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Abstract 
 
Identifying gene expression programs underlying cell-type identity as well as cellular 
activities (e.g. life-cycle processes, responses to environmental cues) is crucial for 
understanding the organization of cells and tissues. Although single-cell RNA-Seq 
(scRNA-Seq) can quantify transcripts in individual cells, each cell’s expression profile 
may be a mixture of both types of programs, making them difficult to disentangle. Here, 
we develop an adapted non-negative matrix factorization approach, consensus NMF 
(cNMF), as a solution to this problem. We rigorously benchmark it against existing and 
novel scRNA-Seq methods, and cNMF performs best, increasing the accuracy of cell-
type identification while simultaneously inferring interpretable cellular activity programs 
in scRNA-Seq data. Applied to published brain organoid and visual cortex scRNA-Seq 
datasets, cNMF refines the hierarchy of cell-types and identifies both expected (e.g. 
cell-cycle and hypoxia) and intriguing novel activity programs. We make cNMF and 
related tools available to the community and illustrate how this approach can provide 
key insights into gene expression variation within and between cell-types. 
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Main Text 

Genes act in concert to maintain a cell’s identity as a specific cell-type, to respond to 
external signals, and to carry out complex cellular activities such as replication and 
metabolism. Coordinating the necessary genes for these functions is frequently 
achieved through transcriptional co-regulation, whereby genes are induced together as 
a gene expression program (GEP) in response to the appropriate internal or external 
signal1,2. Transcriptome-wide expression profiling technologies such as RNA-Seq have 
made it possible to conduct systematic and unbiased discovery of GEPs which, in turn, 
have shed light on the mechanisms underlying many cellular processes3.  

In traditional RNA-Seq, measurements are limited to an average expression profile of 
potentially dozens of cell-types in a tissue. Any observed changes in gene expression 
could reflect induction of a program in some specific cell-type(s), an average of many 
different changes in multiple cell-types, or changes in overall cell-type composition. 
Single cell RNA-Seq (scRNA-Seq) solves this problem by measuring the expression of 
many individual cells simultaneously. This makes it possible to identify the cell-types in 
the sample as well as any additional sources of variation in their gene expression 
profiles. Exploiting this new technology, large-scale projects such as the Tabula Muris 
and the Human Cell Atlas are seeking to identify and characterize all the cell types in 
complex organisms in states of both health and disease4,5. 

Even with the ability to quantify expression in individual cells, it is still challenging to 
accurately discern GEPs. scRNA-Seq data is noisy and high-dimensional, requiring 
computational approaches to uncover the underlying patterns. In addition, technical 
artifacts such as doublets (where two or more distinct cells are mistakenly collapsed into 
one) can confound analysis. Key methodological advances in dimensionality reduction, 
clustering, lineage trajectory tracing, and differential expression analysis have helped 
overcome some of these challenges6–9. 

Here, we focus on a key challenge of inferring GEPs from scRNA-Seq data, the fact that 
individual cells may express multiple GEPs and we only observe the resulting mixed 
profile. A cell’s gene expression is shaped by many factors including its cell-type, its 
state in time-dependent processes such as the cell-cycle, and its response to varied 
environmental stimuli10. We group these into two broad classes of expression programs 
in scRNA-Seq data: (1) GEPs that correspond to the identity of a specific cell-type such 
as hepatocytes or melanocytes (identity programs) and (2) GEPs that are expressed in 
any cell that is carrying out a specific activity such as cell division or immune cell 
activation (activity programs). While identity programs are, by definition, expressed in all 
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cells of a specific cell-type, activity programs may vary dynamically in cells of one or 
multiple types. Cells undergoing the activity would therefore express the activity 
program in addition to their identity program. 

Accurately detecting activity programs in scRNA-Seq data is important for three 
reasons. First, activity programs can be of primary biological importance. For example, 
programs underlying immune activation, hypoxia, or programmed cell death might be 
studied with scRNA-Seq either through experimental manipulations or through 
observation of naturally occurring variation in a population of cells. Second, we might be 
interested in understanding how the prevalence of activity programs varies across cell-
types -- for example, which cell-types are undergoing the highest rates of cell division. 
Activity programs would thus serve as an additional layer of information in addition to 
cell-type. Finally, activity programs may confound characterization of the cell-types in 
which they occur. For example, cell-cycle genes may be spuriously included in the 
identity programs of proliferative cell-types. Currently, cell cycle is treated as an artifact 
of scRNA-seq data and is occasionally removed computationally prior to clustering 
analysis11,12. However, this is just a specific instance of the broader problem of 
confounding of identity and activity programs. 

