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Abstract:

Waddington’s epigenetic landscape is a classic metaphor for describing the
cellular dynamics during the development modulated by gene regulation.
Quantifying Waddington’s epigenetic landscape by mathematical modeling
would be useful for understanding the mechanisms of cell fate determination.
A few computational methods have been proposed for quantitative modeling
of landscape; however, to model and visualize the landscape of a high dimen-
sional gene regulatory system with realistic details is still challenging. Here,
we propose a Monte Carlo method for modeling the Waddington’s epige-
netic landscape of a gene regulatory network (GRN). The method estimates
the probability distribution of cellular states by collecting a large number
of time-course simulations with random initial conditions. By projecting all
the trajectories into a 2-dimensional plane of dimensions i and j, we can
approximately calculate the quasi-potential U(xi, xj) = −ln P (xi, xj), where
P (xi, xj) is the estimated probability of an equilibrium steady state or a non-
equilibrium state. A state with locally maximal probability corresponds to a
locally minimal potential and such a state is called an attractor. Compared
to the state-of-the-art methods, our Monte Carlo method can quantify the
global potential landscape (or emergence behavior) of GRN for a high di-
mensional system. The same topography of landscape can be produced from
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deterministic or stochastic time-course simulations. The potential landscapes
show that not only attractors represent stability, but the paths between at-
tractors are also part of the stability or robustness of biological systems. We
demonstrate the novelty and reliability of our method by plotting the po-
tential landscapes of a few published models of GRN. Besides GRN-driven
landscapes of cellular dynamics, the algorithm proposed can also be applied
to studies of global dynamics (or emergence behavior) of other dynamical
systems.
keywords: Waddington’s epigenetic landscape; Monte Carlo; attractor;
gene regulatory network; dynamical systems

Introduction

The Waddington’s epigenetic landscape has been recognized as a powerful
metaphor for explaining the phenomena of embryonic development and cel-
lular differentiation in biology1,2,3,4. The essence of the conceptual model
proposed by Waddington is the ability to explain the emergent properties of
cell fate decisions5. At least two types of approaches based on dynamical
systems theory for quantifying the Waddington’s epigenetic landscape have
been used. The first is the discrete formalism of Boolean network modeling6,7

and the second is continuous modeling in the form of ordinary differential
equations (ODEs)8,9,10. This paper is focused on the second approach in the
form of ODEs.

Recently, a few methods for quantifying and plotting Waddington’s epi-
genetic landscape based on gene regulatory networks (GRNs) have been
proposed11,12,13,14,15. A key step in these methods is the formulation of a
potential (or quasi-potential) value for the dynamical system of GRN that
can be displayed as a landscape. For example, Bhattacharya et al.11 pro-
posed a method for mapping aligned trajectories of the dynamical system of
GRN in ODEs to a “quasi-potential” surface in the x -y phase space. When
investigating mathematical models of two important processes in develop-
ment, cell-fate induction and lateral inhibition12, Ferrell showed that the
unique formulation of the potential surface for the lateral inhibition model
can produce a pitchfork bifurcation, which is consistent with Waddington’s
epigenetic landscape where a ball representing a cell is moving down the hill
and then bifurcate into two valleys (i.e. two stable states).

Later, Zhou et al.15 proposed a theoretical framework for the decompo-
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sition of vector fields which enables the computation of a “quasi-potential
function” for multi-attractor systems. Among the recent methods for quan-
tifying Waddington’s epigenetic landscape is the one proposed by Li and
Wang13 who used statistical mechanics to quantify the potential landscape
through self-consistent mean field approximation. Their formulation of the
potential based on the probability distribution of steady states captures the
global potential landscape and the global barrier height measured by the “po-
tential difference between the two attractor minimums and the saddle point
on landscape”13. Li and Wang13 also used a path integral method to obtain
the kinetic paths of transition between attractors. The self-consistent mean
field approximation method has been implemented into a software package
named “NetLand” by our group to facilitate the drawing of Waddington’s
epigenetic landscape16.

Although the method proposed by Li and Wang can quantify potential
landscapes for high dimensional GRNs, their method has limitation in the
lack of realistic details of the landscape. Moreover, the high dimensional-
ity of the GRN as measured by the number of genes poses challenges for
modeling, analysis and visualization; for example, the methods proposed by
Bhattacharya et al.11 and Ferrell12 allow two variables only. In this pa-
per we propose a simple and novel Monte Carlo method for quantifying the
Waddington’s epigenetic landscape of GRNs of more than two genes. Our
algorithm projects the time-course trajectories into a 2-dimensional plane of
dimensions i and j to calculate the probability distribution and potential
U(xi, xj) = −ln P (xi, xj), where P (xi, xj) is the estimated probability of an
equilibrium steady state or a non-equilibrium state. We demonstrate unique
features of the proposed method by plotting the landscapes of a few case
studies of GRN from two-dimensional to higher dimensional models. In our
Monte Carlo method a large number of random initial conditions drawn from
the state space are used to calculate time-series trajectories based on ODEs.
A novelty of our method is the projection of the time-series trajectories into a
plane that is divided into grid boxes to estimate the probability distribution
and the quasi-potentials of cell states. The landscape altitude proportional
to the quasi-potential, when laid out on the x -y plane, can capture detailed
features of the dynamical system, such as basin of attraction, unstable man-
ifolds connecting two attractors, spiral attractors and limit cycle attractors
in the potential landscape.

