to be 2.33 fold and 2.09 fold up-regulated by ox-bile
194	in <i>B. longum</i> BBMN68 (unpublished). In this study, the co-expression of BmrA and BmrB can
195	enhance the bile resistance of host strain, suggesting that BmrA and BmrB formed a heterodimer
196	ABC-transporter to pump out the intracellular bile in <i>B. longum</i> BBMN68.
197	In the present study, we observed that the MarR family regulator BmrR could interact with the
198	promoter region of <i>bmrRAB</i> operon to regulate the transcription of these three genes. In addition,
199	the 3D structure of BmrR was generated using SWISS MODEL server
200	(http://www.expasy.ch/swissmod/SWISS-MODEL.html), indicating BmrR is able to form a
201	homodimer like other MarR proteins (Figure S2). Generally, MarR family regulators were
202	reported to bind recognizable palindromic sequences within the promoter region, resulting in
203	attenuation of gene expression by sterically hindering the binding of RNA polymerase to the
204	promoter. In addition, the MarR family transcription factors can also respond to a variety of
205	effector molecules (17, 22). When the ligand binds to MarR family transcription factor, DNA
206	binding is attenuated, resulting in de-repression of transcription (17). In this study, we observed
207	that the formation of BmrR-DNA complex was impaired in the presence of ox-bile (Figure 6).
208	Based on these results, we proposed a bile sensing and adaptive regulation model of <i>bmrRAB</i>

209	operon in <i>B. longum</i> (Figure 7). Under the normal growth condition, BmrR binds to <i>bmr</i> box in
210	the <i>bmrRAB</i> promoter region and prevents transcription of <i>bmrRAB</i> operon. When ox-bile enters
211	the cell, BmrR interacts with ox-bile and then causes significant conformational change in the
212	DNA-binding domains, resulting in release of the BmrR repressor from <i>bmrRAB</i> promoter. This
213	modification will lead to the transcription of BmrAB ABC-transporters. Newly synthesized
214	BmrAB will be embedded in the membrane and mediate the efflux of the ox-bile from the cell.
215	To our knowledge, this is the first report about functional analysis of <i>bmrRAB</i> operon in bile
216	stress response, which is of great importance for exploring novel bile tolerance mechanisms in
217	Bifidobacterium and other bacteria.
218	Material and methods
219	Bacterial strains and growth conditions
220	The bacterial strains and plasmids used in this study are listed in Table S1. B. longum BBMN68
221	
221	was grown in de Man-Rogosa-Sharpe (MRS) broth supplemented with 0.05% (vol/vol)
222	was grown in de Man-Rogosa-Sharpe (MRS) broth supplemented with 0.05% (vol/vol) L-cysteine (MRSc) at 37°C anaerobically (5% CO ₂ , 5% H ₂ and 90% N ₂). <i>Lactococcus lactis</i>
222	L-cysteine (MRSc) at 37°C anaerobically (5% CO ₂ , 5% H ₂ and 90% N ₂). <i>Lactococcus lactis</i>
222 223	L-cysteine (MRSc) at 37°C anaerobically (5% CO ₂ , 5% H ₂ and 90% N ₂). <i>Lactococcus lactis</i> NZ9000 was routinely grown at 30°C in M17 medium (Oxoid, Unipath, Basingstoke, UK)