Existing single-cell analysis methods are of limited utility for identifying activity GEPs. In 
an experimental setting where a stimulus is applied to some cells and not to others, 
activity programs underlying the response to the stimulus can be identified with 
differential expression analysis. While this is the best approach for conclusively 
determining the etiology of an activity program, it cannot be used outside of this 
experimental setting and thus cannot identify naturally occuring activity GEPs. In a non-
manipulated setting, clustering or dimensionality reduction approaches must be used 
instead. However, simple clustering is limited because it assigns each cell to a single 
class and therefore cannot simultaneously capture both the cells’ type and activity 
states. While dimensionality reduction methods such as Principal Component Analysis 
(PCA)13 don’t have this limitation, the dimensions they infer may not necessarily align 
with biologically meaningful gene expression programs and are frequently ignored in 
practice. 

GEP deconvolution is better framed as a signal separation problem rather than a 
dimensionality reduction because we aim for the inferred dimensions to be biologically 
meaningful programs that can teach us about the cell-types and cellular activities in the 
data. In a signal separation problem, the observed samples each represent a different 
weighted mixture of a smaller number of component signals that we seek to infer14. 
When signals are assumed to combine linearly, signal separation amounts to a matrix 
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factorization; the data matrix is approximated as a product of two lower rank matrices, 
one representing the latent signals (in our case, gene expression programs) and 
another specifying how they should be combined for each cell. We refer to the second 
matrix as a ‘usage’ matrix as it specifies how much each GEP is ‘used’ by each cell in 
the dataset. Commonly used matrix factorization algorithms to consider for this purpose 
include PCA, Independent Component Analysis (ICA)15,6, Latent Dirichlet Allocation 
(LDA)16, and Non-Negative Matrix Factorization (NMF)17. A priori, it is unclear which 
matrix factorization, would be most appropriate for identifying clear and biologically 
meaningful gene expression programs.  

Here, we simulate scRNA-Seq data to develop and then systematically benchmark 
these matrix factorization methods for deconvoluting GEPs in our data. We first 
implement a meta-analysis approach to reduce the stochastic variability in the solutions 
for LDA, NMF, and ICA (Fig. 1a). We find that with this adaptation, this adaptation of 
NMF, which we call consensus NMF (cNMF) is able to deconvolute activity and identity 
GEPs from scRNA-Seq data and significantly outperforms PCA and clustering. We then 
use cNMF to analyze several previously published scRNA-Seq datasets where it 
clarifies the cell-types and identifies both expected and novel activity programs, 
providing insight into how cells vary within and between cell-types. 

Results 

We set out to identify and benchmark approaches to deconvolute GEPs from simulated 
single-cell RNA-Seq data. We simulated 15,000 cells made up of 13 cell-types, one 
cellular activity program that is active in a subset of cells of four cell-types, and a 6% 
doublet rate (Fig. 1b). To rigorously evaluate performance, we conducted 20 replicates 
of this simulation each at three different ‘signal to noise’ ratios (Online methods).  

We first examined the performance of ICA, LDA, and NMF, and adapted them for GEP 
deconvolution. We found that running these methods multiple times with different 
random initializations yielded variable results; when we ran each algorithm 200 times on 
a dataset and clustered the resulting 200x14=2800 components with KMeans (K=14), 
many of the components were poorly correlated with the median of their cluster 
(Supplementary Fig. 1). While ICA gave the most consistent results, consistency 
decreased in all methods for lower signal to noise ratios. However, when we filtered 
outlier replicate components (identified by low similarity to their nearest neighbors), and 
took the median of the remaining GEPs in a cluster, the resulting estimates correlated 
well with the true simulated programs (Fig. 1c) (Online methods). We refer to this 
approach as consensus matrix factorization and to its application to these specific 
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algorithms as cLDA, cNMF and cICA respectively. We note that this approach is 
conceptually analogous to consensus clustering18 and is very similar to procedures 
commonly used to infer mutational signatures from cancer sequencing data19. 