Testing on a few published models of GRN showed that our Monte Carlo
method can successfully quantify global potential landscapes consistent with
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the state-of-the-art methods. The case studies demonstrate the power of
our computational method in uncovering the detailed dynamical behaviors
of GRNs that other methods fail to capture. In addition, we have also used
the stochastic approach of Chemical Langevin Equation (CLE) to estimate
the probability distribution of states by collecting simulated time series. The
potential landscape constructed by the stochastic approach turned out to be
consistent with the landscape by the deterministic approach. Our analysis
indicates that the structure of a GRN (or in other words model interactions)
can contribute to the robustness of the attractors to noise. Moreover, we
argue that in the Waddington’s epigenetic landscape not only the attractors
represent stability, but that the paths between attractors characterised by
unstable manifolds of saddle point or stable manifolds to attractor also con-
tribute to the stability or robustness of gene regulatory systems for cell fate
decision.

Results

Quantifying the potential landscape of non-equilibrium
and equilibrium states

To demonstrate the capability of the proposed method, we selected four
real models of GRN and one artificial network model. These models are:
(1) a bistable synthetic toggle switch17, (2) a model of cancer attractors18,
(3) an artificial network with spiral attractors15, (4) a cell cycle oscillator
model19, and (5) a stem cell differentiation and reprogramming model13.
For the model equations, readers may refer to the original papers or the
source code included in our MATLAB package (see the Additional material).
These examples illustrate that our method can capture distinct details of
dynamical systems, e.g. attractor, repeller, unstable manifold, saddle point,
spiral attractor and limit cycle attractor.

Example 1: Bistable synthetic toggle switch from Gardner et al.17

In the first example, our method is used to analyse the transient properties
of a synthetic genetic toggle switch proposed by Gardner et al.17. The model
equations and parameter values we used are the same as given by Segel and
Edelstein-Keshet20. Phase plane analysis shows that the system displays
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two attractors and one saddle point, and the saddle point is formed by both
stable and unstable manifolds17,20,21. According to the dynamical systems
theory, stable manifolds are characterized by eigenvectors with negative real
eigenvalues, whereas unstable manifolds are characterized by eigenvectors
with positive real eigenvalues.

By applying the Monte Carlo method which is presented as Algorithm 1
in this paper (see Methods), we obtained the landscape as shown in Figures
1a-b. The potential landscape shows two attractors and there is a valley
connecting the two attractors. By comparing the potential landscape with
the phase plane, the valley (or kinetic path) in Figure 1a is found to be formed
by the unstable manifolds of saddle point or stable manifolds of attractors,
which cannot be generated by analysing steady states only. Between the
two attractors, there is a saddle point (Figure 1b). It can be observed from
the plotting of the 3D landscape that the unstable manifolds of saddle point
form the valley, whereas the stable manifolds of the saddle point form the
separatrix or boundary between the two attractors.

This simple model of GRN shows that our method of formulating the
potential can capture some transient properties of a dynamical system. For
example, when there is a valley between two attractors in the potential land-
scape, the kinetic path is formed by unstable manifolds. The saddle point sets
a threshold for the barrier height that can separate the two attractors. The
potential landscape displays a three-dimensional view of the phase plane and
shows the attractors and saddle point more clearly than a two-dimensional
plane only. In particular, the saddle point is shown to have one convex up
(local minimum) and one concave down (local maximum) in the opposite
directions. The result from this example suggests that not only attractors
represent stability but the kinetic paths are also part of the stability of GRNs.

Example 2: Cancer attractors from Li and Wang18

To test if our method can handle a network of more than two genes, we choose
a six-gene network model proposed by Li and Wang18. This gene network
was reported to produce four attractors representing cancer stem cells, stem
cells, cancer cells and normal cells18. The potential landscape of this model
generated by our algorithm, however, shows four pairs of attractors in which
the two attractors in each pair are close to each other (Figure 1c). Our time-
course data analysis of the trajectories end points (when simulation time end
protein levels reached nearly unchanged values) confirmed that there are 8
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Figure 1: Potential landscapes for Example 1 and Example 2. (a)
3D view of a genetic toggle switch based landscape: The landscape displays
two attractors that are connected with a kinetic path formed by unstable
manifolds. (b) Side view of the genetic toggle switch based landscape in Ex-
ample 1: The landscape displays two basins of attraction that are connected
by the unstable manifolds. The saddle point separates the two attractors.
The saddle point is also a tipping point (or barrier height) for transition
along the kinetic path between the basins of attraction. (c) Validation of
our method by reproducing the potential landscape of Li and Wang18 in
Example 2. By comparing the location of the attractors labeled by Li and
Wang18, we identified the attractors and their corresponding cell states. The
landscape displays four main basins of attraction for normal cells, cancer
cells, stem cells and cancer stem cells. However, our landscape is slightly
different from the landscape plotted in the original paper (Li and Wang18):
each of the main basins of attraction is divided into two attractors which
are connected by kinetic paths. These kinetic paths may correspond to the
kinetic paths suggested by Li and Wang18 where their results suggested that
cell changes state according to different directions of the kinetic paths. The
color corresponds to the value of the quasi-potential U.

attractors (data not shown). The result suggests that Li and Wang18 may
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have joined the two nearby attractors into one attractor and thus resulted in
only four attractors.