226 Construction of the recombinant strain *L. lactis* BmrR

227	Standard PCR was carried out using $Q5^{TM}$ High-Fidelity DNA polymerase following the
228	manufacturer's instructions (NEB, Beijing, China). The <i>bmrR</i> was amplified from genomic DNA
229	of <i>B. longum</i> BBMN68 using the primer pair: <i>bmrR</i> -F and <i>bmrR</i> -R (Table S2). The PCR product
230	digested by NcoI and XbaI was inserted into the corresponding sites of pNZ8148. Subsequently,
231	the ligation mixture was transformed into L. lactis NZ9000 according to previously described
232	procedures (39). The recombinant plasmid pNZBmrR was verified by DNA sequencing and
233	further analyzed with the DNAMAN software package (Lynnon Biosoftware, Vaudreuil, Quebec,
234	Canada). The strain harboring pNZBmrR was designated L. lactis BmrR. Meanwhile, a control
235	strain (L. lactis NZCK) was constructed by introducing the empty vector pNZ8148 into L. lactis
236	NZ9000. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis
237	was used to investigate the expression of <i>bmrR</i> in <i>L. lactis</i> .
237 238	was used to investigate the expression of <i>bmrR</i> in <i>L. lactis</i> . Bile stress survival experiment
238	Bile stress survival experiment
238 239	Bile stress survival experiment Overnight cultures of recombinant strains were inoculated into 10 ml of fresh GM17
238 239 240	Bile stress survival experiment Overnight cultures of recombinant strains were inoculated into 10 ml of fresh GM17 supplemented with 10 μ g · ml ⁻¹ chloramphenicol (1% inoculums). When cell density reached an
238 239 240 241	Bile stress survival experiment Overnight cultures of recombinant strains were inoculated into 10 ml of fresh GM17 supplemented with 10 μ g · ml ⁻¹ chloramphenicol (1% inoculums). When cell density reached an OD ₆₀₀ of 0.3, nisin was added (final concentration 10 ng · μ l ⁻¹) and further incubated for 2 h at
 238 239 240 241 242 	Bile stress survival experiment Overnight cultures of recombinant strains were inoculated into 10 ml of fresh GM17 supplemented with 10 μ g · ml ⁻¹ chloramphenicol (1% inoculums). When cell density reached an OD ₆₀₀ of 0.3, nisin was added (final concentration 10 ng · μ l ⁻¹) and further incubated for 2 h at 30°C. Aliquots of 1 mL of culture were collected and suspended in 1ml fresh GM17 medium
 238 239 240 241 242 243 	Bile stress survival experiment Overnight cultures of recombinant strains were inoculated into 10 ml of fresh GM17 supplemented with $10 \ \mu\text{g} \cdot \text{ml}^{-1}$ chloramphenicol (1% inoculums). When cell density reached an OD ₆₀₀ of 0.3, nisin was added (final concentration 10 ng $\cdot \mu$ l ⁻¹) and further incubated for 2 h at 30°C. Aliquots of 1 mL of culture were collected and suspended in 1ml fresh GM17 medium containing 0.10% wt/vol ox-bile (Sigma, St. Louis, MO, USA). After incubation at 30°C for 1 h,

246	for 16 h. Survival rate were calculated by dividing the number of colony-forming units (CFU)
247	per ml after ox-bile incubation by the value obtained immediately after resuspension. All results
248	were obtained by at least three independent experiments with each performed in triplicate.
249	Purification of recombinant BmrR and electrophoretic mobility shift assay (EMSA)
250	The gene <i>bmrR</i> was amplified by PCR using the primer pair <i>bmrRHis</i> -F and <i>bmrRHis</i> -R listed in
251	Table S2, which introduced a six histidine tag at the C-terminal end of this protein, immediately
252	prior to the stop codon to simplify protein purification by affinity chromatography using a nickel
253	column. The PCR product digested by NcoI/XbaI was ligated with pNZ8148 at the
254	corresponding restriction sites, resulting in recombinant plasmid pBmrRHis. This plasmid was
255	then introduced into L. lactis NZ9000, and the transformant harboring the correct construct was
256	designated L. lactis BmrRHis. The protein BmrR with a C-terminal His tag (designated
257	BmrRHis) was purified with Ni Sepharose 6 Fast Flow media (GE Healthcare, Uppsala, Sweden)
258	according to the manufacturer's recommendations. Subsequently, purified BmrRHis was
259	concentrated by ultrafiltration (Millipore, 10 kDa cut off; Bedford, MA, USA) and centrifugation
260	at 13,000 × g for 30 min at 4°C. The purified BmrRHis was analyzed by SDS-PAGE and protein
261	concentration was estimated using NanoDrop 2000 UV-Vis Spectrophotometer (Thermo
262	Scientific, Wilmington, DE, USA). Purified protein was used immediately or stored at -80°C for
263	subsequent experiments.
264	EMSA was performed using the LightShift [®] Chemiluminescent EMSA Kit (Thermo Scientific

264 EMSA was performed using the LightShift[®] Chemiluminescent EMSA Kit (Thermo Scientific,

265	Rockford, IL, USA). To obtain biotin 3' end-labelled probes, two complementary
266	oligonucleotides listed in Table S2 were synthesized and annealed at 95°C for 5 min, with the
267	temperature decreasing by 1°C per minute and thereafter until holding 4°C. EMSA were
268	performed according to the manufacturer's instructions, and the binding reactions (20 μ l)
269	contained 1×binding buffer, 50 ng $\cdot \mu l^{-1}$ Poly dI-dC, 2.5% (vol/vol) glycerol, 0.05% (vol/vol)
270	NP-40, 20 fmol labeled probe, 5 mM MgCl ₂ , and 0.01 ng $\cdot \mu l^{-1}$ BmrRHis, for 20 min at room
271	temperature. To determine if the inverted repeat (IR) structure of predicted binding site was
272	essential, conserved binding site IR1 (ATTGTTG) was changed to GCCACGA, and IR2
273	(CAACAAT) was changed to GCCACGA, as shown in Figure 4B. In addition, different
274	concentrations of BmrRHis (0.01 μ g · μ l ⁻¹ , 0.02 μ g · μ l ⁻¹ and 0.03 μ g · μ l ⁻¹) and ox-bile (0.05%,
275	0.10% and 0.15% wt/vol) were applied to determine the dose effects on the binding activity of
276	BmrR. The subsequent steps were carried out following the manufacturer's instructions.
277	Chemiluminescent signals of biotinylated probes were captured using a CCD camera imaging
278	system (UVP, Upland, CA, USA).
279	Validation of <i>bmrR</i> operon by Reverse-transcription PCR