All consensus matrix factorization methods were well able to deconvolute the identity 
programs for the 2 highest signal to noise ratios. However, cNMF performed better than 
the others at identifying the activity program, successfully deconvoluting it in 20 out of 
20 simulations at the highest signal to noise level and 17 out of 20 simulations at the 
next highest level, compared to 19 and 12 out of 20 for cICA and 17 and 5 out of 20 for 
cLDA (Fig. 1d, Supplementary Fig. 2). When a method, successfully deconvoluted the 
GEPs, it also correctly inferred the cells that used each program. We obtained a final 
usage estimate by fixing the component matrix to the cluster median values and running 
one last iteration of the matrix factorization. These inferred usages recapitulated the true 
simulated usage of the GEPs in each cell (Fig. 1e, Supplementary Fig. 3a). We thus 
arrived at an aggregation approach to increase the robustness of LDA, NMF, and ICA 
for GEP deconvolution and demonstrated that it works well on simulated scRNA-Seq 
data. W 

Next, we benchmarked the consensus matrix factorization methods against PCA and 
simple clustering using the 20 simulation replicates at the highest signal to noise level. 
For clustering, we considered both the commonly used Louvain algorithm20,21 as well as 
an ‘optimal’ clustering derived by using our ground-truth simulated values to assign 
each cell to a single cluster corresponding to its maximum contributing GEP, with cells 
with >40% usage of the activity program assigned to an activity cluster (Supplementary 
Fig. 3b). This optimal clustering allows us to put an upper bound on how well any 
discrete clustering could perform on this dataset in which many cells have profiles 
derived from two GEPs. While the other matrix factorizations were able to identify all 14 
simulated programs, PCA could only identify 13 and would systematically leave out the 
14th. The 13 identified programs were combinations of the true programs rather than 
complete deconvolutions (Supplementary Fig. 3c). Because, simple clustering couldn’t 
assign mixed cluster membership to cells expressing an identity and activity program, it 
could not fully separate out the activity GEPs from the identity GEPs of cell-types with 
the activity (Supplementary Fig. 3b,c). 

We next quantitatively benchmarked the accuracy of the methods by comparing how 
well they could infer the genes that constitute each simulated expression program. We 
used multiple ordinary least squares regression to associate the expression of each 
gene with the inferred usage of each GEP across cells. We then determined for every 
association strength threshold, what proportion of the genes associated with a GEP 
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were truly in that program and what proportion were false positives (Online Methods). 
We combined all genes from the 20 simulation replicates at the highest signal to noise 
level to obtain final accuracy estimates. cNMF had the highest accuracy at inferring the 
activity program, with a sensitivity of 62% at an FDR cutoff of 5% (Fig. 1f). Optimal 
clustering and cICA were the next most accurate methods with 55%, and 45% 
sensitivity at the 5% FDR cutoff respectively. While cICA and cLDA outperformed the 
optimal clustering at activity GEP detection in the majority of runs, their overall 
performance was significantly decreased by the few replicates where they failed to 
deconvolute it (Supplementary 4a). Of note, cNMF also performed best at inferring the 
identity program of cell-types that express the activity program (Supplementary Fig. 4b). 
Louvain clustering performed poorly at inferring both these identity programs and the 
activity program as it incorrectly associated activity program genes with the identity 
program, and vice versa, leading to elevated false positive rates. Except for PCA, which 
had significantly lower accuracy, all other methods  performed comparably well for 
identifying genes associated with the identity programs of cell-types that don’t express 
the activity program (Supplementary Fig. 4b). 

In summary, we found that cNMF was the most accurate at inferring the genes in both 
activity and identity gene-expression programs from scRNA-Seq data. While cICA had 
somewhat lower accuracy, we note that independent replicates of ICA were more 
consistent meaning that it was less dependent on the consensus matrix factorization 
approach than NMF. Thus, ICA may be useful in situations where running multiple 
replicates isn’t practical. However, we also note that NMF and other non-negative 
factorizations yielded like LDA yield more interpretable solutions than ICA. With a non-
negative factorization, the GEP matrix can be easily converted to interpretable 
expression units such as the transcripts per million (TPM), whereas this isn’t possible 
for ICA (Online Methods). Moreover, when normalized to sum to 1, each row of the 
cNMF usage matrix represents the proportion of gene-expression that can be attributed 
to each GEP in a cell. Because of the negative values, this kind of interpretation isn’t 
possible for the usage matrix in ICA either. Based on the greater accuracy and the 
increased interpretability of its solutions, we proceeded with cNMF to analyze the real 
scRNA-seq datasets. 