This result indicates that the potential landscape obtained using our
method can capture more details of attractors. In addition, the landscape
also contains 5 valleys (Figure 1c). These valleys are formed by unstable man-
ifolds, as discussed in the first example, and contain the information about
saddle points as barrier heights for separating two attractors. These valleys
are similar to the kinetic paths in Example 1 in illustrating the transition
from one attractor to another attractor in the landscape.

Example 3: Spiral attractors from Zhou et al.15

The third example was selected to demonstrate the capability of our method
to capture the dynamical features of spiral attractors. This model is an
artificial network of two variables proposed by Zhou et al.15. The original
landscape shows four attractors, four saddle points and one repeller in the
center. The potential landscape generated using our method is shown in
Figures 2a-b. There are four attractors on the four corners of the landscape
and one repeller in the middle. However, the basins of attractor are unique in
that they are formed by a counterclockwise spiral (Figure 2b). The landscape
also shows four valleys (or kinetic paths) connecting the four attractors. The
valleys are formed by the unstable manifolds of saddle points as discussed
earlier.

The conventional phase plane analysis can illustrate the vector field and
the flows of the trajectories (Figure 2c), but it can only show the flows
in terms of the counterclockwise spiral in a two-dimensional plane. Here,
our potential landscape can quantify and depict the spiral attractors in a
three-dimensional view of the potential landscape. The formulation of the
potential U = − ln P which includes the probability of non-equilibrium state
enables the quantitative description of the detailed transient behavior of the
dynamical system.

Example 4: Cell cycle modeling by limit cycle oscillator from Fer-
rell et al.19

The fourth example is used to test the capability of our method to investigate
another type of attractors, namely limit cycle attractor. This example is a
3-gene network model of limit cycle oscillator for modeling cell cycle control
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Figure 2: Potential landscape for Example 3. The Waddington’s
epigenetic landscape displays four basins of attraction. (a) 3D view:
The Waddington’s epigenetic landscape contains four spiral attractors (four
blue dots) and the directions of the spirals are all counterclockwise. (b) Top
view: There are unstable manifolds connecting any two attractors. (c) A
conventional phase plane analysis shows the two nullclines where x or y does
not change (green for y-nullcline and brown for x-nullcline) and the vector
field. Intersections of the nullclines indicate the steady states. In this phase
plane there are 9 intersection points corresponding to the 9 steady states: 5
unstable and 4 stable. The stability of the steady state can be determined
by checking the eigenvalues of the eigenvectors: negative eigenvalues indicate
stable steady states whereas positive eigenvalues indicate unstable steady
states. Also shown is an example of a trajectory (blue line) being attracted
to the stable steady state (one of the intersections between the nullclines
at the top right). (Figure 2c was generated using XPPAUT, which can be
downloaded from http://www.math.pitt.edu/∼bard/xpp/xpp.html)

proposed by Ferrell et al.19. A few key proteins for controlling cell cycle
were observed to oscillate22, and Ferrell et al.19 proposed an ODE model
of gene network to explain why these proteins can oscillate in a limit cycle.
Based on this 3-gene network we used our method to generate a potential
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landscape. The resulting potential landscape in Figures 3a-b shows a limit
cycle attractor (in blue color).

The limit cycle is a unique feature of dynamical systems for describ-
ing trajectories attracted to a closed-form cycle from inside and outside the
closed orbit23. It is traditionally illustrated as a closed-form orbit (with no
intersection or crossing) in a two-dimensional diagram as shown in the top
view of the potential landscape (Figure 3b). Limit cycle oscillations can be
viewed as time-course simulations with a fixed periodic form of oscillation.
The potential landscape constructed by our method can capture the limit
cycle attractor in a 3D view (Figure 3a).