B. longum BBMN68 cells were immediately harvested at an OD_{600} of 0.6 by centrifugation at281 $6000 \times g$ for 10 min. Total RNA was isolated using Trizol Reagent (Invitrogen, Carlsbad, CA,282USA) according to the manufacturer's instructions, and digested with RNase-free DNase I283(Tiangen, Beijing, China). RNA concentrations were quantified using the NanoDrop 2000

284	(Thermo Scientific). RNA quality was assessed with the 2100 Bioanalyzer (Agilent
285	Technologies, Amstelveen, Netherlands). Subsequently, reverse transcription was carried out
286	with PrimeScript II 1st strand cDNA synthesis kit (Takara, Beijing, China), with 1 μ g of total
287	RNA as the template. Specific primers listed in Table S2 were designed using PRIMER V5
288	software (PREMIER Biosoft International, Palo Alto, CA). Standard PCR was carried out using
289	Q5 TM High-Fidelity DNA polymerase (NEB) with the cDNA as template, RNA as negative
290	control and the genomic DNA of BBMN68 as positive control.
291	Functional identification of target gene <i>bmrA</i> and <i>bmrB</i> by Heterologous Expression
292	The <i>bmrA</i> gene and <i>bmrB</i> gene encoding half ABC-transporter were amplified from <i>B</i> . <i>longum</i>
293	BBMN68 using primers <i>bmrA</i> -F/ <i>bmrA</i> -R and <i>bmrB</i> -F/ <i>bmrB</i> -R, respectively (Table S2). Then the
294	bmrA and bmrB gene was co-amplified using bmrA-F and bmrB-R. All PCR amplicons digested
295	by XbaI and HindIII were inserted into pNZ8147. The ligation mixture was transformed into L.
296	lactis NZ9000, resulting in recombinant strain L. lactis BmrA, L. lactis BmrB and L. lactis
297	BmrAB, respectively. Meanwhile, the strain L. lactis NZ9000 with the empty vector pNZ8147
298	was used as control. The recombinant strains were grown in GM17 medium supplemented with
299	0.05%, 0.10% or 0.15% wt/vol ox-bile to determine the survival rate. All results were obtained
300	by at least three independent experiments with each performed in triplicate.

301 Statistical analysis

- 302 Data were analyzed using GraphPad Prism 6 software for Windows (GraphPad Software, Inc., La
- 303 Jolla, CA, USA). When two groups were compared, an unpaired student t test with Welch's
- 304 correction to calculate P values. When three groups or more were compared, one-way ANOVA
- 305 was used followed by an appropriate post-hoc test.

306 Authors and Contributors

- 307 Q.X., H.A., Z.Z. and Y.H. designed research; Q.X. and H.A. performed research; Y.Y., J.Y., and
- 308 G.W. contributed new reagents or analytic tools; Q.X., Z.Z. and Y.H. analyzed the data and
- 309 wrote the paper. All authors read and approved the final manuscript.

310 **Conflict of Interest Statement**

- 311 The authors declare that the research was conducted in the absence of any commercial or
- 312 financial relationships that could be construed as a potential conflict of interest.

313 Acknowledgements

- 314 This work was supported by the National Natural Sciences Foundation of China (contract
- 315 No.21676294) and the International Postdoctoral Exchange Fellowship Program [No.
- 316 20150027]. We thank Professor Willem M. de Vos (Wageningen University) for the gift of L.
- 317 *lactis* NZ9000 and plasmid pNZ8148. We also thank Dr. Kuanqing Liu (UT Southwestern
- 318 Medical Center) for helpful comments.

319 **References**

320 1. Harmsen HJ1, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels

321		JG, Welling GW. 2000. Analysis of intestinal flora development in breast-fed and
322		formula-fed infants by using molecular identification and detection methods.
323		J Pediatr Gastroenterol Nutr 30: 61–67.
324	2.	Hofmann AF, and Eckmann L. 2006. How bile acids confer gut mucosal protection against
325		bacteria. Proc Natl Acad Sci U S A 103: 4333-4334.
326	3.	Tannock GW. 1999. A fresh look at the intestinal microflora. In: Tannock GW, editor.
327		Probiotics. a critical review. Wymondham, (UK): Horizon Scientific Press.
328	4.	Noriega L, Gueimonde M, Sánchez B, Margolles A, de los Reyes-Gavilán CG. 2004. Effect
329		of the adaptation to high bile salts concentrations on glycosidic activity, survival at low pH
330		and cross-resistance to bile salts in Bifidobacterium. Int J Food Microbiol 94: 79-86. doi:
331		10.1016/j.ijfoodmicro. 2004.01.003
332	5.	Sánchez B, Champomier-Vergès MC, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade
333		P, Baraige F, de los Reyes-Gavilán CG, Johansen E, Zagorec M, Margolles A. 2007.
334		Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and
335		physiological approach. Appl Environ Microbiol 73: 6757-6767. doi: 10.1128/
336		aem.00637-07.
337	6.	Bernstein C, Bernstein H, Payne CM, Beard SE, Schneider J. 1999. Bile salt activation of
338		stress response promoters in Escherichia coli. Curr Microbiol 39: 68-72.
339	7.	Grill JP, Perrin S, and Schneider F. 2000. Bile salt toxicity to some bifidobacteria strains:

