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Abstract. Cells use various regulatory motifs, including feedforward
loops, to control the intrinsic noise that arises in gene expression at low
copy numbers. Here we study one such system, which is broadly inspired
by the interaction between an mRNA molecule and an antagonistic mi-
croRNA molecule encoded by the same gene. The two reaction species are
synchronously produced, individually degraded, and the second species
(microRNA) exerts an antagonistic pressure on the first species (mRNA).
Using linear-noise approximation, we show that the noise in the first
species, which we quantify by the Fano factor, is sub-Poissonian, and
exhibits a nonmonotonic response both to the species lifetime ratio and
to the strength of the antagonistic interaction. Additionally, we use the
Chemical Reaction Network Theory to prove that the first species dis-
tribution is Poissonian if the first species is much more stable than the
second. Finally, we identify a special parametric regime, supporting a
broad range of behaviour, in which the distribution can be analytically
described in terms of the confluent hypergeometric limit function. We
verify our analysis against large-scale kinetic Monte Carlo simulations.
Our results indicate that, subject to specific physiological constraints,
optimal parameter values can be found within the mRNA–microRNA
motif that can benefit the cell by lowering the gene-expression noise.

1 Introduction

Gene regulatory circuits encode diverse mechanisms to counter stochasticity aris-
ing from low-copy numbers of circuit constituents. Perhaps the most well-known
example of this is negative feedback realized via gene autoregulation, where an
expressed protein inhibits its own transcription/translation [1–12]. While such
negative autoregulation is quite ubiquitous for E. coli transcription factors [13],
it is surprisingly rare for eukaryotic transcription factors [14]. It is possible that
the time delays associated with transporting the protein from the cytoplasm to
nucleus compromise the noise buffering properties of negative feedback.

An alternative option is an incoherent feedforward loop that has been shown
to be effective in maintaining a desired expression level in spite of changes in
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gene dosage [15], or upstream fluctuations in transcription factor levels [16–19].
Interestingly, increasing evidence shows that many eukaryotic genes are regulated
by a specific feedforward architecture – the transcribed intronic regions of a gene
that are removed during splicing are further processed to make a microRNA that
targets the same gene’s mRNA [20]. This creates a strong coupling between the
two species both in the sense of stoichiometry, and also timing of production
events. We systematically study how such coupling in a feedforward loop alters
noise in mRNA copy numbers, and identify parameter regimes which provide
the most (and least) effective noise suppression.

Cellular regulatory circuits can be represented, up to a suitable level of de-
tail, by systems of chemical kinetics. Unfortunately, exact characterisations of
the copy-number distributions in a reaction system are often unavailable. Sys-
tems operating at a complex-balanced equilibrium are a notable exception in
that they admit tractable product-form distributions [21–24]. Steady-state dis-
tributions have also been characterised in terms of generating functions in a
growing collection of simple models that are not complex-balanced [25–30]. Such
representations typically involve the use of special mathematical functions [31].

Approximative methods often provide a viable alternative in analysing a re-
action system if exact results are unavailable or intractable. The linear-noise
approximation (LNA) and moment-closure methods can reveal useful insights
into the noise behaviour even for relatively complex reaction networks [32–38].
The quasi-steady state (QSS) approximation often leads to formulation of sim-
plified models that can be more amenable to exact characterisation [39–43].

Here we apply these methodologies to analyse a reaction-kinetics model of
a feedforward loop. Section 2 formally introduces the model and reviews some
of its essential features as identified by an LNA analysis. Section 3 contains the
derivation of the LNA results and cross-validates them with large-scale kinetic
Monte Carlo simulations. Section 4 focuses on a special case in which the model
admits a product-form distribution predicted by the Chemical Reaction Network
Theory [23, 24]. Section 5 introduces a QSS approximation and shows that it
can outperform the LNA in a specific parametric regime. The paper ends with
a discussion of the current results and sketches lines of future inquiry.

2 The statement of the model and main results

We consider a discrete stochastic chemical kinetics system composed of two
species X (mRNA) and Y (microRNA) which are subject to reaction channels

R1 : ∅
k

GGGGGA X + Y, R2 : X + Y

δ(1−q)
k

GGGGGGGGGGA ∅,

R3 : X + Y

δq
k

GGGGGGA Y, R4 : Y
1

GGGGGA ∅, R5 : X
ε

GGGGGA ∅.