C

BA

limit cycle attractor

stem cell attractor

differentiation attractor

Figure 3: Potential landscapes for Example 4 and Example 5. (a)
3D view of the Waddington’s epigenetic landscape for the 3-gene ODE model
of cell cycle control which demonstrates the limit cycle attractor (Example 4).
(b) Top view of the Waddington’s epigenetic landscape for the ODE model of
cell cycle control demonstrates the limit cycle oscillator, which corresponds to
the limit cycle attractor. (c) Waddington’s epigenetic landscape based on a
52-gene network model13 (Example 5), which shows two basins of attraction.
By comparing the locations of the attractors labeled by Li and Wang13,
we observe that the stem cell attractor located on the left is the dominant
attractor, i.e. bigger and deeper (blue color) than the differentiation attractor
located on the right.
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Example 5: Stem cell differentiation and reprogramming from Li
and Wang13

Finally, to test if our method can model high-dimensional gene regulatory
networks, we selected a 52-gene network model proposed by Li and Wang13

for quantifying the stem cell differentiation and reprogramming. The authors
of Ref. 13 identified two attractors in the state space of gene expression: stem
cell attractor and differentiated cell attractor. To plot the potential landscape
we chose two marker genes GATA6 and NANOG as in Li and Wang13, which
play pivotal roles in regulating stem cell fates, and used their expression levels
as the coordinates of the 2D panel. The shape of our potential landscape
is consistent with that in Li and Wang13, e.g. both showing two attractors
(Figure 3c). The potential landscape shows that the stem cell attractor has
a bigger basin of attraction and lower potential value than the differentiated
cell attractor.

The result in Figure 3c suggests that our method can capture the tran-
sient non-equilibrium states and the attractors of the equilibrium steady
states with more details than the results reported by Li and Wang13. The
potential landscape displays one dominant attractor shown as the stem cell
attractor, which implies that the probability of getting attracted to this stem
cell attractor is higher than the differentiated cell attractor.

Computational time

For existing models of Waddington’s epigenetic landscape in the literature,
most authors did not report computational time for obtaining potential land-
scapes. Here, we record the computational time for generating each of the
landscape using our Monte Carlo method (Table 1). We used MATLAB
R2012b software installed on a Dell desktop computer running Windows 7
(64-bit) operating system with 8 GB memory (RAM). Table 1 shows the
benchmark computational time in generating Waddington’s epigenetic land-
scape. For example, even for the 52-gene model of Li and Wang13, our
method needs only 33 minutes and 50 seconds. One key factor that might
affect the computational time is the non-linearity in the model equations.
The 2-gene model from Zhou et al.15 contains four cubic terms, whereas the
52-gene model from Li and Wang (2013) is composed of Hill functions and as
such takes much less time. Moreover, Ferrell et al.19 model with non-linearity
terms of multiplication between one variable and Hill functions required the
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third longest time although it contains only 3 variables.

Table 1: Benchmark computational time for generating Waddington’s epi-
genetic landscape

No. Model No. variables No. interactions Computational time

1 Gardner et al. (2000)17 2 2 10 min 5 sec
2 Li and Wang (2015)18 6 16 12 min 0 sec
3 Zhou et al. (2012)15 2 8 39 min 21 sec
4 Ferrell et al. (2011)19 3 3 20 min 22 sec
5 Li and Wang (2013)13 52 123 33 min 50 sec

Landscape modeling based on stochastic Chemical Langevin
Equation (CLE)

The models of Waddington’s epigenetic landscape in the previous section
were constructed based on deterministic simulations using ODEs. Here, we
also investigate the landscape model for Li and Wang18 constructed using a
stochastic approach based on Chemical Langevin Equation (CLE)24,25. We
applied the same procedure as described in Algorithm 1 in the Methods Sec-
tion with the only difference that the numerical simulation of the time-course
data was done with CLE instead of ODEs. For the 6-gene network model in
Example 2 from Li and Wang18, we defined 22 reactions (16 network inter-
actions of activation and inhibition plus 6 self-degradations) and converted
the rate constants from the deterministic ki in ODEs to the stochastic rate
constants ci, as explained in Methods. We simulated 100,000 trajectories
with random initial conditions. Two examples of the time-course simula-
tion using CLE with random initial conditions are given in Figure 4a. Each
trajectory is projected to a 2D plane of dimensions i and j to estimate the
probability distribution of P (xi, xj) and the quasi-potential U(xi, xj) = −ln
P (xi, xj) as in the ODE model. A potential landscape for the model of Li
and Wang18 obtained from CLE is shown in Figure 4b, which is compara-
ble to the one obtained using deterministic ODE-based simulation (Figure
1c). The stochastic noise in the CLE only slightly perturbed the dynamic
simulations as the shapes of the attractors in the potential landscape were
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almost unchanged (even when we used a larger noise than in Higham25 o-
riginal code by changing the volume of the system from V = 10−15 to V =
10−20). However, the attractors in the potential landscape from CLE display
slightly larger basins of attraction. As a result, two of the attractors that are
located close to each other in the ODE-based landscape have been merged
into one in the CLE-based landscape (Figure 4b). We also set the volume
of the system V = 10−15 for obtaining a large number of molecules, and
the landscapes plotted based on ODE and CLE are almost identical (data
not shown). The computational time for generating the potential landscape
using the CLE is 57.9 minutes, which is much longer than using the ODEs
(12 minutes). This is expected as the stochastic simulation normally takes a
longer time due to the high computational cost for simulating all the events
of biochemical reactions26.

