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Abstract

Understanding the movement patterns of animals across different spatio-temporal scales,
conditions, habitats and contexts is becoming increasingly important for addressing a
series of questions in animal behaviour studies, such as mapping of migration routes,
evaluating resource use, modelling epidemic spreading in a population, developing
strategies for animal conservation as well as understanding several emerging patterns
related to feeding, growth and reproduction. In recent times, information theory has
been successfully applied in several fields of science, in particular for understanding
the dynamics of complex systems and characterizing adaptive social systems, such as
dynamics of entities as individuals and as part of groups.

In this paper, we describe a series of non-parametric information-theoretic measures
that can be used to derive new insights about animal behaviour with a specific focus
on movement patterns. We show how these measures can be used to characterize the
movement patterns of several animals across different habitats and scales. Specifically, we
show the effectiveness in using Shannon entropy to characterize the movement of sheep
with Batten disease, mutual information to measure association in pigeons, Kullback
Leibler divergence to study the flights of Turkey vulture and, Kolmogorov complexity to
find similarities in the movement patterns of animals across different scales and habitats.
Finally, we discuss the limitations of these methods and we outline the challenges in this
research area.

Introduction

Information theory has always played an important role in biology [23] [53]. It is a field
that is devoted to studying the storage, communication and quantification of information
founded by Claude E. Shannon in his influential paper [52] and lies at the interface
of mathematics, statistics, computer science and electrical engineering. While initial
research in this field was mainly theoretical, we have witnessed a plethora of practical
applications in the past decades. For example, concepts and techniques from this field
have been used in several fields such as neurobiology [48], pattern recognition [15],
cryptology [58], bioinformatics [43], quantum computing [38], complex systems [36] [40]
with significant success.

Recently, due to technological advances, low cost miniaturized sensors have been
increasingly adopted for tracking the behaviour of animals across different scales and
habitats. These sensors include but not limited to Global Positioning System (GPS)
technology, accelerometers and radio-frequency identification (RFID) tags. This has led
to the explosion in the deployment of these sensors in different habitats across scales
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by animal behaviour researchers. A natural consequence of this development is that
it is now possible to try to quantify and understand a variety of aspects related to
animal behaviour such as migration patterns and routes, feeding, reproduction and
mating patterns, conservation, monitoring of endangered species, epidemic spreading,
resource use, social behaviour and association. In the field of animal behaviour, GPS,
accelerometers and cameras are the predominant sensors deployed to measure several
behavioural properties of animals. We limit our discussion here to GPS sensors due
to their ability to be deployed in the wild as well as their popularity relative to other
sensors. Previously, GPS sensors have been used to study selfish herd behaviour of sheep
under threat [32], the hierarchical structures of group dynamics in flocks of pigeons [41],
migration patterns in vultures [39], productivity in cows [10], and social relationships in
birds [45] just to name a few.

We believe that information-theoretic approaches can provide complementary insights
in the study of animal behaviour. In other words, these approaches do not replace
the existing ones, but they are able to provide additional information about animal
behaviour patterns, especially in terms of movement, which are not apparent using other
types of analysis. Probabilistic approaches are also usually more robust in presence of
noise, a common feature of sensor data. The number of applications of concepts and
techniques from information theory to analysis of animal movement in the literature is
limited. However, information-theoretic metrics have been used in the past for example
to study information flow in animal-robot interactions [12] as well as predator-prey
relationships [42] [28] in animals.

In this paper, we discuss how four information theoretic metrics, namely entropy,
mutual information, Kullback-Leibler divergence and Kolmogorov complexity (normalized
compression distance) can be effectively applied to the study of animal movement. In
other words, we explore how they can be used as tools for studying animal movement
data. Indeed, the goal of this work is not to introduce new metrics, but to demonstrate
the potential in using information theoretic concepts to understand animal behaviour.
We introduce each metric separately and then we discuss how each metric can be applied
to a practical problem, by discussing a case study in details. More specifically, we
demonstrate how these metrics can be used to characterize the movement patterns of
animals across different scales and habitats. It is worth noting that these methods
do not provide new ground-truth information, but they allow for identifying emergent
patterns and formulating hypotheses that can be verified for example by means of further
experimental observations in the field. The case studies are mostly based on datasets
from the Movebank database [63].