(1)

The molecules X and Y are produced synchronously with rate constant k through
the reaction channel R1. In the reaction channels R2 and R3, a pair of X and Y
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molecules interact, which leads to the elimination of X; the Y molecule survives
its antagonistic action on X with probability q, where 0 ≤ q ≤ 1 are allowed. For
studies with a decoupled production of X and Y and q = 0 we refer the reader
e.g. to [44, 45].

The strength of the antagonistic interaction is measured by the parameter
δ. The reaction rates of both second-order reactions are divided by k in order
to achieve a classical scaling [46] of the reaction system (1) with respect to the
parameter k. Doing so makes the ensuing analysis more transparent.

The reaction channels R4 and R5 describe the spontaneous degradation of Y
and X. By measuring time in units of the expected lifetime of Y, we are able to
fix the reaction constant of R4 to one. The parameter ε gives the ratio of Y to
X lifetimes. In particular, small values of ε pertain to the assumption that X be
much more stable than Y.

In this paper we aim to examine how the choice of parameter values affects
the stochastic noise in the X copy number at steady state. We use the Fano
factor, which is defined as the ratio of the variance to the mean, as our chosen
noise metric. It is well known that the Fano factor is equal to one for the Poisson
distribution. We refer to a distribution with Fano factor lower than one as sub-
Poissonian.

Using the linear-noise approximation (LNA), we obtain for the Fano factor

FLNA = 1− εδ

(ε+ δ)2(1 + ε+ δ)
for q = 1. (2)

The details of the derivation follow in Section 3. Note that the LNA result (2)
is independent of the parameter k. The function (2) is visualised as a heat map
in the upper-left panel of Fig. 1.

Elementary analysis of (2) reveals that

1. The steady-state distribution of X is sub-Poissonian if ε > 0 and δ > 0.
2. If there is no interaction (δ = 0) or if X is stable (ε = 0), the Fano factor is

equal to one.
3. For a fixed positive value of ε, the Fano factor is a nonmonotonic function

of δ, initially decreasing before reaching a minimum, and slowly increasing
back to one as δ →∞.

4. The analogous holds if the roles of ε and δ are reversed in Property 3.
5. The function FLNA(ε, δ) is discontinuous at (ε, δ) = (0, 0). A range of lim-

iting values can be achieved depending on along which ray the origin is
approached.

6. The function FLNA(ε, δ) does not have an unconstrained minimum. An infi-
mum of 0.75 is approached if ε = δ → 0.

The function FLNA can be efficiently evaluated also for 0 ≤ q < 1, but the
algebra reveals little. Graphical examination of FLNA indicates that all the above
properties hold for 0 < q ≤ 1 (see the upper-right panel of Fig. 1 for q = 0.5).
The infimum of the Fano factor in Property 6 is lower than 0.75 if q < 1 and is
approached along a different ray emanating from the origin. In the exceptional
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Fig. 1. The Fano factor of species X (mRNA) by linear-noise approximation (LNA)
depending on the model parameters.

case q = 0 the dependence of FLNA on ε and δ is monotonous (the lower panels
of Fig. 1).

Property 2 suggests, but does not provide a definitive proof, that the distri-
bution of X is Poissonian if ε = 0 or δ = 0. In the non-interaction case (δ = 0),
the proof is straightforward: the dynamics of X is that of a simple immigration-
and-death process, which is known to generate a Poisson distribution [47–49].
If X is stable (ε = 0), the distribution is again Poisson, but the proof requires
a more subtle reasoning based on the Chemical Reaction Network Theory. We
present the details in Section 4.

The discontinuity of FLNA(ε, δ) at the origin indicates that a surprisingly rich
behaviour, in terms of the chosen noise metric, can be recovered by focusing solely
on the ε, δ � 1 parametric region. We pursue this line of inquiry in Section 5,
where we identify a family of discrete distributions, which describe the limit
behaviour of (1) in this parametric region. For reasons made explicit later, we
refer to this description as the quasi-steady-state (QSS) model. We demonstrate
that the QSS model can be superior to the LNA in predicting simulation results.
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3 Linear-noise approximation

In linear-noise approximation, the mean behaviour is given by the law-of-mass-
action formulation of the reaction system (1), which is

ẋ = k − δxy

k
− εx, ẏ = k − δ(1− q)xy

k
− y. (3)

Setting the derivatives in (3) to zero and solving the resulting algebraic system
in x and y yield the stationary mean values

x = kx̃, y = kỹ, (4)

where

x̃ =
2

δq + ε+
√

(δq + ε)2 + 4δε(1− q)
, ỹ = q + ε(1− q)x̃. (5)

Note that the means (4) scale with the production rate constant k.
In order to obtain the LNA of the variance, we need to determine the steady-

state fluctuation and dissipation matrices of the reaction system (1). The dissi-
pation matrix A is equal to the linearisation matrix of the system (3), i.e.