We also performed a stochastic simulation using the synthetic toggle
switch model of Gardner et al.17 and obtained similar results as in the Li and
Wang18 model, i.e. the potential landscape is not affected by the noise (Sup-
plementary Figure S6). These results implicate some degree of robustness
of GRNs. The design of the GRN interactions likely enables cells to func-
tion properly even though in reality there are intrinsic noises from molecular
fluctuations and extrinsic noises from the environment27,28. Overall, these re-
sults suggest that the global dynamics of the attractors in the Waddington’s
epigenetic landscape tends to be robust to noise.

Discussion

In this paper, we present a novel Monte Carlo method for quantitatively
modeling and visualization of Waddington’s epigenetic landscape based on
dynamical modeling of GRNs. This method uses a large number of initial
conditions randomly sampled from a uniform distribution in the state space,
and the collected time-series data are then used to estimate the probability
distribution of the cell states and the quasi-potential of the landscape. One
key advantage of our method is that it can quantify the potential landscape
to display both global and detailed dynamics of the cell state transitions
for both equilibrium states (e.g. steady states or attractor states) and non-
equilibrium states (e.g. transient states along a kinetic path). The landscape
provides a 3D view of the dynamical features (e.g. attractor, saddle point,
unstable manifold, stable manifold, limit cycle, and spiral attractor) of the
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Figure 4: (a) Two examples of time-course simulation generated from
Chemical Langevin Equation (CLE) with random initial conditions. These
time-course simulations show that, starting from two different initial con-
ditions, two trajectories with some randomness can eventually converge to
the same attractor. (b) Waddington’s epigenetic landscape of the 6-gene
network model from Li and Wang18, which shows four basins of attraction.
The potential landscape was generated by using CLE-based dynamic simu-
lations, and its shape is consistent with that of the landscape obtained using
ODEs shown in Figure 1c. It implicates that the attractors in the potential
landscape are robust to noise.

system, whereas conventional dynamical system analysis uses 2D views of
bifurcation diagram, phase plane and vector field. Thus, our computational
method can be used for detailed modeling and 3D visualization of dynamical
systems of cells.

While the method proposed by Li and Wang13 formulates the potential
as U = −ln P ss (where P ss is the steady state probability) and uses the
self-consistent mean field approximation, our method uses U(xi, xj) = −ln
P (xi, xj) (where P (xi, xj) is the estimated probability of an equilibrium
steady state or non-equilibrium transient state) and a Monte Carlo method
to approximate the potential landscape. Li and Wang13 also used 100,000
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time-course simulations from random initial conditions in the state space and
inferred the steady state probability distribution with multi-variable Gaus-
sian distribution to plot the potential landscape, which displays a smooth
surface with basins of attraction. Between their method and ours, the loca-
tions of attractors are essentially the same. However, our method can capture
more detailed information than their method13,18, as demonstrated in Exam-
ple 2 (with four pairs of attractors as shown in Figure 1c) and in Example
5 (with one dominant attractor as shown in Figure 3c). In Example 2, four
pairs of attractors (Figure 1c) can be explained by the kinetic paths for the
transition between attractors. As for Example 5, we are not aware of any
biological reason for the landscape to display one dominant stem cell attrac-
tor and one minor differentiated cell attractor (Figure 3c), which should be
investigated in the future. Moreover, our Monte Carlo method is powerful in
that it can capture the kinetic path without using the path integral method
as in Li and Wang13. The kinetic path between two attractors can give bi-
ological insight into the transition from one attractor to another attractor
where the intermediate state transitions must follow this path towards the
final stable state. The kinetic path in the Waddington’s epigenetic landscape
can explain why the cell differentiation in embryonic development follows a
deterministic path1,29 which was called by Waddington himself “chreod”3,30.

The potential landscape modeling based on stochastic simulations has
also been conducted by Li and Wang (2013) with the method of root mean
square distance (RMSD), i.e. using coordinates of two attractors (with locally
minimum potentials) as two reference points to reduce a multi-dimensional
space into two dimensions of RMSD1 and RMSD2. Using the Langevin
dynamics and RMSD they obtained a landscape with the same number of
attractors as the landscape based on their self-consistent mean field approxi-
mation method. However, the topographies of the two landscapes (from self-
consistent mean field approximation and Langevin dynamics with RMSD)
reported by Li and Wang13 are completely different. Here, we used Chemi-
cal Langevin Equation to obtain the time-course trajectories and applied our
Monte Carlo method to directly obtain a landscape. Using the stochastic
approach of CLE we can obtain a Waddington’s epigenetic landscape consis-
tent with that using the deterministic approach of ODEs. These results of
computer simulation highlight the robustness of the gene regulatory network
to noise31,32.
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Conclusions

The Monte Carlo method for plotting potential landscapes for multi-dimensional
GRNs allows us to study the links between genotype and phenotype as initial-
ly proposed by Conrad Waddington about 60 years ago1,2. Through studies of
real biological networks, we have demonstrated the usefulness, simplicity and
power of the method for plotting Waddington’s epigenetic landscape. It can
facilitate our understanding of cellular differentiation and reprogramming as
well as other biological processes. In general, the algorithm proposed here for
cellular dynamics can also be applied to studying other types of dynamical
systems such as social networks.

