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Abstract

When evaluating a newly developed statistical test, the first step is to check its type 1 error (T1E)

control using simulations. This is often achieved by the standard simulation design S0 under the

so-called ‘theoretical’ null of no association. In practice, whole-genome association analyses scan

through a large number of genetic markers (Gs) for the ones associated with an outcome of interest

(Y ), where Y comes from an unknown alternative while the majority of Gs are not associated with

Y , that is under the ‘empirical’ null. This reality can be better represented by two other simulation

designs, where design S1.1 simulates Y from an alternative model based on G then evaluates its

association with independently generated Gnew, while design S1.2 evaluates the association between

permutated Y perm and G. More than a decade ago, Efron (2004) has noted the important distinction

between the ‘theoretical’ and ‘empirical’ null in false discovery rate control. Using scale tests for

variance heterogeneity and location tests of interaction effect as two examples, here we show that

not all null simulation designs are equal. In examining the accuracy of a likelihood ratio test,

while simulation design S0 shows the method has the correct T1E control, designs S1.1 and S1.2

suggest otherwise with empirical T1E values of 0.07 for the 0.05 nominal level. And the inflation

becomes more severe at the tail and does not diminish as sample size increases. This is an important

observation that calls for new practices for methods evaluation and interpretation of T1E control.

Key words: type 1 error, simulation, whole-genome association scans, variance heterogeneity,

interaction
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1 Introduction

Type 1 error (T1E) control evaluation using simulations is always the first step in understanding

the performance of any newly developed statistical test. To formulate the problem more precisely,

let us consider the current large-scale genome-wide association studies (GWAS) or next-generation

sequencing (NGS) studies of complex and heritable traits. These studies scan through millions

or more genetic markers (Gs) across the genome for the ones associated with a trait of interest

(Y ), while accounting for environmental effects. Many Y -G association tests have been developed,

and they often require the assumption of (approximately) normally distributed errors to maintain

T1E accuracy, with some being more robust than others. For example, Bartlett test for variance

heterogeneity has been shown to have large inflated T1E rates when the error term e follows a t-

or χ2-distribution (Struchalin et al. 2010), and the likelihood ratio test (LRT) is similarly sensitive

(Cao et al. 2014), while Levene’s test appears to be more robust (Soave et al. 2015; Soave and Sun

2017).

Standard T1E simulation design, denoted as S0, generates phenotype data Y0 ∼ e under the

‘theoretical’ null model of no association, then independently generates genotype data G and esti-

mates the empirical T1E rate from Y0 ∼ G+ε; for notation simplicity and without loss of generality,

intercept and additional covariates Zs are omitted from the conceptual expression of the regression

model. A method is generally considered sound if T1E is well controlled under the e ∼ N(0, σ2)

assumption, and robustness is then evaluated by assuming other distribution forms for e. Given sta-

tistical accuracy of T1E control, statistical efficiency in terms of power will be studied by generating

phenotype under an alternative, Y1 ∼ G+ e, and often it is assumed that e ∼ N(0, σ2).

In practice, GWAS and NGS receive an empirical Y that comes from an unknown alternative,

and a large number of Gs of which the majority are not associated with Y . That is, most Y -G

association pairs are in fact under the ‘empirical’ null. Now consider two alternative simulation

designs to evaluate T1E control. Design S1.1 simulates Y1 ∼ G + e from an alternative, then it

independently generates Gnew and evaluates T1E from Y1 ∼ Gnew + ε. Design S1.2 permutes the

simulated Y1 and evaluates T1E from Y perm1 ∼ G + ε. A important question can then be asked as

to whether the S1.1 and S1.2 designs lead to similar T1E conclusion as the S0 design. In particular,
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even if the e ∼ N(0, σ2) assumption was true and a test appeared to be accurate based on the S0

evaluation, do we expect it to perform well in real data which are better represented by the S1.1 and

S1.2 simulation designs; note that Y1 is in contrast to Y0 and ε may or may be normally distributed.

The answer would depend on the type of test statistics used.