A = −
(

δỹ + ε δx̃
δ(1− q)ỹ 1 + δ(1− q)x̃

)
. (6)

The fluctuation matrix B is obtained in the following manner [50]: for each
reaction channel in the system (1), we calculate the outer product of the reaction
vector [51, 52] with itself, and multiply it by the (steady-state) reaction rate;
then we sum the results over all reaction channels. In our particular example
this leads to

B = kB̃, where B̃ =

(
2 2− ỹ

2− ỹ 2

)
. (7)

The fluctuation–dissipation theorem [53] states that the covariance matrix Σ of
the random vector of steady-state X and Y copy numbers satisfies

AΣ +ΣAᵀ +B = 0,

i.e.

Σ = kΣ̃, where AΣ̃ + Σ̃Aᵀ + B̃ = 0. (8)

Note that the covariance matrix (8) scales with the production rate constant k.
The linear algebraic system (8) can be written in a flattened form asa11 a12 0

a21 a11 + a22 a12
0 a21 a22

Σ̃11

Σ̃12

Σ̃22

+

 1
2− ỹ

1

 = 0. (9)
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Fig. 2. The Fano factor of species X (mRNA) as function of model parameters as
given by the linear-noise approximation (LNA, solid lines) and stochastic simulation
algorithm (SSA, discrete markers). Two values of k are used, one large (k = 30, left
panel) and one moderate (k = 3, right panel). The LNA is independent of k. Error
bars indicate 99.9% confidence intervals for the simulation-based Fano factors.

The Fano factor is given by

FLNA =
Σ11

x
=
Σ̃11

x̃
.

Since both the mean x and the variance Σ11 scale linearly with k, the Fano
factor is independent of the parameter.

For 0 ≤ q < 1, we solve (9) for every combination of parametric values
numerically by a fast linear-algebra solver. For q = 1, equations (5) and (6)
simplify to

x̃ =
1

δ + ε
, ỹ = 1, A = −

(
δ + ε δ

δ+ε

0 1

)
.

The linear system (9) becomes upper triangular, and the formula (2) is obtained
after few elementary steps.

A classical system-size-expansion argument [54] guarantees that the LNA ac-
curately describes the reaction system (1) as k tends to infinity. We demonstrate
the asymptotics in Fig. 2, in which we compare the LNA of the Fano factor to
the value obtained by the application of Gillespie’s stochastic simulation algo-
rithm (SSA) [55]. We observe a perfect agreement between the two if k = 30
(Fig. 2, left panel). Although the agreement remains satisfactory for k = 3, the
SSA results are now seen to deviate systematically from the LNA prediction for
moderate values of ε and δ (Fig. 2, right panel).

The reaction species mean values and standard deviations were calculated
using Stochpy’s [56] implementation of Gillespie’s direct method [55]. We skipped
over the first 30 units of time to avoid the influence of an initial transient; we
estimated the moments from the next 105 iterations (for k = 3) or 106 iterations
(for k = 30) of the algorithm. The Fano factor was calculated as the ratio of the
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squared standard deviation to the mean value. The procedure was repeated to
obtain 25 independent Fano factor estimates. The repetition increased accuracy
and facilitated the construction of confidence intervals.

4 Stability of X implies Poisson distribution

In Section 3, we reported that if Y has a chance of surviving the antagonism
with X (q > 0) and if X is stable (ε = 0), then the LNA of the Fano factor is
equal to one. Here we expand on this observation by providing an actual proof
that the steady-state copy number of X (and also that of Y) follows the Poisson
distribution. The argument is based on the application of the Chemical Reaction
Network Theory (CRNT) [23].