Methods

In this paper, we propose a Monte Carlo method to quantify the potential
landscape of equilibrium steady states and non-equilibrium states of a GRN.
Firstly, we discuss how to derive the quasi-potential from chemical master
equation (CME) using the Monte Carlo method. Instead of solving the CME
using the Gillespie’s algorithm (also known as the stochastic simulation al-
gorithm) which is computationally costly, we use numerical simulations of
ODE mainly because there are many efficient ODE solvers to obtain time-
course trajectories. The Monte Carlo method is used to: (1) generate a large
number of random initial conditions that are used for time-course simula-
tions, and (2) estimate probability distribution from time-course trajectories
projected into a 2-dimensional plane to quantify the quasi-potential U. A
summary of the Monte Carlo method for quantifying Waddington’s epige-
netic landscape is given in Algorithm 1. Secondly, we discuss how to use
stochastic simulations with CLE, which is an improved computation of tau-
leaping method for approximate execution of Gillespie’s algorithm33. Using
the time-course trajectories generated from CLE we can also quantify the
Waddington’s epigenetic landscape for a GRN.
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Quantifying Waddington’s epigenetic landscape using
deterministic ODE models

Derivation of average state probability used in quasi-potential

To derive the quasi-potential for the dynamics of gene expression driving cell
state transition, we start from the definition of the CME34,35

dP (x, t)

dt
=

m∑
j=1

aj(x− νj)P (x− νj, t)−
m∑
j=1

aj(x)P (x, t), (1)

where x = (x1, x2, ..., xn) is the state of the system under study (e.g. a
GRN), xi is the copy number of the ith molecular species, n is the number of
molecular species, m is the number of reactions, and P (x, t) is the probability
of system in state x at time t. The function of aj(.) defines the propensity
function for the jth reaction and νj defines the stoichiometric transition
vector for the jth reaction. The CME defines the time-evolution of the
function P (x, t)34. The CME can be interpreted as that the flow of the
probability of a system being in state x at time t is given by the probability
of arriving at x when reaction j fires, aj(x − νj)P (x − νj, t) subtracted by
the probability of the system leaving x when reaction j fires, aj(x)P (x, t)36.
Summing up all the possible reactions for j from 1 to m gives Eq. (1). From
Eq. (1), we can calculate the probability of a cell in state x at time t

P (x, t) =

∫ m∑
j=1

[(aj(x− νj)P (x− νj, t)− aj(x)P (x, t))]dt+ C (2)

In theory, when the time t is large, e.g. approaching infinity, the probabil-
ity P (x, t) will approach the steady-state probability Pss

37,38. Wang and co-
workers37,38 proposed a formulation for the quasi-potential as U = −ln Pss.
However, to study the dynamics of a biological system we also consider the
probability over the period of time from 0 to T, and calculate the average
probability of state at x over the time from 0 to T, as

P (x) =

∫ T

0
P (x, t)dt

T
(3)

According to the definition of the quasi-potential U proposed by Wang
and co-workers as U = −ln P (x)31,38, thus we approximate the quasi-potential
U by using P (x) from Eq.(3) as given by
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U = −ln P (x) (4)

Using Monte Carlo simulation and Gillespie’s algorithm to estimate
quasi-potential

It is difficult to solve U = −ln P (x) analytically. Thus, we can use a Monte
Carlo method to get an approximate solution. Monte Carlo methods use
computer simulations with random sampling to approximate the exact solu-
tions39. It has been widely used for solving a variety of problems including
landscape modeling. For example, two recent works used Monte Carlo sim-
ulations to model epigenetic landscape and cell type transitions. Nakagawa
and Narikiyo40 proposed a minimal modeling of epigenetic landscape based
on the fitness of interacting cells. Wang et al.41 proposed a Monte Carlo
method based on an ensemble of parameters to simulate the global dynam-
ics of the epigenetic state network. Our Monte Carlo method is different
from the above two methods, in that we use a large number of random ini-
tial conditions for simulating trajectories and then obtain the probability
distribution of P (x).

First, from Eq. (3) we discretize the formulation from integral into sum-
mation:

P (x) =

∑
0≤ti≤T

P (x, t)∆ ti∑
0≤ti≤T

∆ ti
(5)

where ∆ ti is the increment of time for P (x, t). Suppose the initial condition
is uniformly distributed, and xi is not larger than Xi, which is a positive
integer fixed by a modeler based on the maximum value in the dynamical
system. Then the probability averaged over the initial conditions is given by:

P (x, 0) =

{
1

X1·X2·...·Xn
, 1 < xi ≤ Xi, (i = 1, 2, ..., n)

0, otherwise
(6)

Next, we randomly choose N initial states {x1(0),x2(0), ....,xN(0)} which
are uniformly distributed in every dimension. Based on these random ini-
tial conditions we simulate N trajectories using Gillespie’s algorithm34. Let
us denote the ith trajectory by Si = {xi(ti,0),xi(ti,1),xi(ti,2), ...,xi(ti,mi