340	role of conjugated bile	salt hydrolase and pH	I. Can J Microbiol 46: 878-884.
-----	-------------------------	-----------------------	---------------------------------

341	8.	Price CE,	Reid SJ,	Driessen A.	J, Abratt	VR. 2006.	The B	ifidobacterium	longum NCIMB

- 342 702259T ctr gene codes for a novel cholate transporter. Appl Environ Microbiol 72: 923-926.
- 343 9. Gueimonde M, Garrigues C, van Sinderen D, de los Reyes-Gavilan CG, Margolles A. 2009.
- 344 Bile-inducible efflux transporter from *Bifidobacterium longum* NCC2705, conferring bile
- resistance. Appl Environ Microbiol 75: 3153-3160.
- 346 10. Margolles A, Florez AB, Moreno JA, van Sinderen D, de los Reyes-Gavilan CG. 2006. Two
- 347 membrane proteins from *Bifidobacterium breve* UCC2003 constitute an ABC-type multidrug
- 348 transporter. Microbiology 152: 3497-3505. doi: 10.1099/mic.0.29097-0
- 349 11. Ruiz L, Sánchez B, Ruas-Madiedo P, de los Reyes-Gavilán CG, Margolles A. 2007. Cell
- 350 envelope changes in *Bifidobacterium animalis* ssp. *lactis* as a response to bile.
- 351 FEMS Microbiol Lett 274: 316-322.
- 12. Ruiz L, Coute Y, Sanchez B, de los Reyes-Gavilan CG, Sanchez JC, Margolles A. 2009. The
- 353 cell-envelope proteome of *Bifidobacterium longum* in an *in vitro* bile environment.
- 354 Microbiology 155: 957-967. doi: 10.1099/mic.0.024273-0
- 13. Liu Y, An H, Zhang J, Zhou H, Ren F, Hao Y. 2014. Functional role of *tlyC1* encoding a
- 356 hemolysin-like protein from *Bifidobacterium longum* BBMN68 in bile tolerance.
- 357 FEMS Microbiol Lett 360: 167-173. doi: 10.1111/1574-69 68.12601.
- 14. An H, Douillard FP, Wang G, Zhai Z, Yang J, Song S, Cui J, Ren F, Luo Y, Zhang B, Hao

- 359 Y. (2014). Integrated transcriptmic and proteomic analysis of the bile stress response in a
- 360 centenarian-originated probiotic *Bifidobacterium longum* BBMN68. Mol Cell Proteomics 13:
- 361 2558-2572. doi: 10.1074/mcp.M114. 039156
- 362 15. Yang H, Liu A, Zhang M, Ibrahim SA, Pang Z, Leng X, Ren F. 2009. Oral administration of
- 363 live *Bifidobacterium* substrains isolated from centenarians enhances intestinal function in
- 364 mice. Curr Microbiol 59: 439-445. doi: 10.1007/s00284-009-9457-0
- 365 16. Yang J, Zhang H, Jiang L, Guo H, Luo, X, Ren F. 2015. Bifidobacterium longum
- 366 BBMN68-specific modulated dendritic cells alleviate allergic responses to bovine
- 367 beta-lactoglobulin in mice. J Appl Environ Microbiol 119: 1127-1137. doi:
- 368 10.1111/jam.12923
- 369 17. Wilkinson SP, Grove A. 2006. Ligand-responsive transcriptional regulation by members of
- the MarR family of winged helix proteins. Curr Issues Mol Biol 8: 51-62.
- 18. Wagner A, Segler L, Kleinsteuber S, Sawers G, Smidt H, Lechner U. 2013. Regulation of
- 372 reductive dehalogenase gene transcription in *Dehalococcoides mccartyi*.
- 373 Philos Trans R Soc Lond B Biol Sci 368, 20120317. doi: 10.1098/rstb.2012.0317
- 374 19. Martin RG, Rosner JL. 1995. Binding of purified multiple antibiotic- resistance repressor
- 375 protein (MarR) to mar operator sequences. Proc Natl Acad Sci U S A 92: 5456-5460.
- 376 20. Lomovskaya O, Lewis K, Matin A. 1995. EmrR is a negative regulator of the Escherichia
- *coli* multidrug resistance pump EmrAB. J Bacteriol 177: 2328-2334.