Efron (2004) has brought up the discussion of the ‘theoretical’ vs. ‘empirical’ null more than a

decade ago. Focusing on controlling the false discovery rate (FDR), Efron (2004) outlined several

possible sources of non-normality including unobserved covariates and hidden correlation, and he

proposed an empirical Bayes approach to the problem. Here, we study the practical implications

of T1E evaluation based on the the commonly used ‘theoretical’ null simulation design S0 in the

context of whole-genome scans. We show that while a method may appear to be accurate under S0

and assuming normality, it can have incorrect T1E rates under the ‘empirical’ null of S1.1 or S1.2

and also ‘assuming normality’. The fundamental cause of the discrenpancy is that, in evaluating

Y1 ∼ Gnew + ε (or Y perm1 ∼ G+ ε), the marginal distribution of Y1 may not be normal even if it was

generated assuming normality (Y1 ∼ G+ e), conditional on the true causal G and other covariates.

As a proof-of-principle, we will focus on scale tests for variance heterogeneity, recently proposed

to identify Gs associated with variance of a quantitative trait Y (Pare et al. 2010; Aschard et al. 2013;

Cao et al. 2014; Soave et al. 2015). Traditional Y -G association tests focus on location parameters,

studying changes in mean of Y across different genotype groups. Gene-environment (GxE) and gene-

gene (GxG) are expected for complex traits. However, in practice, incomplete E data may preclude

straightforwardGxE interaction analyses, and computational or multiple hypothesis testing concerns

can make whole-genome exhaustive GxG interaction searches undesirable. It was then recognized

that because un-modelled interactions induce variance heterogeneity in Y when conditional only

on G, scale tests such as Levene’s test, originally developed for model diagnostics, can be used to

indirectly test for the interaction effects; it is worth noting that the causes of variance heterogeneity

are multifaceted beyond potential interactions (Sun et al. 2013; Dudbridge and Fletcher 2014; Wood

et al. 2014).

Inference of scale parameters is generally more sensitive than that of location parameters (Khan

and Rayner, 2003). Thus, the distinction between the ‘theoretical’ and ‘empirical’ null can be

particularly consequential for these emerging association tests that are designed to improve power
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by going beyond the first moment. In this work, we reveal the existing problems in T1E evaluation

based on the ‘theoretical’ null simulation design S0. We show that (1) a T1E conclusion drawn from

S0 could be different from the two alternative ‘empirical’ null simulation designs S1.1 and S1.2; (2)

The T1E discrepancy can remain as sample size increases; (3) The T1E issue may be more severe

at the tail.

In some settings, the ‘theoretical’ vs. ‘empirical’ null can also affect inference of location pa-

rameters in a regression, in addition to the better known cause of mean or variance model mis-

specification. Assume E was available for direct modelling of the GxE interaction effect, Voorman et

al. (2011) and Rao and Province (2016) showed that T1E rate of testing GxE or GxGnon−repeating

in a whole-genome interaction scan can be sensitive to reasons beyond model mis-specifications.

Gnon−repeating represents a fixed SNP G and we are testing its interaction with other SNPs, and

GxGnon−repeating is statistically similar to GxE which we use, hereinafter, to refer to both. Focusing

on inflated or deflated genomic inflation factor λGC (Devlin and Roeder 1999), Rao and Province

(2016) demonstrated a larger variation in λGC (similar to a larger variation in T1E rates between

different whole-genome association scans), when testing the interaction effect as compared to the

main effect under the ‘theoretical’ null. They attributed this to dependence between the interaction

test statistics, because E (or Gno−repeating) is fixed between tests. And they noted that increasing

sample size mitigates the problem. Here, we use this opportunity to revisit location testing of inter-

action effect. We show that, under the conventional ‘theoretical’ null, while T1E rates are indeed

variable between simulation replicates, the average T1E rate is correct regardless of the sample size.

In contrast, under the ‘empirical’ null, a different picture emerges as in the scale test setting above.

In what follows, we first describe in Section 2 the scale tests to be investigated and the three simula-

tion designs, S0, S1.1 and S1.2. We then provide numerical results from extensive simulation studies

in Section 3, together with direct location tests for main and interaction effects. Importantly, we

note that even if the departure from normality is generally minor in practice and appears to pass

standard diagnostic tests for non-normality, the different null simulation designs can still noticeably

affect conclusion regarding T1E control for some tests. Finally, in Section 4, we remark that future

T1E evaluation and interpretation should go beyond the traditional ‘theoretical’ null and adopt the

alternative ‘empirical’ null simulation designs.
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2 Methods

For association study of a complex trait Y using a sample of size n, we first define genotype data Gi

for individual i at each SNP under the study. As in tradition, Gi denotes the number of copies of the

minor allele, coded additively as Gi = 0, 1 and 2. And Gi is assumed to come from a multinomial

distribution, Gi ∼ multinomial(1, ((1− f)2, 2f(1− f), f2)), where f is minor allele frequency, MAF.