The rest of the paper is organized as follows. In Section 1, we describe the Shannon
entropy and demonstrate how it can be used to characterize the movement patterns of
sheep with neurodegenerative disease. In Section 2, we describe the notion of mutual
information and show how it can be used to measure association as well as reconstruct
the flight dynamics in pigeons. We describe the Kullback-Leibler divergence in Section 3
and show how it can be used to characterize the annual movement patterns of the Turkey
Vulture. In Section 4, we describe the Kolmogorov Complexity (normalized compression
distance) and demonstrate how it can be used to find relationships in animal movement
patterns across scales and habitats. We conclude our work by highlighting the challenges
and a summary of the methods described in this work.
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1 Shannon Entropy

1.1 Overview

The information content of a random variable is defined by the Shannon entropy as a
measure that quantifies the level of uncertainty embedded in such variable. In the case
of animal movement, Shannon entropy provides a useful quantification of the level of
regularity and predictability of the movement of an animal.

More formally, it can be defined as the uncertainty associated with a random variable
X with realization x, which can be described by the following equation:

H(x) = −
∑
x

p(x) log p(x) (1)

where p(x) is the probability density function and the summation is taken over all
possible realizations of X. The base of the logarithm is not important and can take any
value, provided the same base is used throughout the analysis.

Most of the information theoretic measures that exist today, some of which we will
discuss below, are derived from Shannon entropy. However, there are other several
definitions of entropy such as Renyi entropy [46] and Tsallis entropy [57]. The discussion
of these metrics is outside the scope of the present article.

Due to the noisy nature of most datasets, probabilistic metrics are becoming increas-
ingly useful for modelling not only animal movement data but in general real world
datasets to account for any form of uncertainty inherent in datasets of this nature such
as missing data. Therefore, entropy can be used for assessing the overall welfare and
well-being of animals instead of a metric like distance travelled. Most animals are known
to have an activity-rest pattern except under highly unfavourable conditions or when
they have some sort of impairment in their general well-being. This implies that animals
are supposed to have a relatively high entropy except for the period of harsh conditions
when they are either aestivating or hibernating. In this light therefore, entropy can be
used to characterize the movement patterns of animals so as to assess the state of their
health. In addition, it can also be used in lieu of tortuosity to describe how tortuous
an animal’s path is using the turn angle as the input. The conditional entropy is an
important element of the conditional mutual information and can be used for example
in understanding swarm behaviour [37].

In the following subsection, we will consider a case study illustrating a possible
application of Shannon entropy to the study of animal behaviour and, more specifically,
to the characterization of the movement patterns of sheep with neurodegenerative
diseases.

1.2 Case study: Shannon entropy as a tool for characterizing
movement patterns of sheep with neurodegenerative disease

Investigating for abnormal locomotion patterns is essential towards early diagnosis
of a number of neurodegenerative diseases such as Batten disease in animals. Sheep
with neurodegenerative diseases such as Batten disease are known to get stuck in a
behaviour (movement inclusive) over time due to gradual loss of motor skills [47] and
social awareness [34]. Here, we use Shannon entropy to characterize the movement
patterns of a flock of sheep comprising sheep with a natural mutation for Batten disease
and their age matched control (mean age of 2 years) group using the dataset of [22].
We use the trajectory of each sheep sampled every second and compute the distance
covered every ten minutes over eleven hours (20:00-7:00) each day for a total period of six
days. The choice of time window is to minimize the influence of external environmental
noise in the dataset while ten minutes was chosen as it is a long period enough to
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observe the behaviour of these sheep. We further bin the resulting distance calculated
so as to assign the symbols. To bin the data, we use the head/tail classification rule
by [29] resulting in 12 bins, considering we are working with a skewed distribution. We
compute the entropy for each sheep (see Table 1 in supplementary material) as well
as the mean entropy (Figure 1a) for the two groups of sheep. Our results show that
the Batten sheep on the average have a lower entropy than the normal sheep with
p-values (0.0076, 0.1042, 0.2628, 0.0065, 0.0234, 0.0205) across the six days respectively.
The potential impact of uncontrollable environmental variables such as unfavourable
weather conditions is significant and may influence the behaviour of the sheep especially
because the experiment was carried out in an open field. Therefore, the result should be
interpreted with caution. We compare the entropy of the two groups of sheep with their
respective average distance covered in (Figure 1b) and its mean variance (Figure 1c).
The Batten sheep can be seen to have covered, on average, a longer distance over the
period of observation.