Setting ε = 0 in the reaction system (1) is tantamount to removing the reac-
tion channel R5 for spontaneous degradation of X. The four remaining reaction
channels involve N = 3 complexes, namely the empty set ∅, the pair X + Y, and
the singleton Y. The three complexes are represented as vertices of the reaction
graph (Fig. 3). The reaction graph has a single linkage class (l = 1). Given that
the linkage class is strongly connected, the chemical system is weakly reversible
in the sense of the CRNT.

The reaction vectors span the entire two-dimensional (s = 2) space of X and
Y copy number pairs. The deficiency of the reaction network is obtained by the
well-known formula δ = N−l−s = 0. According to CRNT [23], weakly reversible
networks of zero deficiency admit a product-form steady-state distribution

P [X = m,Y = n] = C
xmyn

m!n!
, (10)

where x = k/δq and y = kq are obtained by solving the law-of-mass action
kinetics (3) at steady state, i.e. by setting ε = 0 in (4)–(5).

Since the reaction system does not admit any conservation laws, the support
of the distribution (10) includes all pairs of nonnegative integers m,n ≥ 0.
The normalisation constant C is then readily determined as C = e−x−y. In
other words, the joint distribution of X and Y is the product of the marginal
distributions, either of which is Poissonian with mean x and y, respectively.

One of the powerful aspects of the Chemical Reaction Network Theory is
that it generalises to complex extensions of Fig. 3 as long as they do not vio-
late its fundamental structural properties. Biologically, microRNAs tend to be
promiscuous binders [57]. In Appendix A we extend the network of Fig. 3 by an
interaction between Y (the microRNA) and decoy binding sites. We show that
the copy-number distributions remain Poissonian.

5 Quasi-steady-state approximation

The LNA results presented in Section 2 suggested that the reaction system (1)
exhibits a wide range of noise behaviour in the small ε, δ � 1 region. In this
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∅

Y X + Y

R1R2

R3

R4

Fig. 3. Graphical representation of a reduced reaction system obtained from (1) by
disabling the spontaneous degradation of X (reaction channel R5). The reduced reac-
tion system is seen to be weakly reversible (unless q = 0). Additionally, it has zero
deficiency and admits no conservation laws. Therefore, the copy numbers of X and Y
are independent and Poissonian.

section we develop an approximative description to the reaction system (1) that
is applicable for such parametric choices. Specifically, we assume that

k = εκ, δ = εκα, ε� 1, (11)

where κ and α are the rescaled production and interaction rate constants. The
scaling (11) guarantees than ε and δ are both small and that they approach
the origin along a ray with slope given by κα. Note that taking ε and δ to zero
whilst keeping the production rate k fixed would have led to a divergence in the
level of X. By making the production also scale with ε we are able to approach
a distinguished limiting distribution as ε tends to zero. Also note that (11)
removes the classical scaling with respect to the production rate constant from
the system (1). It turns out that this choice keeps the ensuing analysis more
tractable.

The steady-state probability distribution pm,n of observing m molecules of
X and n molecules of Y in the system satisfies the master equation

α(1− q)(m+ 1)(n+ 1)pm+1,n+1 + αq(m+ 1)npm+1,n + (n+ 1)pm,n+1

+ εκpm−1,n−1 + ε(m+ 1)pm+1,n − (αmn+ n+ εκ+ εm)pm,n = 0.
(12)

The first three terms in (12) give the probability influx into the reference state
(m,n) due to the reaction channels R2, R3 (interactions) and R4 (decay of Y).
These terms are not multiplied by ε, i.e. the three reactions are considered to
be fast. The next two terms give the probability influx due to the channels
R1 (production) and R5 (decay of X). These terms are of order ε, i.e. the two
reactions are slow. The final, negative, term in (12) gives the probability efflux
from the reference state (m,n). The master equation states that the influx and
the efflux balance out.

The separation between fast and slow reactions suggests that we should use
quasi-steady-state (QSS) reduction techniques to study (12). The molecule Y
plays the role of the transient, highly reactive, species (or the QSS species [58,
59]). Each time a molecule of Y is produced, a brief period of interaction with
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X ensues, with ends with the elimination of Y (whether through natural degra-
dation or through the interaction with X if q < 1).