The analytical context of using scale tests to detect SNP G that influences variance of trait Y is

the following. Suppose the true generating model is

Y = βGG+ βEE + βGEG× E + e, where e ∼ N(0, σ2), (1)

and suppose information regarding E was not collected, then the working model can only account

for the main effect of G. However, it is straightforward to show that variances of Y stratified by the

three genotype groups of G differ if βGE 6= 0,

V ar(Y |G) = (βE + βGEG)2V ar(E) + σ2 = σ2
G. (2)

Thus, when E is missing and direct interaction modelling is not feasible, scale tests can be utilized to

identify G associated with variance of Y (Pare et al. 2010). A joint location-scale testing framework

can provide robustness against either βG = 0 or βGE = 0, and it can improve power if both main

and interaction effects are present (Soave et al. 2015). Here we focus on studying the more sensitive

scale tests, because the power of the joint test depends on the individual components.

Different scale tests have been studied in this context, and chief among them are the Levene’s test

(Levene et al. 1960) considered by Pare et al. (2010) and Soave et al. (2015), and the LRT considered

by Cao et al. (2014). Levene’s test for variance heterogeneity between k groups is an ANOVA of the

absolute deviation of each observation yi from its group mean or median. The resulting test statistic

Levene follows a F(k− 1, n− k) distribution under normality, and it is asymptotically χ2
k−1/(k− 1)

distributed; k = 3 in our case. Using median instead of mean to measure the spread within each

group has been proved to be more robust to non-normality, particularly for t-distributed or skewed

data (Brown et al. 1974; Soave and Sun 2017). And we will be using the median version of Levene
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in the remaining paper.

The variance likelihood ratio test considered by Cao et al. (2014) contrasts the null model of no

variance difference with the alternative model,

Y = βGG+ e, e ∼ N(0, σ2) vs. Y = βGG+ e, e ∼ N(0, σ2
G), (3)

and conduct the corresponding LRT for H0 : σ2
G=0 = σ2

G=1 = σ2
G=2. The corresponding test

statistic LRTv is asymptotically χ2
2 distributed; joint mean-variance LRT considering both βG = 0

and σ2
G ≡ σ2 can be readily conducted. Cao et al. (2014) has pointed out that LRTv is sensitive to

the normality assumption, but under normality they have demonstrated that LRTv has the correct

T1E control. However, we show in the following that although this conclusion is analytically correct

under the ‘theoretical’ null, it can be invalid when the method is applied to whole-genome scans

which are better represented by the ‘empirical’ null.

[Table 1 here]

Table 1 outlines the different null simulation designs, where S0 is the ‘theoretical’ null considered

by Cao et al. (2014) as in convention, while S1.1 and S1.2 are the ‘empirical’ null designs that better

represent the condition of real data. Under the S1.1 and S1.2 designs, the marginal distribution of

phenotype Y is a weighted linear combination of normal distributions (Supplementary Materials).

Thus, tests thought to be accurate based on S0 may have T1E issues based on S1.1 and S1.2,

depending on the weighting factors and the means and variances of individual normal distributions.

For example, LRTv, the LRT statistics for variance heterogeneity can be shown to be asymptotically

equal to the weighted sum of independent χ2
(1) (Supplementary Materials and Theorem 3.4.1(1) of

Yanagihara et al. 2005). Thus, before the simulation study in the next section, we shall expect that

LRTv will have T1E issue when the simulated data is not normally distributed marginally.