2 Mutual Information

2.1 Overview

We now describe another information theoretic measure intimately linked to entropy,
called mutual information [51]. The mutual information of two random variables X
and Y defines the mutual influence one variable has over the other. Specifically, it
quantifies the amount of information in one variable embedded in the other. For this
reason, mutual information can be used as a measure of association or social-grouping,
for example in the characterization of leader-follower relationship, group coordination
and, more generally, collective behaviour [56].This can be further used to build a social
network [33] as opposed to the gambit of the group approach widely used in the animal
behaviour modeling community.

Mutual information is similar to the correlation coefficient. However, mutual infor-
mation also captures non-linear relationships between two variables. More formally, the
mutual information of two discrete random variables X and Y , with realizations x and
y respectively, is given by:

I(X;Y ) =
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
(2)

In this, p(x) and p(y) are the marginal probability distribution functions of X and
Y respectively and p(x, y) is the joint probability distribution function of X and Y .

In the case of continuous random variables we have:

I(X;Y ) =

∫
Y

∫
X

p(x, y) log
p(x, y)

p(x)p(y)
(3)

Here the summation for the case of discrete distribution functions has been replaced
by a double integral. Mutual information is non-negative, i.e., I(X;Y ) ≥ 0 and only
zero only when X and Y are completely independent, making p(x, y) = p(x)p(y) and

thus log
p(x, y)

p(x)p(y)
= log(1) = 0. It is also symmetric: I(X;Y ) = I(Y ;X). As mentioned

earlier, other information theoretic measures are derived from entropy. The mutual
information can be written as a function of entropy as follows:

I(X;Y ) ≡ H(X)−H(X|Y )

≡ H(Y )−H(Y |X)
(4)
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H(X|Y ) and H(Y |X) represent conditional entropies and H(X) and H(Y ) the
marginal entropies.

We now consider a potential application of mutual information, in its application to
the study of association in pigeons.

2.2 Case study: Mutual information for measuring association
and leadership in pigeons

As mentioned earlier, the de-facto method used in the animal behaviour community for
measuring association is the gambit of the group otherwise known as co-location [21].
To detect significant association and weed out any form of co-location by chance, a
permutation test is carried out [20]. However, there is no well defined method for choosing
the appropriate radius to define co-location. Also, the directional correlation delay time
method used by [41] in reconstructing pigeon flight network structure can only detect
linear relationships leaving the non-linear relationships undetected. Previously, [13] used
transfer entropy to infer leadership in Zebrafish, we state here that its our aim to detect
association using a bidirected graph and not a directed graph where information flow
and its direction is of utmost importance. In addition, transfer entropy may not be
exceptionally better than mutual information in instances where the agents are constantly
changing positions relative to one another [50].

We demonstrate how Mutual Information can be used to overcome the limitations
associated with the methods above by using it to measure association between pigeons
in flight. We use the dataset of [50] [59] and picked flight 8 as the result was discussed
in the literature in detail. We compute, the time-series of the turn angle of each bird
followed by the pairwise mutual information of these time series of the nine birds involved
in the flight to obtain a distance matrix (see Table 2 in supplementary material). As
expected, there will always be some measure of association between all the birds in the
flight, we use a randomization test to determine a threshold for significant pairwise
mutual information (see supplementary material). We further build a social network
(Figure 2a) to visualize the flight formation. Our result is consistent with two previous
studies on pigeon flight. First, we observe that pigeons do have a hierarchical formation
when in flight as seen in (Figure 2a). This is a result consistent with the observations
in [41]. Also, we were also able to detect the leader as node M during the flight which
is the node M with one edge. This result is also consistent with the ground truth in
the literature [50]. In addition, while it is obvious from the flight network there is only
one leader, who is followed directly by only one bird node S, it is not clear from our
analysis whom the other seven birds are following. Since bird S appears to be connected
to all birds in the network including the leader and the remaining seven birds seems
to have at least 5 other connections, we are of the opinion others may be adopting a
nearest neighbor approach in deciding whom to follow or just simply following bird S.
We compare this approach with three other methods: correlation coefficient, transfer
entropy and Granger causality (Figure 2). While it is not straightforward to compare the
performance of the four methods, one basis for comparison is concerns leadership. mutual
information is able to identify the leader from the flock better than other methods and
is followed by the correlation coefficient. With transfer entropy and Granger causality,
its not clear exactly which of the birds is the leader. We attribute the poor performance
of the transfer entropy and Granger causality to the continuous change in positions of
the birds when flying.
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3 Kullback-Leibler divergence

3.1 Overview

Kullback-Leibler divergence (KLD) also known as relative entropy measures the distance
between two probability distributions. Essentially, it measures the information loss
while substituting a probability distribution for another giving a lower score to two
distributions with the same behaviour and a higher score if they have an extremely
different behaviour.