Beyond identifying the activity program itself, we found that cNMF could accurately infer 
which cells expressed the activity program and what proportion of their expression was 
derived from the activity program (Fig. 1g). With an expression usage threshold of 10%, 
91% of cells expressing the program across all simulations were accurately classified 
while 94% of cells that did not express the program were correctly identified. Moreover, 
we observed a high Pearson correlation between the inferred and simulated usages in 
cells that expressed the program (R=0.735). Thus, cNMF could infer which cells 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/310599doi: bioRxiv preprint 

https://doi.org/10.1101/310599
http://creativecommons.org/licenses/by-nc-nd/4.0/


Si
m

. a
ct

iv
ity

pr
og

ra
m

Si
m

. i
de

nt
ity

pr
og

ra
m

s

Inferred gene
expression programs0.0 0.5 1.0

correlation

Si
m

ul
at

ed
us

ag
e

Identity
program

In
fe

rr
ed

us
ag

e

Activity
program

0 0.4 0.8

GEP usage

0.00 0.25 0.50 0.75 1.00

False discovery rate (FDR)

0

1

Se
ns

iti
vi

ty

Detection of genes in
activity program

cNMF
cICA
cLDA
PCA
Opt. clust.
Louv. clust.

Simulation overview

13 cell identity programs

  activity      doublets

0 25 50 75

True usage (%)

0

25

50

75

In
fe

rr
ed

 u
sa

ge
 (%

)
R=0.74

Activity program usage
inference

0 20 40 60

Second highest GEP usage (%)

0

50

100

To
p 

G
EP

 u
sa

ge
 (%

)

Singletons

Doublets

Doublet Decision
Boundary

Doublet idenfication from 
identity program usage

scRNA-seq data

Method overview
a

b

fe

c

h

g

matrix factorization
replicates

(N x k)
program

usages per cell

Gene expression
programs (GEPs)

(k x M)

Clustering of programs
across replicates

Confidence intervals over
factorization replicates

Gene expression program (GEP)
definition

Per-cell usage of each GEP

N (cells)
x

M (genes)

d

0.50 0.75 1.00

Mean D.E. log2 fold change

0

25

50

75

100

%
 o

f S
im

ul
at

io
ns

Activity GEP deconvolution
success rate

cNMF
cICA
cLDA

Figure 1: cNMF infers identity and activity expression programs in simulated data. 
(a) Schematic of the consensus matrix factorization pipeline. (b) t-distributed stochastic neigbour 
embedding (tSNE) plot of an example simulation showing different cell-types with marker colors, 
doublets as gray Xs, and cells expressing the activity gene expression program (GEP) with a black 
edge. (c) Pearson correlation between the true GEPs and the GEPs inferred by cNMF, both in units 
of gene variance normalized transcripts per million for the simulation in (b). (d) Percentage of 20 
simulation replicates where an inferred GEP had Pearson correlation greater than 0.75 with the 
true activity program for each signal to noise ratio (parameterized by the mean log2 fold-change 
for a differentially expressed gene). (e) Same tSNE plot as (b) but colored by the simulated true 
usage or the consensus non-negative matrix factorization (cNMF) inferred usage of an example 
identity program (left) or the activity program (right).  (f) Receiver Operator Characteristic curve 
(except with false discovery rate rather than false positive rate) showing accuracy of prediction of 
genes associated with programs by each method for all simulations with differential expression 
log2 fold-change of 1.0. (g) Scatter plot comparing the simulated activity GEP usage and the 
usage inferred by cNMF. For cells with a simulated usage of 0, the inferred usage is shown as a box 
and whisker plot with the box corresponding to interquartile range and the whiskers correspond-
ing to 5th and 95th percentiles. (h) Kernel density plot of the top and the second highest identity 
GEP usage inferred by cNMF for all cells that don’t express the activity program. Markers are 
colored by whether the cell is a doublet or a singlet. 
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express the activity program, as well as what proportion of their transcripts derive from 
that program. 