We seek a power-series solution

pm,n(ε) = p(0)m,n + εp(1)m,n +O(ε2). (13)

Inserting (13) into (12) and collecting O(1) terms yields

p(0)m,n = 0 for n > 0, (14)

which states that the probability of observing a non-zero number of the QSS
species Y is O(ε) small. Further analysis helps establish additional relations

p(1)m,n = 0 for n > 1, (15)

which state that the probability of observing two or more molecules of Y is O(ε2)
small. Although relations (14) and (15) are sufficient for our present analysis,

they can be generalised to p
(k)
m,n = 0 for n > k, which state that the probability

of having more than k molecules of Y is O(εk+1).

In light of (14), it remains to determine the terms p
(0)
m,0 in order to obtain the

limiting probability distribution. To this end, it is sufficient to use the master
equation (12) for n = 0 and n = 1, i.e.

n = 0 : α(1− q)(m+ 1)pm+1,1 + pm,1

+ ε(m+ 1)pm+1,0 − ε(κ+m)pm,0 = 0, (16)

n = 1 : 2α(1− q)(m+ 1)pm+1,2 + αq(m+ 1)pm+1,1 + 2pm,2

+ εκpm−1,0 + ε(m+ 1)pm+1,1 − (αm+ 1 + εκ+ εm)pm,1 = 0. (17)

Inserting the power-series ansatz (13) into (16)–(17) and collecting O(ε) terms
yields

n = 0 : α(1− q)(m+ 1)p
(1)
m+1,1 + p

(1)
m,1

+ (m+ 1)p
(0)
m+1,0 − (κ+m)p

(0)
m,0 = 0, (18)

n = 1 : αq(m+ 1)p
(1)
m+1,1 + κp

(0)
m−1,0 − (αm+ 1)p

(1)
m,1 = 0, (19)

whereby we made use of the relations (14) and (15). In particular, the rela-
tions (15) guarantee that (18)–(19) forms a closed system of difference equations

in the unknown series p
(0)
m,0 and p

(1)
m,1.

In order to solve (18)–(19), we introduce the generating functions

f(x) =
∞∑
m=0

xmp
(0)
m,0, g(x) =

∞∑
m=0

xmp
(1)
m,1. (20)

Multiplying (18)–(19) by xm and summing over m ≥ 0 yield a system of ordinary
differential equations

α(1− q) dg

dx
+ g = (x− 1)

df

dx
+ κf = 0, (21)

α(q − x)
dg

dx
− g = −κxf. (22)
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Next, we turn the system (21)–(22) of two first-order ordinary differential equa-
tions into a single second-order ordinary differential equation.

First, we eliminate g by adding the equations (21) and (22) up, and dividing
the result by 1− x, which gives

α
dg

dx
= κf − df

dx
. (23)

Second, we eliminate dg/dx by adding up the (x − q)-multiple of (21) and the
(1− q)-multiple of (22) before dividing the result by x− 1, whereby we obtain

g = (x− q)df

dx
+ κqf. (24)

Differentiating (24), we find

dg

dx
=

d

dx

(
(x− q)df

dx

)
+ κq

df

dx
. (25)

Combining (23) and (25), we arrive at an ordinary differential equation of the
second order for f , which reads

d

dx

(
(x− q)df

dx

)
+

(
κq +

1

α

)
df

dx
− κ

α
f = 0. (26)

We look for a solution to (26) in the form of a power series

f(x) =
∞∑
m=0

cm(x− q)m. (27)

Inserting (27) into (26), we have

∞∑
m=0

(
cmm

2(x− q)m−1 +

(
κq +

1

α

)
cmm(x− q)m−1 − κ

α
cm(x− q)m

)
= 0.

Equating like powers of (x− q) yields a recursion

m

(
m+ κq +

1

α

)
cm =

κ

α
cm−1, m = 1, 2, . . . ,

solving which yields

cm =
c0
(
κ
α

)m(
κq + 1

α + 1
)
m
m!
, (28)

where

(a)m = a(a+ 1) · . . . · (a+m− 1), (a)0 = 1,

represents the m-th rising factorial from a number a > 0.
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Substituting (28) into (27) we find that

f(x) = c0 × 0F1

(
κq +

1

α
+ 1,

κ

α
(x− q)

)
, (29)

in which the confluent hypergeometric limit function 0F1 is defined by the con-
vergent series

0F1(a, z) =
∞∑
m=0

zm

(a)mm!
. (30)