In animal movement modelling, KLD can be used to quantify changes in behaviour
of an individual animal or discrepancies in behaviour in a group. For discrete probability
distributions P and Q, KLD is defined as follows:

DKullback−Leibler(P ||Q) =
∑

P (x) log
P (x)

Q(x)

=
∑

P (x) log P (x)−
∑

P (x) log Q(x)

= H(P )−H(P,Q)

(5)

where H(P,Q) is the joint entropy between P and Q and H(P ) the entropy of P .
For continuous probability distributions P and Q, KLD is given by:

DKullback−Leibler(P ||Q) =

∫ +∞

−∞
P (x) log

P (x)

Q(x)
dx (6)

KLD is asymmetric, i.e.:

DKullback−Leibler(P ||Q) 6= DKullback−Leibler(Q||P ) (7)

However, there is a symmetric version which is given by:

DKullback−Leibler(P ||Q) +DKullback−Leibler(Q||P ) (8)

There are many applications of KLD can be many. For example, it can be used for
detecting behavioural change points and modes such as foraging, resting and travelling
in animals by constructing a sliding window that moves across a time series while
computing the KLD of the probability distributions of contiguous windows. This has
implications for example in determining regime shifts, most especially for animals who
move in non-homogeneous ways. In addition, it can also be used in identifying points
of change in landscape for animals who travel long distances over a heterogeneous
landscape that affects their behavioural states. KLD also has applications in determining
activity-rest patterns in animals. The KLD can also be used to evaluate the impact of
environmental variables on the behaviour of animals by comparing the changes observed
using only behavioural data together with the joint density function of behavioural data
and environmental data.

Another potential application is the use of Kullback-Leibler divergence for monitoring
of the health of animals that co-exist in groups. This can be achieved by computing the
pairwise Kullback-Leibler divergence between the probability distribution of movement
data of all animals in the group while seeking animals with a significant divergence from
the remaining members of the group. This approach, when integrated with appropriate
machine learning tools such as hierarchical clustering, can be used to classify animals
into healthy and non-healthy or automatic classification of animals into species.
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3.2 Case study: Kullback-Leibler divergence reveals Turkey Vul-
ture has predictable annual movement patterns

Previously, KLD has been used by [30] to measure the divergence from the equilibrium
behaviour of the blue tuna fish after a telemetry device was attached to it. In our own
case, we use KLD to describe the movement patterns of the Turkey Vulture. The Turkey
Vulture, according to [18], is the world’s most abundant and widely distributed avian
scavenger with a population in excess of five million individuals. We characterize the
movement patterns of the Turkey Vulture (Cathartes aura) [18] [8] across several years
by comparing how the movement patterns at the beginning of the year (January) vary
relative to the remaining months of the year across the next three years. The bird by
name Leo was chosen as it possesses a movement dataset that spans several years. We
compute the Kullback-Leibler divergence (symmetric version) across several years and
our results (Figure 3) show that the movement strategy of this bird is highly predictable.
We observe from Figure 3 that the Kullback-Leibler divergence across three years is full
of peaks and troughs (migratory season). The peaks represent the movement back to the
breeding sites as well as the breeding season when there are little movement activities in
the temperate regions of America while the troughs represent the migrating period when
the birds migrate to tropical regions in search of food. It is a known fact that these
specie of birds start breeding in the temperate regions such as North and South America
where they have abundance of food during the spring and this breeding continue until the
onset of fall. Once fall starts and winter starts to set in, these birds migrate to tropical
regions where it is warmer and there is abundance of rain and food all throughout the
year. However, at the onset of spring around march, these birds migrate back to the
temperate regions of America where they are guaranteed abundant food and resources
although some do stay back in the tropics. We compare the KL divergence with the
mean difference as well as the Earth Mover’s Distance (EMD) of the monthly movement
data of interest. The EMD appears to do as much as the same job KL divergence is
doing even though the peaks are sharper. We also compare how the movement patterns
in other months of the year (February to December) vary relative to the remainder of
the dataset over three years. Results, (Figure 4) show the bird have different movement
patterns in the months between June and September relative to other months of the
year, which is essentially its breeding season 1. Overall, from the analysis above, it can
be seen that the bird have three different annual movement patterns spread between (a)
October to March when it is searching for food away from its breeding ground (troughs
in Figure 3) (b) April to June when its flying back to its breeding ground (first half of
the peaks in Figure 3) and (c) June to September when it is actually breeding (second
half of the peaks Figure 3).