)},

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/310771doi: bioRxiv preprint 

https://doi.org/10.1101/310771
http://creativecommons.org/licenses/by-nc-nd/4.0/


where xi(ti,mi
) is the state at time ti,mi

for the ith trajectory. From these
trajectories we can estimate the probability in Eq. (5) as follows:

P (x) =

N∑
i=1

mi∑
j=1

[xi(ti,j) = x] · (ti,j − ti,j−1)

N∑
i=1

mi∑
j=1

(ti,j − ti,j−1)

, (7)

where [x ] is the Iverson bracket defined by

[x] =

{
1, if x is true
0, otherwise

(8)

From this Monte Carlo method we can estimate the probability distribu-
tion of the state at x given by P(x) and then using Eq. (4) we can obtain
the quasi-potential U for the dynamical system.

Improving the speed for obtaining quasi-potential by using ODEs

Using the Gillespie’s algorithm we can simulate the time-evolution trajec-
tories for CME. However, it incurs very high computational cost for simu-
lating every event of the chemical reactions26. According to the Gillespie’s
work34, when the number of molecules present in the biochemical reactions
is large the stochastic and deterministic simulation results are almost equiv-
alent with negligible random fluctuations. Assuming that the number of
molecules present in the biochemical reactions is large, we use numerical so-
lution of ODEs to speed up the computation. We also randomly choose N
initial conditions {x1(0),x2(0), ...,xN(0)} which are uniformly distributed in
every dimension. However, these initial conditions are measured in concen-
tration levels of the molecular species. Using these random initial conditions
we simulate N trajectories.

After numerically solving the ODEs, the output trajectories can be dis-
cretized from the continuous time with a specific time step. As such, we can
use Eq. (7) to obtain P (x) for calculating the quasi-potential of the dynam-
ical system. The only difference here is that x is measured in concentration
of each molecular species instead of the number of molecules as in the Gille-
spie’s algorithm. We choose to use an ODE solver with a fixed time step so
that the time difference for ∆t is constant. Let us assume the time difference
is given by

∆t = ti,j − ti,j−1 (9)
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Then, substituting Eq. (9) into Eq. (7) and making simplification, we
obtain

P (x) =

N∑
i=1

mi∑
j=1

[xi(ti,j) = x] · ∆t

N∑
i=1

mi∑
j=1

∆t

, (10)

P (x) =

∆t
N∑
i=1

mi∑
j=1

[xi(ti,j) = x]

∆t
N∑
i=1

mi∑
j=1

1

, (11)

P (x) =

N∑
i=1

mi∑
j=1

[xi(ti,j) = x]

N ·mi

. (12)

With Eq. (12) we have simplified Eq. (7) and improved the calculation
speed to obtain the quasi-potential value. However, accurate estimation of
P (x) still involves high computational cost due to the large state space of
the system. In order to further improve the speed of the computation we
apply a coarse graining formulation defined by

P (x) = P (x− ∆x ≤ x ≤ x + ∆x)

=

N∑
i=1

mi∑
j=1

[xi(ti,j) ⊂ (x− ∆x,x + ∆x)]

N ·mi

.

(13)

The coarse graining formulation above is implemented as the division of a
2-D plane into grid boxes.

Plotting landscape

From previous sections we have derived Eq. (7) and Eq. (13) for calculat-
ing P (x). However, these equations are for dynamical systems with high-
dimensional state spaces. In order to plot the potential landscape in 3 di-
mensions for human viewers to understand, we need to reduce the dimensions
of a system. There are many dimensionality reduction methods that can be
applied to the plotting of landscape. Here, we propose a simple method of
dimensionality reduction by projecting the trajectories into a 2-dimensional
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plane. By marginalizing out all the variables except for the ith and jth vari-
ables, we can obtain the probability distribution of the states in the ith and
jth dimensions as

P (xi, xj) =
∑
s1

∑
s2

...
∑
si−1

∑
si+1

...
∑
sj−1

∑
sj+1

...
∑
sn

P (x1=s1,x2=s2,...,xi−1=si−1,xi,xi+1=si+1,
...,xj−1=sj−1,xj ,xj+1=sj+1,...,xn=sn)

(14)
After the dimensionality reduction, we can subtitute Eq. (14) into Eq.

(4) to obtain the quasi-potential of a state in two dimensions

U(xi, xj) = −ln P (xi, xj). (15)

With xi, xj and U(xi, xj) as the x, y and z axes respectively, we can plot the
landscape in 3 dimensions. Since the calculation of P (xi, xj) considers the
time course from t0 to tmi

, our method can be used to analyze the properties
of transient states, rather than being limited to steady states, and thereby
can reveal more dynamical details.