We also found that cNMF could detect doublets and infer the two cell-types that 
contributed to each doublet (Fig. 1h). We examined this by first excluding cells that 
expressed the activity program and then classifying a cell as a doublet if it’s top identity 
GEP usage was >26% higher than the usage of it’s second highest identity GEP. With 
this cutoff, 91% of doublets and 92% of singletons across all simulations were correctly 
classified into their respective classes. 91% of correctly identified doublets had the 
correct two programs as their top two GEPs. This illustrates how cNMF can in principle 
be used to determine the cell-types that combine to form doublets. However, we note 
that cells with high usage of two or more GEPs may also represent a developmental 
transition state or cells that otherwise cannot be neatly resolved between two related 
cell-types. Thus, the presence of differentiation or many cell-types with similar gene 
expression programs in a dataset may complicate the use of this approach for doublet 
detection. 

Having demonstrated its good performance on simulated data, we used cNMF to re-
analyze a published scRNA-Seq dataset of 52,600 single cells isolated from human 
brain organoids22. The initial report of this data confirmed that organoids contain 
excitatory cell-types homologous to those in the cerebral cortex and retina as well as 
unexpected cells of mesodermal lineage, but further resolution can be gained on the 
precise cell-types and how they differentiate over time. As organoids contain many 
proliferating cell-types, we sought to use this data to detect activity programs -- in this 
case, cell cycles programs -- in real data. 

cNMF identified 31 distinct programs in this data (Supplementary Fig. 5). Most cells had 
high usage of just a single GEP (Fig. 2a). However, when cells used multiple GEPs, 
those programs typically had correlated expression profiles, suggesting that they 
correspond to identity programs of closely related cell-types. (Supplementary Fig. 6). By 
contrast, 3 GEPs were co-expressed with many distinct and uncorrelated programs 
suggesting that they represent activity programs that occur across diverse cell-types. 
Consistent with this, the 28 suspected identity programs were well separated by the 
cell-type clusters reported in Quadrato et. al. while the three suspected activity 
programs were expressed by cells across multiple clusters (Supplementary Fig. 7). 

Our 28 identity programs further refined the 10 primary cell-type clusters originally 
reported for this dataset. For example, we sub-classified the mesodermal cluster into 
three populations expressing genes characteristic of (1) immature skeletal muscle (e.g. 
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MYOG, TNNT2, NES), fast-twitch muscle (e.g. TNNT3, TNNC2, MYOZ1), and slow-
twitch muscle (e.g. TNNT1, TNNC1, TPM3) (Fig. 2c). This unexpected finding suggests 
that 2 distinct populations of skeletal muscle cells -- excitatory cell-types with many 
similarities to neurons -- are differentiating in these brain organoids. 

Of the three activity programs, we found that two were strikingly enriched for cell cycle 
Gene Ontology (GO) sets, suggesting that they correspond to separate phases of the 
cell cycle (Fig. 2b). One showed stronger enrichment for genesets involved in DNA 
replication (e.g. DNA Replication P=6x10-55 compared to  P=2x10-14) while the other 
showed stronger enrichment for genesets involved in mitosis (e.g. Mitotic Nuclear 
Division, P=5x10-61 compared to P=2x10-46). These enrichments and inspection of the 
genes most associated with these programs implied that one represents a G1/S 
checkpoint program and the other represents a G2/M checkpoint program (Fig. 2d). 

The third activity program is characterized by high levels of well-known hypoxia related 
genes (e.g. VEGFA, PGK1, CA9, P4HA1, HILPDA) suggesting it represents a hypoxia 
program (Fig. 2d). This is consistent with the lack of vasculature in organoids which 
makes hypoxia an important growth constraint23. This GEP was significantly enriched 
for genesets related to protein localization to the endoplasmic reticulum and nonsense 
mediated decay (P=3x10-37, P=4x10-31) (Fig. 2b), consistent with literature showing that 
hypoxia post-transcriptionally increases expression of genes that are translated in the 
ER24 and modulates nonsense mediated decay activity25. 

Having identified proliferation and hypoxia activity programs, we sought to quantify their 
relative rates across cell-types in the data. We found that 2644 cells (5.0%) expressed 
the G1/S program and 1437 cells (2.7%) expressed the G2/M program (with 
usage>=10%). Classifying cells into cell-types according to their most used identity 
program, we found that many distinct populations were replicating. For example, we 
noticed a rare population, included with the forebrain cluster in the original report, that 
we label as “stem-like” based on high expression of pluripotency markers (e.g. LIN28A, 
L1TD1, MIR302B, DNMT3B) (Supplementary table 1). These cells showed the highest 
rates of proliferation with over 38% of them expressing a cell-cycle program in addition 
to the “stem-like” identity GEP (Fig. 2e).  