Assume that E was known, we can then directly test the interaction effect βGE using classical

likelihood ratio test (LRTβGE
) or the score test (ScoreβGE

) based on model (1). In that case, it is

straightforward to define the ‘empirical’ null design. That is, we first simulate Y1 = βGG+ βEE +

βGEG× E + e using model (1) based on the true G and E. We then independently simulate Gnew

and test βGE from Y1 = βGG
new + βEE + βGEG

new × E + ε; similarly for S1.2.
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There are a number of ‘theoretical’ null designs possible. For example, we can simulate Y0 =

βEE+e without the main G effect (S0.1, Model I of Rao and Province 2016), or Y0 = βGG+βEE+e

with the main effect (S0.2, Model II of Rao and Province 2016). In addition, we can also implement

each ‘theoretical’ null model in two ways. Consider Y0 = βGG + βEE + e, we can simply simulate

nrep sets of G and E to generate Y0. Alternatively, within each of nrep.out replicates (e.g. 100) of E

in an outer simulation loop, we can simulate nrep.in replicates (e.g. 105) of G and use them combined

with the fixed E to simulate nrep.in replicates of Y0. We can then test βGE and estimate the T1E

rate using the nrep.in replicates, similar to a whole-genome scan. Finally, we can average the T1E

rate over nrep.out replicates to account for sampling variation inherent in simulation of E or one

scan. We will be examining all four combinations for the ‘theoretical’ null. For the ‘empirical’ null,

although the single-loop approach is possible, the nrep.in× nrep.out double-loop is more intuitive.

That is, within each of nrep.out replicates of G and E, and Y1 simulated based on model (1), we

simulate nrep.in replicates of Gnew for testing and T1E rate estimation. We then average across

the nrep.out replicates.

3 Simulations

For evaluating scale tests for variance heterogeneity, we considered two modelling frameworks adopted,

respectively, by Cao et al. (2014) and Aschard et al. (2013) (Tables 2). Cao et al. (2014) used model

(3) to directly simulate variance heterogeneity in Y stratified by G. In contrast, Aschard et al.

(2013) used model (1) to indirectly simulate variance heterogeneity that has better genetic epidemi-

ology interpretation, because the size of βGE corresponds to power of scale tests under alternatives.

Assume that E was known, model (1) also allows us to evaluate T1E control for our second study

of directly testing for the interaction effect βGE . Conveniently, the corresponding ‘empirical’ null

model S0 in Table 2, Y0 = βEE + e, is conceptually the same as the simulation model I of Rao and

Province (2016), except E was Gnon−repeating.

[Table 2 here]

For each parameter value combination in Table 2, instead of studying power, we focused on

evaluating T1E control of the LRT and Levene’s scale tests for variance heterogeneity, and location
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tests for interaction effect, by contrasting the proposed ‘empirical’ null with the previously considered

‘theoretical’ null. We first generated genotype and phenotype data for G, Gnew, (and E if needed),

Y0, Y1 and Y perm1 as described in Tables 1 and 2. We focus on the nrep.in× nrep.out double-loop

implementation, but we note that the single loop design leads to the same conclusion as long as the

total number of replicates is large (results not shown).

First, assume that information regarding E was not collected in practice, we applied the scale

tests, LRTv and Levene, using the following working models,

• S0: Y0 ∼ G

• S1.1, an alternative ‘empirical’ null: Y1 ∼ Gnew

• S1.2, another alternative ‘empirical’ null: Y perm1 ∼ G

That is, we tested V ar(Y0|G) across G under the ‘theoretical’ null of no association of S0, and

V ar(Y1|Gnew) across Gnew and V ar(Y perm1 |G) across G under the ‘empirical’ null of no association

of, respectively, S1.1 and S1.2. We recorded the empirical T1E rates for each setting and bolded

in red colour the ones that exceed the α ± 3
√
α× (1− α)/nrep.in range, where α is the nominal

T1E rate and rep.in is the number of simulation replicates used to estimate the empirical T1E

rate for each of the rep.out replicates. Thus, α± 3
√
α× (1− α)/nrep.in is a conservative interval.

For completeness, we also kept the results of location tests (LRTm and Scorem) for testing mean

differences in Y across G, similarly contrasting the ‘theoretical’ null design of S0 with the alternative

‘empirical’ null designs of S1.1 and S1.2.