Our Monte Carlo method is summarized in Algorithm 1. Essentially, the
algorithm collects N simulated time-course trajectories from random initial
conditions in the state space. Here, we use a fixed time step of ∆t = 0.1 for
numerical simulation, and thereby we can use the number of time points along
a trajectory instead of the length of continuous time to estimate the proba-
bility of a state. Then from these time-course data, we project the points of
the trajectories into a phase plane of two selected variables of interest and
estimate the probability. For example, Figure 5 shows how the probability
distribution can be estimated in a plane that has been divided into grid box-
es. A grid box with a locally maximal number of points on the trajectories
represents an attractor. In Figure 5 there are two yellow grid boxes with
locally maximal numbers of points from the trajectories, and therefore they
represent two attractors. These results are then used to estimate the quasi-
potential U(xi, xj) = −ln P (xi, xj), where P (xi, xj) is the probability of a
state which is either an equilibrium state or a non-equilibrium state. A non-
equilibrium state quantifies the transient behaviors of the system such as the
intermediate flows in a vector field, whereas an equilibrium state quantifies a
repeller (unstable steady state) or an attractor (stable steady state)42. This
formulation and approximate calculation of the quasi-potential enables us to
plot the Waddington’s epigenetic landscape with details.
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Figure 5: Illustration of the Monte Carlo method for approximating the
probability distribution and identifying attractors. The projection of the
time-course data into a plane with grid boxes enables the estimation of the
probabilities of cellular states. In this example 10 trajectories (blue lines) are
shown and the plane is split into 8 x 8 grid boxes. A grid box with a locally
maximal number of points of trajectories corresponds to an attractor. In this
landscape, there are two attractors as indicated by the two yellow boxes.

Algorithm 1. Monte Carlo steps for quantifying quasi-potential
landscape

1. generate N random initial conditions

2. generate 2-dimensional grids

3. for each initial condition:
(i) generate one trajectory
(ii) project the trajectory to the 2-dimensional grid boxes
(iii) from the trajectory calculate the number of points in each grid box

4. estimate probability of each grid box P (xi, xj) as given by Eq. (15)

5. calculate quasi-potential of each grid box using U(xi, xj) = −ln P (xi, xj)

6. plot the landscape in 3 dimensions
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Stochastic modeling of landscape based on Chemical
Langevin Equation (CLE)

To test the role of noise in gene expression and the robustness of GRNs
we also investigate a second type of potential landscape that is based on s-
tochastic time-course simulations. The algorithm for obtaining the potential
landscape is similar to Algorithm 1. The key difference is that the stochastic
approach uses Chemical Langevin Equation (CLE)24, an improved version of
the tau-leaping method for approximation of the Gillespie’s algorithm33, in
simulating the time-series trajectories. CLE differs from ODEs in that the
biochemical reactions are simulated using the stochastic part in the CLE25.
We adapted the CLE code from Higham25 with the model reactions from the
GRNs of Li and Wang18 and Gardner et al.17. We used a larger noise than
in the original code of Higham25, by decreasing the volume of the system
from V = 10−15 to V = 10−20. Since CLE is a well-established method for
stochastic simulation of biochemical reactions33 we will not discuss it in de-
tail here. The CLE and their implementation in MATLAB code are given in
Supplementary material. Below we will illustrate how to construct CLE by
converting from ODEs. The definitions of the rates of change of molecular
species are different between ODEs and CLE. In ODEs the molecular species
are measured in concentrations, whereas in CLE the molecular species are
measured in the numbers of molecules. To explain how to convert the deter-
ministic rate constant ki in ODEs to the stochastic reaction rate constant ci
in CLE, let us look at Eq. (16), an example ODE model equation for protein
x with self-activation (the first term on the right hand side) and spontaneous
degradation (the second term):

dx

dt
= k1

xn

kn2 + xn
− k3x. (16)

Let us use X to denote the copy number of protein x. Hereafter we will use x
to denote the concentration of protein X, in the unit of µM . The relationship
between x and X is given by:

X = x ·NA · V, (17)

where NA is the Avogadro’s number which equals 6.023× 1023 and V is the
volume of the system in liters25. Next, denote B = NA · V , then Eq. (17)
becomes

X = x ·B.
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Multiply B to both sides of Eq. (16), and we get

dx

dt
B = B · k1

xn

kn2 + xn
− k3x ·B,

dx

dt
B = B · k1

Bn · xn

Bn(kn2 + xn)
− k3x ·B,

d(x ·B)

dt
= B · k1

(x ·B)n

(Bk2)n + (x ·B)n
− k3(x ·B).

Since X = x ·B, we obtain the following equation:

dX

dt
= B · k1

(X)n

(Bk2)n + (X)n
− k3X. (18)

In the stochastic approach the rate of change for X is defined by:

∆X

∆t
= c1

Xn

cn2 +Xn
− c3 ·X. (19)

Comparing Eq. (18) and Eq. (19), we deduce that,

c1 = B · k1 = NA · V · k1,

c2 = B · k2 = NA · V · k2,

c3 = k3

From the derivations above, we demonstrate the relationship between ki and
ci which enables us to obtain the ci for the stochastic simulation using CLE.
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