4 Kolmogorov Complexity

4.1 Overview

As a last measure we describe a similarity metric influenced by Kolmogorov complexity
(KC), a metric with foundations in the field of algorithmic information theory. The
Kolmogorov complexity of an object represents the shortest computer program that
produces the object as output. More formally, the KC of a string x with respect to a
reference machine U is defined by [25] as:

min
z
{{l(z) : U(z) = x, z ∈ {0, 1}∗} (9)

1http://eol.org/pages/1049010/details.
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Where z is a program that prints string x and then halts and l is the length. The
concept of Kolmogorov complexity can be used as an inference tool to find the shortest
description of behavioural data. The smaller the KC of a sequence the regular or
simple it is and vice-versa. To find similarities in a heterogeneous dataset, we describe
the Normalized Information Distance (NID) [61], a similarity measure influenced by
Kolmogorov complexity and defined as:

NID(x, y) =
max {K(x|y),K(y|x)}
max {K(x),K(y)}

(10)

Due to the non-computability of the NID, the NID has been re-written [16] as
the normalized compression distance (NCD) by simply approximating the Kolmogorov
complexity K , using a compressor Z. The NCD between two strings x and y can be
defined as:

NCD(x, y) =
Z(xy)−min {Z(x), Z(y)}

max {Z(x), Z(y)}
(11)

Here xy is the concatenated together. These strings can be documents, software, genomes
or even images. The NCD takes on non-negative values in the range 0 ≤ r ≤ 1 + ε with
ε defined to account for imperfections in the compression methods see [16] for more
details.

The NCD has been used in a variety of disciplines for different purposes such as
anomaly detection [31], gene expression dynamics [43], classification of music [14],
classifying computer worms and viruses and detecting the origin of new ones [62]. Since
the NCD has been shown to work well with sequences and strings, it can be used, for
example, in monitoring the behaviour of animals to know when they deviate from a
previously or commonly known sequence of states for example by virtue of climate
change [27]. It can also be used to find similarity in movement patterns of conspecifics
across different habitats.

4.2 Case study: Kolmogorov complexity as tool for classifying
animal movement patterns across scales

Animals across different habitats, scales, and species are known to have different move-
ment patterns. However, little or no study has been carried out to find out which groups
of animals possess similar movement strategies across different habitats and scales.
Recently, [2] attempted to classify several animals across different species into similar
groups using principal component analysis on some movement metrics with hierarchical
clustering. Their result suggests that all animals organize into four distinct groups of
movement syndromes namely migratory, central place, nomadic and territorial. In this
study, we observe the movement patterns of eleven animals (Table 1) across different
spatio-temporal scales and habitats. For our study, we obtain the datasets of the Galapa-
gos tortoise (Geochelone nigra) [9] [1], Springbok (Antidorcas marsupialis) [3] [1], African
buffalo (Syncerus caffer) [4] [17] [24] [1], African elephant (Loxodonta africana)(original
unpublished data contributed by Miriam Tsalyuk and Wayne M Getz) [1], Black-backed
jackal (Canis mesomelas) [7] [1], California sea lion (Zalophus californianus) (original
unpublished data contributed by Dan Costa) [2] [1], Galapagos albatross (Phoebas-
tria irrorata) [19], Sheep and Sheepdog (Ovies aries) [60] [59], Northern elephant seal
(Mirounga angustirostris) [49] [1], White-backed vulture (Gyps africanus) [54] [55] [1]
and Burchell’s Zebra (Equus burchellii) [5] [6]. All these datasets use the same 1 hour
sampling period [2]. First we compare the monthly movement patterns of all the 85
animals to find similarities by computing their pairwise NCD with the gzip compressor
followed by hierarchical clustering of the resulting distance matrix (see supplementary