Imposing the normalisation condition f(1) = 1, we determine the prefactor c0
in (29) and obtain

f(x) =
0F1

(
κq + 1

α + 1, κα (x− q)
)

0F1

(
κq + 1

α + 1, κα (1− q)
) . (31)

Basic properties of the confluent hypergeometric limit function can be estab-
lished using its power-series representation (30). Repeatedly differentiating the
series (30) term by term yields

dm

dzm
0F1(a, z) =

0F1(a+m, z)

(a)m
. (32)

Comparing (30) with the power-series expansions of the normal and modified
Bessel functions [31], we obtain

0F1(c, z) = Γ (c)z
1−c
2 Ic−1(2

√
z), 0F1(c,−z) = Γ (c)z

1−c
2 Jc−1(2

√
z), z > 0,

(33)
where Γ (z) is the gamma function, Jν(z) is the Bessel function, and Iν(z) is the
modified Bessel function of order ν.

Repeatedly differentiating (31) yields

dmf(x)

dxm
=

(
κ
α

)m(
κq + 1

α + 1
)
m

× 0F1

(
κq + 1

α + 1 +m, κα (x− q)
)

0F1

(
κq + 1

α + 1, κα (1− q)
) , (34)

which provides an approximation

p(0)m,n =
δn,0

(
κ
α

)m
m!
(
κq + 1

α + 1
)
m

× 0F1

(
κq + 1

α + 1 +m,−κqα
)

0F1

(
κq + 1

α + 1, κα (1− q)
) (35)

for the desired solution to the master equation (12). Evaluating the derivatives
of f(x) at x = 1, we obtain the factorial moments [60]

µ(m) = 〈X(X − 1) · . . . · (X −m+ 1)〉 =
dmf(x)

dxm

∣∣∣∣
x=1

=

(
κ
α

)m(
κq + 1

α + 1
)
m

× 0F1

(
κq + 1

α + 1 +m, κα (1− q)
)

0F1

(
κq + 1

α + 1, κα (1− q)
) .

(36)
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Fig. 4. The Fano factor of species X (mRNA) as function of rescaled model parameters
as given by the quasi-steady state (QSS) model, the linear-noise approximation (LNA)
and the stochastic simulation algorithm (SSA). Error bars indicate 99.9% confidence
intervals for the simulation-based Fano factors.

At the same time as noting that the mean 〈X〉 trivially coincides with the first
factorial moment µ(1), we also point out that the main characteristic of interest
here, the Fano factor, can be expressed in terms of the first two factorial moments
as

FQSS = 1 +
µ(2)

µ(1)
− µ(1). (37)

We expressly mention, without carrying out the somewhat tedious calculation,
that the probability distribution (35) and the moments (36) can be written in
terms of Bessel’s functions via (33).

In Fig. 4, we compare the values of the Fano factor obtained in the parametric
regime (11) by the quasi-steady state (QSS) approximation, the linear-noise
approximation (LNA), and by the application of stochastic simulation algorithm
(SSA). We observe that the QSS model predicts the SSA results more faithfully
than the LNA. For q > 0, the LNA overestimates the dip in the Fano factor
(Fig. 4, left panel). For q = 0, the LNA predicts a monotonous decrease of the
Fano factor with the interaction strength, whereas the QSS and SSA results both
show an eventual slow increase (Fig. 4, right panel).

The LNA values were calculated by the method of Section 3, whereby the
original parameters k and δ were recovered from the values of κ and α through
relations (11). Each SSA value was computed in StochPy [56] from 25 indepen-
dent sample paths each consisting of 105 iterations of Gillespie’s direct method.
The QSS values were obtained from (36)–(37).

In Fig. 5, we compare simulation-based estimates of the X copy-number dis-
tribution to the QSS approximation (35) and a Poissonian benchmark. The
agreement between the simulation and the QSS results improves as the value
of ε is decreased: compare the left panels with ε = 0.1 to the right panels with
ε = 0.01. Consistently with our previous reports of the model’s sub-Poissonian
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Fig. 5. Marginal distributions of X copy number obtained by Gillespie’s algorithm,
quasi-steady-state (QSS) approximation, and by maximum-likelihood fitting of a Pois-
son distribution.

behaviour, the species X copy number distributions are narrower than the Pois-
sonian benchmark.