We also found that a cell cluster labeled in Quadrato et al., 2017 as “proliferative 
precursors” based on high expression of cell-cycle genes is composed of multiple cell-
types including immature muscle and dopaminergic neurons (Supplementary Fig. 7). 
The predominant identity GEP of cells in this cluster is most strongly associated with the 
gene PAX7, a marker of self-renewing muscle stem cells26 (Supplementary table 1). 
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Figure 2: Deconvolution of cell-cycle programs from cell identity in brain organoid data. (a) 
Heatmap showing percent usage of all GEPs (rows) in all cells (columns). Identity GEPs are shown on 
top and activity GEPs are shown below. (b) Table of P-values for the top six Gene Ontology geneset 
enrichments for the three activity GEPs. (c) Heatmap of Z-scores of top genes associated with three 
mesodermal programs in those programs (top) and in all other programs (bottom). (d) Heatmap of 
Z-scores of top genes associated with three activity GEPs in those programs (top) and in all other 
programs (bottom). (e) Proportion of cells assigned to each identity GEP that express the G1/S or G2/M 
program with a percent usage greater than 10%. (f) Proportion of cells assigned to each identity GEP 
that express the hypoxia program with a percent usage greater than 10%.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/310599doi: bioRxiv preprint 

https://doi.org/10.1101/310599
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

Indeed, this GEP has high (>10%) usage in 52% of cells that express the immature 
muscle program, suggesting it may be a precursor of muscle cells. This relationship was 
not readily identifiable by clustering because the majority of genes associated with the 
cluster were cell-cycle related. This highlights the ability of cNMF to refine cell-types by 
disentangling identity and activity programs. 

We also saw a wide range of cell-types expressing the hypoxia program, with the 
highest rates in C6-1, neuroepithelial-1, type 2 muscle, and dopaminergic-2 cell-types. 
The lowest levels of hypoxia program usage occurred in forebrain, astroglial, retinal, 
and type 1 muscle cell-types (Fig. 2f). This illustrates how inferring activity programs in 
scRNA-Seq data using cNMF makes it possible to compare the rates of cellular 
activities across cell-types. 

Next we turned to another published dataset to illustrate how cNMF can be combined 
with scRNA-Seq of experimentally manipulated cells to uncover more subtle activity 
programs. We re-analyzed scRNA-Seq data from 15,011 excitatory pyramidal neurons 
or inhibitory interneurons from the visual cortex of dark-reared mice that were suddenly 
exposed to 0 hours, 1 hours, or 4 hours of light27. This allowed the authors to identify 
transcriptional changes induced by sustained depolarization, a phenomenon believed to 
be critical for proper cortical function. Given that the authors identified heterogeneity in 
stimulus-responsive genes between neuronal subtypes, we wondered if cNMF could 
identify a shared program and whether it could tease out any broader patterns in what is 
shared or divergent across neuron subtypes. 

We ran cNMF on neurons combined from all three exposure conditions and identified 15 
identity and 5 activity programs (Fig. 3a, Supplementary Fig. 8). As we saw in the 
organoid data, the activity programs were co-expressed with many distinct and 
uncorrelated GEPs, while the identity programs only overlapped in highly related cell-
types. In addition, the identity programs were well separated by the published clusters 
which we subsequently used to label the GEPs (Supplementary Fig. 9). 

Three activity programs were correlated with the stimulus, which indicates that they are 
induced by depolarization (Fig. 3b). One of these was induced at 1H and thus 
corresponds to an early response program (ERP). The others were primarily induced at 
4H and thus correspond to late response programs (LRPs). These programs 
overlapped significantly with differentially expressed genes reported in Hrvatin et. al. 
2017 (P=9x10-34 for the ERP and genes induced at 1H;  P=2x10-22, P=4x10-14 for the 
LRPs and genes induced at 4Hs). 
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Intriguingly, one LRP was more induced in superficial cortical layers while the other was 
more induced in deeper layers. This provides support for a recently proposed model 
where the ERP is predominantly shared across excitatory neurons while LRPs vary 
more substantially across neuron subtypes27. It also illustrates cNMF’s sensitivity: in the 
initial report, only 64 and 53 genes were identified as differentially expressed in at least 
one excitatory cell-type at 1H and 4Hs (FC≥2, FDR<.05). Nevertheless, cNMF was able 
to find this program in the data without knowledge of the experimental design. 