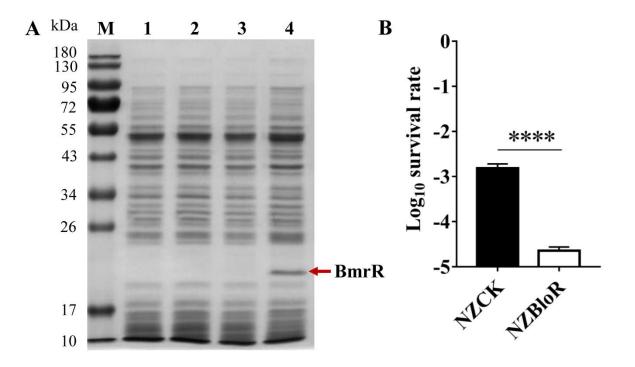
378	21. Schielke S, Huebner C, Spatz C, Nägele V, Ackermann N, Frosch M, Kurzai
379	O Schubert-Unkmeir A. 2009. Expression of the meningococcal adhesin NadA iscontrolled
380	by a transcriptional regulator of the MarR family. Mol Microbiol 72: 1054–1067.
381	22. Perera IC, Grove A. 2010. Molecular mechanisms of ligand-mediated attenuation of DNA
382	binding by MarR family transcriptional regulators. J Mol Cell Biol 2: 243–254.
383	23. Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF. 2001. The crystal structure of
384	MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. Nat Struct Biol 8:
385	710-714. doi: 10.1038/90429
386	24. Sulavik MC, Gambino LF, Miller PF. 1995. The MarR repressor of the multiple antibiotic
387	resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial
388	regulatory proteins involved in sensing phenolic compounds. Mol Med 1: 436-446.
389	25. Alekshun MN, Kim YS, Levy SB. 2000. Mutational analysis of MarR, the negative regulator
390	of marRAB expression in Escherichia coli, suggests thepresence of two regions required for
391	DNA binding. Mol Microbiol 35: 1394-1404.
392	26. Hong M, Fuangthong M, Helmann JD, Brennan RG. 2005. Structure of an OhrR-ohrA
393	operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell 20:
394	131-141. doi: 10.1016/j.molcel.2005.09.013
395	27. Reese MG. 2001. Application of a time-delay neural network to promoter annotation in the
396	Drosophila melanogaster genome. Comput Chem 26: 51–56.

397	28. Solovyev V, Salamov A. 2011. Automatic annotation of microbial genomes and
398	metagenomic sequences. Metagenomics and its applications in agriculture, biomedicine and
399	environmental studies, 61–78.
400	29. Deochand DK, Grove A. 2017. MarR family transcription factors: dynamic variations on a
401	common scaffold. Crit Rev Biochem Mol Biol 52: 595-613. doi: 10.1080/10409238.2017.
402	1344612.
403	30. Grkovic S, Brown MH, Skurray RA. 2002. Regulation of bacterial drug export systems.
404	Microbiol Mol Biol Rev 66: 671–701.
405	31. Prouty AM, Brodsky IE, Falkow S, Gunn, JS. 2004. Bile-salt-mediated induction of
406	antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150: 775-783.
407	32. Zaidi AH, Bakkes PJ, Lubelski J, Agustiandari H, Kuipers OP, Driessen AJ. 2008. The
408	ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based
409	mechanism of bile acid resistance in lactococcus lactis. J Bacteriol 190: 7357-66. doi:
410	10.1128/JB.00485-08.
411	33. Michaux C, Martini C, Hanin A, Auffray Y, Hartke A, Giard JC. 2011. SlyA regulator is
412	involved in bile salts stress response of Enterococcus faecalis. FEMS Microbiol Lett 324:
413	142-6. doi: 10.1111/j.1574-6968.2011.02390.x.
414	34. Schneider E, Hunke S. 1998. ATP-binding-cassette (ABC) transport systems: functional and
415	structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22: 1-20.

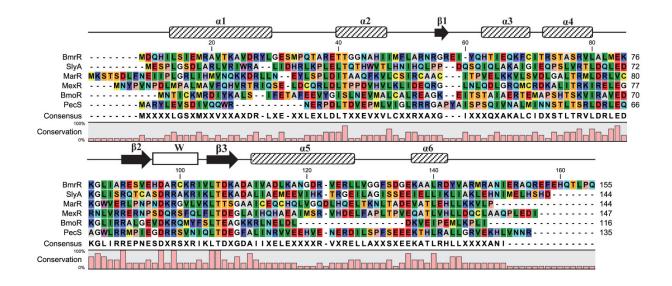
416 35. Walker JE, Saraste M, Runswick MJ, Gay NJ. 1982. Distantly related sequences	416	35. Walker JE, Saraste N	, Runswick MJ, C	ay NJ. 1982. Distantl	y related sequences in	ı the
--	-----	--------------------------	------------------	-----------------------	------------------------	-------