The values of the interaction α were selected in Fig. 5 so as to minimise
the Fano factor for the given values of κ and q. Each histogram is based on
105 independent sample paths of the chemical system (1) generated with Gille-
spie’s direct method. The Poisson distribution was fit to the simulation data by
maximum likelihood estimation.
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6 Discussion

In this paper we considered a stochastic model for a feedforward loop driven
by the interaction between mRNA and microRNA species. Using a combina-
tion of mathematical and computational methods, we investigated the effects of
microRNA based regulation on the mRNA noise levels. The model behaviour
depends on several parameters, namely: the gene-expression rate, the interac-
tion strength, the microRNA to mRNA lifetime ratio, and the probability of
microRNA surviving its interaction with mRNA.

Our results indicate that feedforward regulation can buffer mRNA noise to
sub-Poissonian levels. The Fano factor (the variance to mean ratio) exhibits a
nonmonotonic behaviour: for a fixed microRNA to mRNA lifetime ratio, there
is an optimal value of the interaction strength that minimises the Fano factor;
conversely, for a fixed interaction strength, there exists an optimal lifetime ratio.
However, an unconstrained minimum with respect to the two parameters does
not exist. The infimum can be approached by taking small microRNA to mRNA
lifetime ratios and interaction strengths. Intriguingly, if mRNA is assumed to
be completely stable, the Fano factor is equal to the Poissonian value of one.
Decreasing the probability of microRNA survival in its interaction with mRNA
leads to lower values of the Fano factor.

Much of the model behaviour has been identified using the linear-noise ap-
proximation. We also used additional methodologies to examine some of the phe-
nomena more closely. Specifically, we used the Chemical Reaction Network The-
ory to prove conclusively that the mRNA copy-number distribution is Poisson
if mRNAs are stable. Additionally, we constructed a quasi-steady-state (QSS)
approximation of the model, which applies specifically to the situation of large
mRNA to microRNA lifetimes and low interaction strengths. The QSS approx-
imation was shown to outperform the LNA in this regime.

We do not consider the current model to be an exhaustive description of a
microRNA based regulation of gene expression. Instead, our intention was to
examine, using a minimalistic chemical system, the effects on the underlying
feedforward regulation on the noise in the regulated species. In order to obtain
more realistic and/or general formulations, we propose to extend the model in
several specific directions.

First, we propose to extend the model by transcriptional bursting to investi-
gate the effects of feedforward regulation on the super-Poissonian mRNA noise.
Second, we propose to include translation, and examine the effects on protein
noise. Analyses of different systems suggest that protein noise is not simply
proportional to the mRNA noise, but also depends on mRNA autocorrelation
times [61]; proteins can also control their noise through transcriptional and/or
translational feedbacks. Our third proposition is to consider the effect of non-
specific binding [62] of microRNAs on their ability to regulate gene-expression
noise. We have made a step in this direction in Appendix A, showing that the
Poissonian case remains Poissonian after the inclusion of decoy binding sites. In
more general sitations, the addition of nonspecific binding is expected to lead to
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nontrivial effects, the understanding of which may require employing additional
techniques [63–65].

In summary, we studied a stochastic feedforward loop featuring a coupled
production and antagonistic interaction. We examined the consequences of the
interaction on gene-expression noise. Using a combination of different method-
ologies we characterised the model behaviour in several parameter regions of
interest. We expect that analogous approaches will be helpful to understand
more complex versions of the model as well as other examples of gene-regulatory
motifs operating at low copy numbers.

Appendix A. Decoy binding sites

The Chemical Reaction Network Theory (CRNT) can be applied to reaction
networks that extend Fig. 3 with additional reaction channels as long as they do
not violate its fundamental structural properties. Assume, for example, that a
molecule Y can bind to a free binding site B to form a heterodimer C, and that
the heterodimer can dissociate into its constituents Y and B. Consider a reaction
network obtained by extending that of Fig. 3 by the reversible pair of reactions
Y+B 
 C. It is clear that the extended network remains weakly reversible, and
that it involves N = 5 different complexes (∅, X + Y, Y, Y + B, and C), which
are interconnected within l = 2 linkage classes. The copy numbers (m, n, i, j) of
the four reaction species (X, Y, C, and B) are constrained by the conservation
law i+ j = ν, where ν gives the total number of binding sites. Consequently, the
stoichiometric subspace has dimension s = 4 − 1 = 3, and the deficiency of the
extended network is equal to δ = N − l − s = 5− 3− 2 = 0. It follows that the
steady-state distribution has the product form [23]

pm,n,i,j = M
xmyncibj

m!n!i!j!
, for i+ j = ν, (A1)

where

M =

∑
m≥0

∑
n≥0

∑
i,j≥0
i+j=ν

xmyncibj

m!n!i!j!