cNMF was also able to identify a depolarization-induced program in visual cortex 
neurons that were not experimentally manipulated to elicit them. We re-analyzed an 
additional scRNA-Seq dataset of 1,573 neurons from the visual cortex of adult mice 
that, unlike in the primary dataset, were not reared in darkness or treated with a specific 
light stimulus28. In this dataset, cNMF identified a matching GEP for all visual cortex 
cell-types found in the original data except for one (Supplementary Fig. 10a). Moreover, 
it identified a GEP that showed striking concordance with the superficial late response 
program found in the primary dataset (Fisher Exact Test of genes with Z-score>1.5, 
OR=114.7, P=9x10-109, Pearson Correlation=.65) (Fig. 3c). This program was 
predominantly expressed in excitatory cells of the more superficial layers of the cortex 
as would be expected based on the results in the primary dataset. For example, over 
50% of the excitatory neurons of cortical layer 2 expressed this activity program 
(Supplementary Fig. 10b). This demonstrates that cNMF could also find the 
depolarization-induced activity program in scRNA-Seq of cells that had not been 
experimentally manipulated. 

Finally, cNMF identified 2 intriguing activity programs in the primary visual cortex 
dataset that were not well correlated with the light stimulus but were expressed broadly 
across excitatory neurons and inhibitory neurons of multiple cortical layers (Fig. 3b). 
One activity program (labeled other activity 1 - OA1) is characterized by genes involved 
in synaptogenesis. In ranked order, the top genes associated with this GEP were 
MEF2C29, H2-Q4, YWHAZ30, CADM1/SYNCAM131, NCAM132, and BICD133 (an 
example reference is included for genes with a published link to synapse formation). 
The top genes associated with the remaining activity program (OA2) include several 
that are involved in cerebral ischemic injury: MEG334, GLG135, RTN136, ELAVL3, 
CMIP). These functional interpretations of OA1 and OA2 are speculative but they 
highlight the ability of cNMF to identify intriguing novel gene expression programs in an 
unbiased fashion.  

In summary, we have shown that matrix factorization approaches can be used to infer 
identity and activity gene expression programs from scRNA-Seq data. We developed a 
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Figure 3: Identification of early and late activity induced transcriptional programs in neurons of 
the visual cortex. (a) Heatmap showing percent usage of all GEPs (rows) in all cells (columns). Identity 
GEPs are shown on top and activity GEPs are shown below. (b) Box and whisker plot showing the 
percent usage of activity programs (rows) in cells classified according to their maximum identity GEP 
(columns) stratified by the stimulus condition of the cells (hue). (c) Scatter-plot of Z-scores of genes in 
the superficial late response GEP from the primary visual cortex dataset against the corresponding 
program in the Tasic et. al., 2016 dataset for all overlapping genes.
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consensus approach that increases the accuracy and robustness of several matrix 
factorizations, rigorously benchmarked them against each other and against state-of-
the-art approaches, and found that our method, cNMF, provides the most accurate 
results. We demonstrate with simulated data that cNMF can increase the accuracy of 
cell-type identification while simultaneously characterizing activity programs that vary 
dynamically across cell-types. We then analyze several published datasets and 
illustrate how inferring activity programs can provide an additional layer of information 
on top of cell-types and can shed light on important biological phenomena such as 
depolarization-induced neuronal adaptation. As scRNA-Seq data further increases in 
RNA capture efficiency and throughput, it will likely become possible to detect more 
refined GEPs, further increasing our ability to disentangle activity and identity programs. 
Here, we have illustrated how this might be leveraged to understand the dynamic 
activities of cells within tissues. 
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Online methods 