Revisiting the subtle dependency issue between interaction tests examined by Rao and Province

(2016), we then assumed that E was available. That is, we tested βGE in Y = βGG+βEE+βGEG×

E+e using the likelihood ratio test (LRTβGE
) and the score test (ScoreβGE

). However, S0 evaluated

the association between Y0 and G × E under the conventional ‘theoretical’ null design, while S1.1

examined Y1 and Gnew×E, and S1.2 studied Y perm1 and G×Eperm under the alternative ‘empirical’

null designs.
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4 Results

As expected from the analytical insights, results in Table 3 show that while location tests for phe-

notypical mean differences (LRTm and Scorem) are generally robust to the choice of ‘theoretical’

(S0) vs. ‘empirical’ (S1.1 or S1.2) null, it is not the case for the LRT scale test (LRTv) for variance

heterogeneity; the empirical T1E rates of Levene’s test were slightly deflated but not significantly.

Different choice of the null lead to different conclusions regarding the accuracy of LRTv. For ex-

ample, simulation design S0 shows LRTv has the correct T1E control across the parameter values

considered, but designs S1.1 and S1.2 suggest otherwise with empirical T1E values of 0.07 for the

nominal α = 0.05 level for some settings. While the increased T1E rates under the S1.1 and S1.2

‘empirical’ null designs appear to be mild and occur in extreme models (i.e. large un-modelled βGE

GxE interaction effect), results in Table 4 demonstrate that the T1E issue under the ‘empirical’ null

simulation designs of S1.1 and S1.2 can be more severe at the tail. For example, for the nominal

α = 1× 10−5 level, the empirical T1E rate can be as high as 11.5× 10−5. Because the genome-wide

significance level for GWAS is α = 5 × 10−8 (Dudbridge and Gusnanto 2008), an inflation of false

positive findings can be of a real problem in practice. Further, results in Table 5 confirm that in-

creasing sample size n (from 103 to 104) does not mitigate the discrepancy in T1E conclusion drawn

from the ‘theoretical’ vs. ‘empirical’ null. The root cause is that Y1 marginally is not normally

distributed, even if it was generated (conditional on the true G) using a normally distributed error

e term.

[Table 3 here]

[Table 4 here]

[Table 5 here]

In practice, it is routine (and recommended) to display and examine the empirical distribution

of a trait under the study. However, Figure 1 shows that even under the most extreme setting

where βGE = 1, the marginal histogram of Y appears to be approximately normal visually, unless a

formal diagnostic test for normality was conducted. The slightly right-skewed empirical distribution

of Y is the result of mixing six conditional distributions of Y , each perfectly normally distributed

conditional on the causal G and E; this is the key difference between the ‘theoretical’ and ‘empirical’
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null simulation designs, regardless of the sample size. For a less extreme case where βGE = 0.2,

although both the histogram and Q-Q plot (Figure S1) suggest that normal distribution is a good

fit (passing the Shapiro-Wilk normality test), the T1E discrepancy between the ‘theoretical’ and

‘empirical’ null remains albeit less severe as shown in Table 3 and Figure S2.

[Figure 1 here]

[Figure 2 here]

The asymptotic distribution of LRTv under the ‘empirical’ null is a weighted sum of χ2
1 (Sup-

plementary Materials). Figure 2 compares the asymptotic distribution (black solid curve) with the

finite-sample distribution (red dashed curve) of LRTv under the ‘empirical’ null, as well as with

χ2
2 (blue dot-dashed curve), which is the asymptotic distribution of LRTv under the ‘theoretical’

null. While the asymptotic distribution derived under the ‘empirical’ null well approximates the

finite-sample one, it is clear that the distributions of LRTv differ between the ‘empirical’ and ‘the-

oretical’ null; the difference is more visible on the scale of critical value for statistical significance

(the vertical lines). Thus, applying LRTv to empirical GWAS or NGS while using the significance

threshold derived from χ2
2 can lead to T1E problem.

Tables 3, 4 and 5 also included T1E results for testing phenotypic mean (as opposed to variance)

difference across the genotype groups. Although location testing for the main effects are generally

quite robust to the assumption of normality, problem can arise when testing for interaction effects

beyond model mis-specification (Rao and Province 2016).

In testing the interaction effect βGE (βGGnon−repeating to be more precise), Rao and Province

(2016) used the classical ‘theoretical’ null simulation design considering both S0.1 (without the

main G effect) and S0.2 (with the main G effect). Regardless, Figures 1B-1C of Rao and Province

(2016) showed that the variation in the resulting λGC was substantially bigger when testing βGE

than testing βG. And their Figures 1D and 1E demonstrated that the variation diminishes as sample

size increases. However, we note that this observation was made before averaging across the 414

simulated interaction scans/datasets; each scan contained 20,000 SNPs from which a λGC value was

estimated.