8/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/311241doi: bioRxiv preprint 

https://doi.org/10.1101/311241


material for details). The only metric used here is distance covered every hour, which
we further processed to its binary equivalent (strings of zeroes and ones). We refrained
from using the turn-angle here as it is an unreliable metric considering the noisy nature
of most sensors. Our results (Figure 5) show that animals organize into three groups
of those that live on land (zebra, elephant, springbok, jackal, sheep and buffalo), those
that live in water (tortoise, sea lion and elephant seal) and those that fly (albatross
and vulture). Amongst the animals that live on land, we notice there appears to be
some similarity between the movement patterns of the elephant and zebra while others
seem to organize into distinct groups of conspecifics. Therefore, we hypothesize that
there might be a correlation between the feeding and movement patterns of animals.
We observe a small number of unexpected classifications: for example, Vulture V1 was
classified among the animals that live in water. This might be due to noisy data, or
possibly, limitations of the proposed approach. To find long-term similarities among
animals movement patterns we compare approximately one year movement data of 16
animals (Table 1) across six different species being the only long-term animal movement
datasets we could obtain. Results (Figure 6) show that there might be some similarities
in the long-term movement patterns of vultures and jackals which are both scavengers.
This supports a hypothesis that there might be a correlation in the movement patterns
of animals with similar feeding habits. The rest of the animals organize into groups of
tortoises and those that live on the land (zebra, elephant and springbok). We compare
this approach with the pairwise mutual information of the distance covered with respect
to the two instances discussed above (see Figures 1 and 2 in supplementary material).
The classification produced by the NCD can be seen to be more meaningful relative to
the mutual information.

5 Challenges And Limitations

While we have highlighted the potential use of information theoretic metrics in obtaining
insights about animal movement and also show the applications of these metrics to real
animal movement data, we would like to underline that these methods should be applied
with caution given their inherent limitations. First, the issue of missing data remains a
challenging problem due to logger failure thereby hindering researchers from obtaining
maximum insight from the dataset they study using these tools. For this reason, when
using the methods described above, it is worthwhile to make provision for the presence of
missing data during the analysis process. In addition, it suffices to state here that care
must be taken while choosing the appropriate amount of data from which inference can
be made. For example, let us consider the analysis of the similarities of the complexities
of animals across different taxa and spatio-temporal scales. We saw a similarity only in
the long-term movement patterns of jackals and vultures. This phenomenon might not
have been observed if datasets of shorter length had been used.

We issue a caveat on estimating probability density functions (PDF) of continuous
movement data. At the moment, most of the methods and tools available are based
on the assumption of underlying normal distributions. Considering that continuous
animal movement data often follows skewed (e.g., power-law or truncated power-law)
distributions [26] [11], researchers employing some of the methods described here, for
example the Kullback-Leibler divergence, should exercise appropriate caution while
estimating the PDF of very skewed distributions. In our case, we took special precaution
while computing the probability distribution for entropy by binning the data around
several mean values of the data in the direction of skewness. In other cases, we did not
take any special precautions: for example, the distribution for the turn angle of the
pigeons is Gaussian. For simplicity, we approximate the Turkey Vulture movement data
distribution as Gaussian as the volume of the monthly data is small. There are however
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estimators that makes use of k-nearest-neighbour density estimation [44] methods to
compute some of the metrics we have discussed here such as KL divergence and also, one
potential approach to solving this problem could be to model these skewed distributions
as a mixture of Gaussians.

Furthermore, appropriate methods for permutation and randomization must be used
while determining a threshold, for example for the calculation of the pairwise mutual
information between animals in a group. Finally, we cannot stress enough the importance
of using the appropriate volume of data as most information-theoretic measures involve
estimation which is essentially a data hungry process.