- 417 alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes
- 418 and a common nucleotide binding fold. EMBO J 1: 945-951.
- 419 36. van Veen HW, Margolles A, Muller M, Higgins CF, Konings WN. 2000. The homodimeric
- 420 ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating
- 421 two-site (twocylinder engine) mechanism. EMBO J 19, 2503–2514.
- 422 37. Chang G, Roth CB. 2001. Structure of MsbA from *E. coli*: a homolog of the multidrug
- 423 resistance ATP binding cassette (ABC) transporters. Science 293: 1793-1800.
- 424 38. Lubelski J, Mazurkiewicz P, van Merkerk R, Konings WN, Driessen AJ. 2004. ydaG and
- 425 *ydbA* of *Lactococcus lactis* encode a heterodimeric ATP- binding cassette-type multidrug
- 426 transporter. J Biol Chem 279: 34449–34455.
- 427 39. de Ruyter PG, Kuipers OP, de Vos WM. 1996. Controlled gene expression systems for
- 428 *Lactococcus lactis* with the food-grade inducer nisin. Appl Environ Microbiol 62: 3662–
 429 3667.

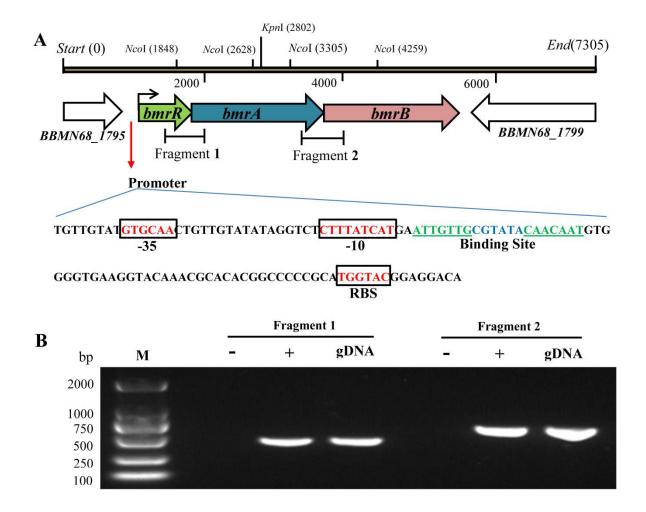
430 **Figure legends**


- 431 **Figure 1** Heterologous expression of BmrR with nisin induction detected by SDS-PAGE and the
- 432 survival of *L. lactis* BmrR and *L. lactis* NZCK after ox-bile challenge. (A) Soluble extracts were
- 433 analyzed on 12% denaturing SDS-PAGE. Lane M, Dual color pre-stained broad molecular
- 434 weight protein marker (10–180 kDa). Lane 1, *L. lactis* NZCK without nisin induction; lane 2, *L.*

435	<i>lactis</i> BmrR without nisin induction; lane3, <i>L. lactis</i> NZCK with nisin $(10 \text{ ng} \cdot \text{ml}^{-1})$ induction;
436	lane 4, <i>L. lactis</i> BmrR with nisin $(10 \text{ ng} \cdot \text{ml}^{-1})$ induction. Red arrow indicates the overexpressed
437	BmrR. (B) Survival rate is calculated as the ratio of the number of colonies obtained on GM17
438	plates after and before ox-bile treatment. Data are reported as mean±SD from at least three
439	independent experiments and analyzed by an unpaired, two-tailed Student t-test. ****, P<0.0001.
440	Figure 2 Multiple sequence alignment of BmrR with other MarR family regulators was
441	generated with ClustalX and visualized in CLC Sequence Viewer 7.8.1. Numbering is according
442	to the entire alignment. The proteins used for the alignment were from the following organisms:
443	SlyA, Salmonella enterica sv. Typhimurium; MarR, E. coli; MexR, Pseudomonas aeruginosa;
444	BmoR, Bacteroides fragilis; PecS, Dickeya dadantii. The prediction of BmrR secondary
445	structure was based on Psipred and NetSurfP results and structures are illustrated with boxes
446	(α -helices), arrows (β -sheets) and lines (coils). The wing region (W) is indicated by white box.
447	Figure 3 In silico analysis and RT-PCR assays to verify the co-transcription of <i>bmrR</i> to <i>bmrB</i> .
448	(A) Linear map of <i>bmrR</i> , <i>bmrA</i> and <i>bmrB</i> with the genomic DNA flanking these genes in
449	BBMN68. (B) Sequence analysis of the promoter region upstream <i>bmrR</i> gene. Putative -35, -10
450	sequence and ribosome-binding site (RBS) are enclosed in the box. The putative binding site is
451	shown in italics. (C) "gDNA" means the genomic DNA of wide-type BBMN68; "+" and "-"
452	indicated the cDNA and RNA used as the template for PCR amplification. "M" means the DNA
453	marker.