[Table 6 here]

The results of Rao and Province (2016) are consistent with ours shown in Figure S5. Figure
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S5 showed that scan-specific estimated T1E rates are indeed variable and become less so as sample

size increases; 100 GxE interaction scans of 105 SNPs each. However, it is important to note

that the average T1E rate across nrep.out simulated scans reflects better the long-run behaviour

of a method. Alternatively, assume nrep.out = 1, increasing the number of SNPs (i.e. the size

of nrep.in) will decrease the sampling variation inherent in estimating T1E based on simulation

studies. Indeed, results in Table 6 show that the T1E rate of testing βGE , estimated from 105× 100

(nrep.in×nrep.out) simulated replicates, is well controlled under the conventional ‘theoretical’ (S0)

null simulation design. But, this is not the case for the ’empirical’ (S1.1 or S1.2) null simulation

designs. Similar to the LRTv scale test for variance heterogeneity, the discrepancy between two

types of designs becomes more prominent at the tail and persists as sample increases (Table 6).

5 Discussion

In this article, we highlight the importance of distinguishing the ‘theoretical’ and ‘empirical’ null

distributions, first noted by Efron (2004), in a different application context. Focusing on scale tests

for variance heterogeneity and through simulation studies, we showed that conclusions of type 1 error

control of a statistical test could differ depending on the choice of the null. For example, the LRT

variance test appears to be accurate under the ‘theoretical’ null but invalid under the ‘empirical’

null (Tables 3, 4 and 5, and Figure S2). Although the error term for generating the phenotype or

outcome data was assumed to be normally distributed, the increased T1E rates under the ‘empirical’

null are, fundamentally, attributed to sensitivity of LRTv to departure from normality, because the

marginal distribution of the empirical outcome data was not normal (Figures 1 and S1). Thus, tests

shown to be sensitive to the assumption of normality are particularly vulnerable when applied to

real data that are better represented by the ‘empirical’ null than the ‘theoretical’ null.

In practice, investigators often rely on visual inspection of histograms of outcome data as illus-

trated in Figures 1 and S1. And we have noted that the departure from normality does not have to

be severe to have an effect on tests such as LRTv. For example, Soave et al. (2015) applied the LRTv

test of Cao et al. (2014) to a GWAS of lung function measures in cystic fibrosis subjects. Despite

the fact that the lung measures were approximately normally distributed and permuted prior to the
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variance association analysis, the histogram of GWAS p-values clearly showed an increased T1E rate

(Figure S2.G of Soave et al. 2015); the actual application was a joint LRTm and LRTv test but the

T1E issue was due to the LRTv component. Furthermore, for data appear to deviate from normal

such as that in Figure 1, even if investigators chose to perform some standard normal transforma-

tions, the T1E issue can persist. For example, let us consider the phenotype data simulated based

on Aschard’s genetic model, as described in Table 2 where βGE = 1 (Figure 1). After square-root

or log transformations (Goh and Yap 2009), although the empirical marginal distribution of the

phenotype improved as expected (Figure S3), the severity of T1E inflation of LRTv in fact worsened

under the ‘empirical’ S1.1 and S1.2 null (Figure S4).

Beyond scale test of variance heterogeneity, Voorman et al. (2011) showed that spurious false

positives can occur in genome-wide scans for GxE interactions, particularly in the presence of model

mis-specification. And Rao and Province (2016) also presented inflated/deflated genomic inflation

factors in a GxG interaction scan when one SNP is anchored (i.e. GxGnon−repeating), using the

conventional ‘theoretical’ null simulation design without any apparent model mis-specification. In

our simulation studies, the situation when E was assumed available for direct modelling of the

interaction term is similar to the dependency case examined previously. We note that the large

variation in λGC estimate demonstrated by Rao and Province (2016) corresponds to the sampling

variation inherent in estimating T1E rate from nrep.in replicates/SNPs across nrep.out replicates.

This, however, does not translate to T1E issue based on the classical frequentist interpretation.

Results in Table 6 show that, similar to scale test of variance, T1E conclusion for location test

of interaction effect βGE is sensitive to the choice of ‘theoretical’ S0 vs. ‘empirical’ S1.1 or S1.2

null simulation designs. Theoretical justifications are provided in Section 3 of the Supplementary

Materials.