6 Conclusion

We have demonstrated the use of a class of non-parametric information theoretic tools
for studying movement patterns of animals and have showed how they can be used
with several animal movement datasets. First, we demonstrate how Shannon entropy
can be used to characterize the movement patterns of sheep with Batten disease where
the distance covered every ten minutes was used as the basis for generating symbols to
compute the entropy. The result shows that the Batten sheep have a lower entropy than
their control counterparts. Also, we describe the use of mutual information for detecting
associations in animals using pigeons as an example. Our findings show that this method
can be very useful in lieu of the widely used gambit of the group approach as we were able
to implicitly detect the leader from the flight data. We have showed how the Kullback-
Leibler divergence can be used to characterize the movement patterns of the Turkey
Vulture. From our results we were able to see that the movement patterns of this bird is
highly predictable over several years. Lastly, we describe a metric with foundations in
the field of algorithmic information theory known as Kolmogorov complexity (normalized
compression distance). We used this metric to characterize the movement patterns of
animals across different taxa and spatio-temporal scales with results suggesting there
might be a correlation between the feeding and movement patterns of animals. These
methods provide complementary insights in the study of animal behaviour. In other
words, they provide additional information about animal movement that are not apparent
using other types of analysis. This class of probabilistic methods are also usually more
robust in presence of noise, which is inherent in location data.

As part of our future research agenda, we plan to explore more movement datasets
as they become publicly available and possibly other types of behavioural datasets, for
example from accelerometers, in order to show further how these information theoretic
metrics can be used to obtain novel insights about the behaviour of animals in their
natural habitats.
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Tables & Figures

Species No of individuals Habitat Feeding strategy

African buffalo (B) 5 Land Herbivore
African elephant (E) 5(3) Land Herbivore

Black-backed jackal (J) 11 Land Scavengers
Burchell’s zebra (Z) 2(2) Land Herbivore

California sea lion (sl) 15 Water Piscivore
Galapagos albatross (A) 8 Land/Air Piscivore
Galapagos tortoise (T) 7(4) Land/Water Piscivore/Herbivore
N. elephant seal (SE) 14 Water Piscivore

Sheep & Sheep-dog (SD) 5 Land Herbivore
Springbok (Sp) 9(1) Land Herbivore

White-blacked vulture (V) 4(2) Land/Air Scavengers

Table 1. Summary of 85 individuals within 11 species. The code in front of the species
represents the label codes used for each animals in the hierarchical clustering while the
number in the bracket under the no of individuals represents the number of animals
with up to one year of observational data.
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Figure 1. (a) Mean entropy of the two groups of sheep across 6 days where the larger
circles represent days when the mean difference in entropy are statistically significant.
The sheep affected by Batten disease can be seen to have a lower entropy due to the
tendency to repeat the same behaviour over a long period of time (b) Mean distance
covered by the two groups of sheep (c) Corresponding variance of the mean distance
covered.
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Figure 2. Flight dynamics of homing pigeons characterized by (a) Mutual Information
(b) Correlation Coefficient (c) Transfer entropy (Kernel estimator) [35] (d) Transfer
entropy (Kraskov estimator) [35] (e) Granger Causality (p-value = 0.05) (f) Granger
Causality (p-value = 0.001) (g) Granger Causality (p-value = 0.0001). The tables
presenting the pair-wise values can be found in the supplementary material.
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Figure 3. Kullback-Leibler divergence of the monthly movement pattern over a period
of 3 years. The peaks represent the annual period of breeding as well as the flight back
home after winter and the troughs, migratory period during which the bird travels in
search of food. We compare the KL divergence with the mean difference and the Earth
Movers Distance (EMD).
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Figure 4. Kullback-Leibler divergence of the monthly movement pattern over a period
of 3 years where the reference month is (a) February (b) March (c) April (d) May (e)
June (f) July (g) August (h) September (i) October (j) November (k) December. From
the result, it can be seen that the movement pattern during January, February, March,
April, May, October, November and December are the same while the bird exhibits a
different pattern in June, July, August and September. This suggests that the breeding
season of this bird is between June and September. The result is consistent with the
information about Turkey Vulture in North America as they lay their eggs between May
and June, incubate them for between 38 and 41 days and when the eggs hatch. The
hatchlings are further brooded for a period between 70 and 80 days resulting in between
108 and 121 days of breeding, which is equivalent to four months of breeding.
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Figure 5. Hierarchical clustering of the pairwise NCD of 85 animals spread across 11
species. All the animals on the average organizes into three groups of those that live on
land (green), those that live in water (red) as well as those who fly (blue).
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Figure 6. Hierarchical clustering of the pairwise NCD of 16 animals spread across 6
species representing the movement patterns over a period of one year. The animals
organize into three distinct groups that are correlated with their feeding patterns.
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