454	Figure 4 SDS-PAGE analysis of the purified BmrRHis and specific binding of BmrRHis to its
455	own promoter. (A) Lane 1 and 2, <i>L. lactis</i> NZCK and <i>L. lactis</i> BmrRHis with 10 ng \cdot ml ⁻¹ nisin
456	induction; Lane 3, protein sample from NZCK after purification; Lane 4, purified recombinant
457	BmrRHis from <i>L. lactis</i> BmrRHis. (B) DNA probes containing an intact palindromic sequence
458	in the BmrR binding site or mutated sequence. (C) Lane 1, 20 fmol labelled probes alone. Lane 2
459	to lane 4, 20 fmol probes and 10, 20 and 30 ng $\cdot \mu l^{-1}$ BmrRHis, respectively. (D) Lane 1, 20 fmol
460	labelled probes alone. Lane 2 to lane 4, 10 ng $\cdot \mu l^{-1}$ BmrRHis with 20 fmol probes, 20 fmol probe
461	up ⁻ and probe down ⁻ , respectively.
462	Figure 5 The heterologous expression of gene <i>bmrA</i> , <i>bmrB</i> and <i>bmrAB</i> in <i>L</i> . <i>lactis</i> affects the
463	survival of host strain after bile stress. Survival rate is calculated as the ratio of the number of
464	colonies obtained on GM17 plates after and before ox-bile treatment. Data are reported as
465	mean±SD from at least three independent experiments and analyzed by an unpaired, two-tailed
466	Student t-test. Bars with different letters are statistically significant ($P < 0.05$).
467	Figure 6 Effect of ox-bile on the DNA binding activity of BmrR. EMSA was performed with 20
468	fmol probe and 10 ng $\cdot \mu l^{-1}$ purified BmrRHis in the presence of 0.05%, 0.10% and 0.15% wt/vol
469	ox-bile, respectively.
470	Figure 7 Illustration of the BmrR regulation mechanism. (A)Under the normal growth condition,

471 the active form of BmrR binds to the bmr box and represses transcription of BmrRAB operon. (B)


- 472 In presence of ox-bile, the DNA binding activity of BmrR is disrupted by ox-bile. This
- 473 modification will result in the transcription of BmrAB ABC-transporters to pump out ox-bile.

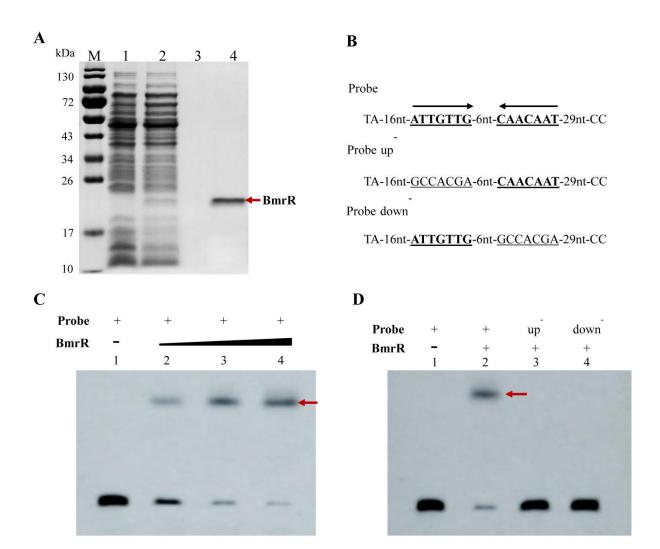

Figure 1 Heterologous expression of BmrR with nisin induction detected by SDS-PAGE and the survival of *L. lactis* BmrR and *L. lactis* NZCK after ox-bile challenge. (A) Soluble extracts were analyzed on 12% denaturing SDS-PAGE. Lane M, Dual color pre-stained broad molecular weight protein marker (10–180 kDa). Lane 1, *L. lactis* NZCK without nisin induction; lane 2, *L. lactis* BmrR without nisin induction; lane3, *L. lactis* NZCK with nisin (10 ng \cdot ml⁻¹) induction; lane 4, *L. lactis* BmrR with nisin (10 ng \cdot ml⁻¹) induction. Red arrow indicates the overexpressed BmrR. (B) Survival rate is calculated as the ratio of the number of colonies obtained on GM17 plates after and before ox-bile treatment. Data are reported as mean±SD from at least three independent experiments and analyzed by an unpaired, two-tailed Student t-test. ****, *P*<0.0001.