In practice, permutation-based method must be carried out carefully, for example, in the presence

of sample correlation (Abney 2015). Thus, the ‘empirical’ S1.1 design is perhaps earlier to implement

than S1.2. For direct testing of the interaction effect βGE , the different ‘theoretical’ null designs (i.e.

S0.1 without vs. S0.2 with main G effect) did not lead to different T1E conclusions.

To conclude, although we only presented two examples (i.e. scale tests for variance heterogeneity

and location tests of interaction effects), the findings here have important implications for future
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evaluation of type 1 error control and interpretation. The newer test statistics being developed are

increasingly complex, often going beyond the first moment such as the scale tests studied here, or

beyond single variant approaches such as pathway and data integration analyses that have yet to

be examined. Conventional simulation design S0 under the ‘theoretical’ null can lead to misleading

conclusion regarding the accuracy of a test. The alternative simulation designs S1.1 and S1.2 under

the ‘empirical’ null, on the other hand, can reveal the true behaviour of a test when applied to real

data.

Acknowledgements

The authors have no conflict of interest to declare. The authors would like to thank Dr. David Soave

and Dr. Jerry Lawless for helpful discussions. This research was funded by the Natural Sciences

and Engineering Research Council of Canada (NSERC, 250053-2013), and the Canadian Institutes

of Health Research (CIHR, 201309MOP-310732-G-CEAA-117978) and to LS.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 30, 2018. ; https://doi.org/10.1101/311290doi: bioRxiv preprint 

https://doi.org/10.1101/311290
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] Mark Abney. “Permutation Testing in the Presence of Polygenic Variation”. In: Genetic Epi-

demiology 39.4 (2015), pp. 249–258.

[2] Hugues Aschard et al. “A nonparametric test to detect quantitative trait loci where the phe-

notypic distribution differs by genotypes”. In: Genetic epidemiology 37.4 (2013), pp. 323–333.

[3] Morton B Brown and Alan B Forsythe. “Robust tests for the equality of variances”. In: Journal

of the American Statistical Association 69.346 (1974), pp. 364–367.

[4] Ying Cao et al. “A versatile omnibus test for detecting mean and variance heterogeneity”. In:

Genetic epidemiology 38.1 (2014), pp. 51–59.

[5] B Devlin and K Roeder. “Genomic control for association studies.” In: Biometrics 55.4 (1999),

pp. 997–1004.

[6] Frank Dudbridge and Olivia Fletcher. “Gene-environment dependence creates spurious gene-

environment interaction”. In: The American Journal of Human Genetics 95.3 (2014), pp. 301–

307.

[7] Frank Dudbridge and Arief Gusnanto. “Estimation of significance thresholds for genomewide

association scans”. In: Genetic epidemiology 32.3 (2008), pp. 227–234.

[8] Bradley Efron. “Large-scale simultaneous hypothesis testing: the choice of a null hypothesis”.

In: Journal of the American Statistical Association 99.465 (2004), pp. 96–104.

[9] Friedhelm Eicker. “Limit theorems for regressions with unequal and dependent errors”. In:

Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Vol. 1.

1. 1967, pp. 59–82.

[10] Liang Goh and Von Bing Yap. “Effects of normalization on quantitative traits in association

test”. In: BMC bioinformatics 10.1 (2009), p. 415.
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Tables and Figures

Table 1: Summary of the three simulation designs, the ‘theoretical’ null S0, and the two ‘empirical’
null S1.1 and S1.2 for evaluating scale (or location) tests for variance (or mean) heterogeneity in
phenotype Y across the three genotype G groups.

Design Genotype
Phenotype Null of Marginal

(conditionally normal) No Association Normality

S0: ‘Theoretical’ Null G Y0 ∼ N(µ, σ2) Y0 |= G Y0 normal

S1.1: ‘Empirical’ Null
G

Y1|G ∼ N(µ, σ2
G) Y1 |= Gnew Y1 not normal

Gnew |= G

S1.2: ‘Empirical’ Null G
Y1|G ∼ N(µ, σ2

G)
Y perm1 |= G Y perm1 not normal

permute Y1: Y perm1
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Table 2: Summary of the two modelling approaches (Cao et al. 2014 and Aschard et al. 2013)
used here to generate phenotypic variable Y0 under the ‘theoretical’ null simulation designs S0, and
Y1 under the ‘empirical’ null simulation designs S1.1 and S1.2 as detailed in Table 1. Assume E
was available for direct modelling and testing βGE , the Aschard et al. (2013) model coincides with
Model I of Rao and Province (2016), except E was Gnon−repeating. T1E rate is first estimated from
nrep.in simulation replicates in an inner loop (similar to one whole-genome scan), then averaged
over nrep.out simulation replicates in an outer loop.