Simulations 

Our simulation framework is based on Splatter37 but is re-implemented in Python and 
adapted to allow simulation of doublets and shared gene-expression programs. Gene-
expression programs were simulated as in Splatter. Cells were then randomly assigned 
an identity program with uniform proportions. 30% of cells of 4 cell-types were randomly 
selected to express the shared activity program at a usage uniformly distributed 
between 10% and 70%. Then their mean gene-expression was computed as the 
weighted sum of their cell-identity program and the activity program. Doublets were 
constructed by randomly selecting pairs of cells, summing their gene counts, and then 
randomly down-sampling the counts to the maximum of the two cells. We simulated 
25984 genes, 1000 of which were associated with the activity program. The probability 
of a gene being differentially expressed in a given cell-identity program was set to 2.5%. 
The differential expression location and scale parameters were 1.5 and 1.0 for cell 
identity and activity programs. Other splatter parameters were: lib.loc=7.64, 
libscale=0.78, mean_rate=7.68, mean_shape=0.34, expoutprob=0.00286, 
expoutloc=6.15, expoutscale=0.49, diffexpdownprob=0, bcv_dispersion=0.448, 
bcv_dof=22.087. These values were inferred from 8000 randomly sampled cells of the 
Quadrato et al., 2017 organoid dataset using Splatter. 

To compare against cNMF, we used Louvain clustering as implemented in scanpy38 and 
determined corresponding GEPs as the cluster centroids. We used 15 principal 
components to compute distances between cells and used 15 nearest neighbors to 
define the KNN graph. 

Concensus non-negative matrix factorization (cNMF) 

We used non-negative matrix factorization implemented in scikit-learn (version 20.0) 
with the default parameters except for random initialization, tolerance for the stopping 
condition of 10-4, and a maximum number of iterations of 400.  

Each replicate of cNMF was run with a randomly selected seed. The component 
matrices from each replicate were concatenated into a single matrix where each row 
was a component from one replicate. Each of these components were normalized to 
have L2 norm of 1. Then components that had high average euclidean distance from 
their K nearest neighbors were filtered out. We set K to be .3 times the number of 
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bootstraps for the organoid and brain datasets and .5 times the number of bootstraps 
for the simulated dataset. The threshold on average euclidean distance was set by 
inspecting the histogram and truncating the long tail (Supplementary Fig. 1, 4, 7). Next 
the bootstrap-components were clustered using KMeans with euclidean distance and K 
set to the number of components used for the NMF run. Then each cluster was 
collapsed to a single component by taking the median across each of its dimensions. 
GEP components were then normalized to sum to 1. And lastly, a final usage matrix 
was fit by running one last iteration of NMF with the component matrix fixed to the 
median cluster components. 

We determined the number of components for cNMF using the approach described in 
Alexandrov et al, 201319 with a few modifications. We ran NMF on normalized data 
matrices rather than count matrices and therefore did not resample counts but simply 
repeated NMF with different randomly selected seeds. We still determined the number 
of components by considering the trade-off between mean Frobenious error of the NMF 
repeats, and stability of the solutions from the distinct runs. As in Alexandrov et al, 
2013, stability was computed as the Silhouette score of the KMeans clustering on the 
NMF components (prior to filtering outliers). However we used Euclidean distance on L2 
normalized components as the metric rather than Cosine distance. Silhouette score was 
calculated using the Scikit-learn silhouette_score function. 

Data preprocessing 

For each of the datasets, we filtered out cells with fewer than 1000 unique umis 
detected. We also filtered out genes that were not detected in at least 1 out of 500 cells. 
Then we selected the 2000 genes with the most over-dispersion as determined by the 
v-score39. Then, each gene was scaled to unit variance before running cNMF. Note, we 
did not perform any TPM normalization prior to cNMF. This is because cells with more 
counts should contribute more information. Variance due to capture efficiency is 
captured in the Usage matrix rather than the GEP matrix. However, after cNMF, the 
GEP profiles was determined for all genes  (including low variance ones) and the 
programs were converted to units of TPM. This was accomplished by running the last 
step of NMF with the full TPM cell x gene matrix as input, and the usage matrix fixed to 
that identified above. 

Finding genes associated with programs 

We associated genes with programs with Ordinary Least Squares Regression. We used 
the Usage matrix (cells x programs), row normalized to sum to 1 for each cell as the 
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predictor. We fit this to mean and variance normalized TPM profiles for each gene. The 
regression coefficients for a program therefore correspond to how many standard 
deviations above average a cell’s expression would be expected to be if all of its usage 
derived from that program. 

Testing enrichment of genesets in programs 

We used the regression coefficients identified as above as inputs for a ranksum test 
(with tie correction) comparing the median of genes in each geneset to that of genes not 
in the geneset. 
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