−1

= e−x−y
ν!

(c+ b)ν
(A2)

is the normalisation constant. The first two components of the complex-balanced
equilibrium (x, y, c, b) are still given by the values x = k/δq and y = kq obtained
in Section 4 in the absence of decoys. For the other two components of the
complex-balanced equilibrium we have the balance condition yb = Lc, where L
is the dissociation constant, and the conservation law b+ c = ν; solving in c and
b yields

c =
νy

y + L
, b =

νL

y + L
. (A3)

Inserting (A3) into (A1)–(A2) and simplifying yields

pm,n,i,j = e−x−y
xmyn

m!n!

(
ν

i

)
yiLν−i

(y + L)ν
, for i+ j = ν. (A4)
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The distribution in (A4) is a product of two Poissons for X and Y copy numbers
and of a binomial for the number of heterodimers C. In particular, the distri-
bution of X (mRNA) remains Poissonian despite the addition of an unspecific
interaction with decoy binding sites.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2018. ; https://doi.org/10.1101/310656doi: bioRxiv preprint 

https://doi.org/10.1101/310656
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bibliography

[1] Voliotis, M., Bowsher, C.G.: The magnitude and colour of noise in genetic
negative feedback systems. Nucleic Acids Res. (2012)

[2] Singh, A., Hespanha, J.P.: Optimal feedback strength for noise suppression
in autoregulatory gene networks. Biophys. J. 96 (2009) 4013–4023

[3] Dublanche, Y., Michalodimitrakis, K., Kummerer, N., Foglierini, M., Ser-
rano, L.: Noise in transcription negative feedback loops: simulation and
experimental analysis. Mol. Syst. Biol. 2 (2006) 41

[4] Nevozhay, D., Adams, R.M., Murphy, K.F., Josic, K., Balazsi, G.: Negative
autoregulation linearizes the dose response and suppresses the heterogeneity
of gene expression. P. Natl. Acad. Sci. USA 106 (2009) 5123–5128

[5] Bokes, P., Singh, A.: Gene expression noise is affected differentially by
feedback in burst frequency and burst size. J. Math. Biol. 74 (2017) 1483–
1509

[6] Bokes, P., Lin, Y., Singh, A.: High cooperativity in negative feedback can
amplify noisy gene expression. B. Math. Biol. (2018) doi: 10.1007/s11538–
018–0438–y

[7] Rosenfeld, N., Elowitz, M.B., Alon, U.: Negative autoregulation speeds the
response times of transcription networks. J. Mol. Biol. 323 (2002) 785–793

[8] Simpson, M.L., Cox, C.D., Sayler, G.S.: Frequency domain analysis of noise
in autoregulated gene circuits. P. Natl. Acad. Sci. USA 100 (2003) 4551–
4556

[9] Becskei, A., Serrano, L.: Engineering stability in gene networks by autoreg-
ulation. Nature 405 (2000) 590–593

[10] Swain, P.S.: Efficient attenuation of stochasticity in gene expression through
post-transcriptional control. J. Mol. Biol. 344 (2004) 965–976

[11] Singh, A.: Negative feedback through mRNA provides the best control of
gene-expression noise. IEEE T. NanoBiosci. 10 (2011) 194–200

[12] Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory net-
works. P. Natl. Acad. Sci. USA 98 (2001) 151588598

[13] Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev.
Genet. 8 (2007) 450–461

[14] Stewart, A.J., Seymour, R.M., Pomiankowski, A., Reuter, M.: Under-
dominance constrains the evolution of negative autoregulation in diploids.
Plos Comput. Biol. 9 (2013) e1002992

[15] Bleris, L., Xie, Z., Glass, D., Adadey, A., Sontag, E., Benenson, Y.: Syn-
thetic incoherent feedforward circuits show adaptation to the amount of
their genetic template. Mol. Syst. Biol. 7 (2011) 519
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