Figure 2 Multiple sequence alignment of BmrR with other MarR family regulators was generated with ClustalX and visualized in CLC Sequence Viewer 7.8.1. Numbering is according to the entire alignment. The proteins used for the alignment were from the following organisms: SlyA, *Salmonella enterica* sv. Typhimurium; MarR, *E. coli*; MexR, *Pseudomonas aeruginosa*; BmoR, *Bacteroides fragilis*; PecS, *Dickeya dadantii*. The prediction of BmrR secondary structure was based on Psipred and NetSurfP results and structures are illustrated with boxes (α-helices), arrows (β-sheets) and lines (coils). The wing region (W) is indicated by white box.

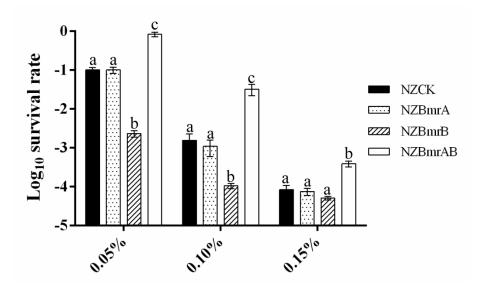


Figure 3 *In silico* analysis and RT-PCR assays to verify the co-transcription of *bmrR* to *bmrB*. (A) Linear map of *bmrR*, *bmrA* and *bmrB* with the genomic DNA flanking these genes in BBMN68. (B) Sequence analysis of the promoter region upstream *bmrR* gene. Putative –35, –10 sequence and ribosome-binding site (RBS) are enclosed in the box. The putative binding site is shown in italics. (C) "gDNA" means the genomic DNA of wide-type BBMN68; "+" and "-" indicated the cDNA and RNA used as the template for PCR amplification. "M" means the DNA marker.

Figure 4 SDS-PAGE analysis of the purified BmrRHis and specific binding of BmrRHis to its own promoter. (A) Lane 1 and 2, *L. lactis* NZCK and *L. lactis* BmrRHis with 10 ng \cdot ml⁻¹ nisin induction; Lane 3, protein sample from NZCK after purification; Lane 4, purified recombinant BmrRHis from *L. lactis* BmrRHis. (B) DNA probes containing an intact palindromic sequence in the BmrR binding site or mutated sequence. (C) Lane 1, 20 fmol labelled probes alone. Lane 2 to lane 4, 20 fmol probes and 10, 20 and 30 ng $\cdot \mu l^{-1}$ BmrRHis, respectively. (D) Lane 1, 20 fmol

labelled probes alone. Lane 2 to lane 4, 10 ng $\cdot \mu l^{-1}$ BmrRHis with 20 fmol probes, 20 fmol probe up⁻ and probe down⁻, respectively.

Figure 5 The heterologous expression of gene *bmrA*, *bmrB* and *bmrAB* in *L. lactis* affects the survival of host strain after bile stress. Survival rate is calculated as the ratio of the number of colonies obtained on GM17 plates after and before ox-bile treatment. Data are reported as mean±SD from at least three independent experiments and analyzed by an unpaired, two-tailed Student t-test. Bars with different letters are statistically significant (P < 0.05).

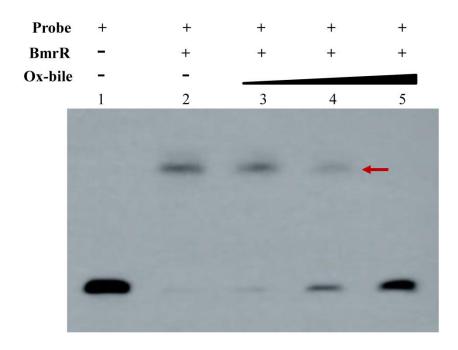
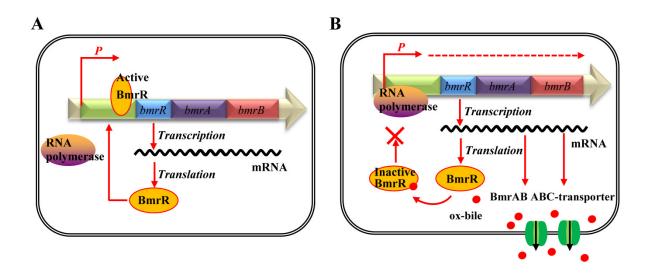



Figure 6 Effect of ox-bile on the DNA binding activity of BmrR. EMSA was performed with 20 fmol probe and 10 ng $\cdot \mu$ l⁻¹ purified BmrRHis in the presence of 0.05%, 0.10% and 0.15% wt/vol ox-bile, respectively.

Figure 7 Illustration of the BmrR regulation mechanism. (A)Under the normal growth condition, the active form of BmrR binds to the bmr box and represses transcription of BmrRAB operon. (B) In presence of ox-bile, the DNA binding activity of BmrR is disrupted by ox-bile. This modification will result in the transcription of BmrAB ABC-transporters to pump out ox-bile.