Directly introduce Indirectly introduce
variance heterogeneity by σ2

G variance heterogeneity by G× E
(Cao et al. 2014) (Aschard et al. 2013)

Or, Directly test βGE
(assuming E was available)

Null Model Y0 = e, Y0 = βEE + e,
for S0 e ∼ N(0, σ2) e ∼ N(0, σ2)

Alternative Models Y1 = βGG+ e, Y1 = βGG+ βEE + βGEG× E + e,
for S1.1 and S1.2 e ∼ N(0, σ2

G) e ∼ N(0, σ2)

Parameters
MAF=0.4 MAF=0.4; P(E=1)=0.3
βG=0.3 βG=0.01, βE=0.3, βGE=0.1, 0.2,· · · ,1

σ2
0=0.23, σ2

1=0.25, σ2
2=0.29 σ2 = 1

Sample size n=103 or 104 n=103 or 104

Nominal T1E α=0.05 α=0.05, 0.01, 0.001, 10−5

Replications nrep.in=105 nrep.in=105, or 107 for α=10−5

nrep.out=100 nrep.out=100
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Table 3: Empirical T1E rates of LRTm and Scorem location tests for mean difference in Y across
the three G groups, and of LRTv and Levene scale tests for variance difference in Y , based on
the ‘theoretical’ null design of S0 and the alternative ‘empirical’ null designs of S1.1 and S1.2.
Alternative empirical Y1 data were generated using the Aschard’s genetic model as described in
Table 2. Empirical T1E rates outside α± 3

√
α× (1− α)/nrep.in are bolded in red.

α = 5× 10−2, n = 103

βGE 0.0 0.2 0.4 0.6 0.8 1

Location

LRTm

S0 5.029 5.027 5.026 5.027 5.027 5.026
S1.1 5.039 5.021 5.021 5.019 5.014 5.010
S1.2 4.997 5.023 5.022 5.020 5.017 5.011

Scorem

S0 5.002 4.998 4.997 4.998 4.998 4.997
S1.1 5.014 4.992 4.993 4.991 4.985 4.981
S1.2 4.974 4.994 4.993 4.990 4.988 4.983

Scale

LRTv

S0 5.035 5.083 5.081 5.081 5.081 5.079
S1.1 5.029 5.188 5.262 5.507 5.979 6.757
S1.2 5.031 5.198 5.274 5.519 5.994 6.756

Levene
S0 4.956 4.898 4.898 4.898 4.898 4.896

S1.1 4.989 4.901 4.904 4.905 4.909 4.907
S1.2 4.906 4.922 4.912 4.911 4.915 4.908
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Table 4: Empirical T1E rates of LRTm and Scorem location tests for mean difference in Y across
the three G groups, and of LRTv and Levene scale tests for variance difference in Y , based on
the ‘theoretical’ null design of S0 and the alternative ‘empirical’ null designs of S1.1 and S1.2.
Alternative empirical Y1 data were generated using the Aschard’s genetic model as described in
Table 2, focusing on the extreme case of large interaction effect, βGE = 1. Empirical T1E rates
outside α± 3

√
α× (1− α)/nrep.in are boded in red.

n = 103 α 5× 10−2 1× 10−2 1× 10−3 1× 10−5

Location

LRTm

S0 5.016 0.999 0.985 0.988
S1.1 5.009 1.007 0.988 0.990
S1.2 5.011 1.009 1.033 1.013

Scorem

S0 5.008 0.998 0.989 0.990
S1.1 4.982 0.998 0.982 0.991
S1.2 4.982 0.999 0.983 0.997

Scale

LRTv

S0 5.009 1.002 1.024 1.033
S1.1 6.923 1.636 2.059 11.599
S1.2 6.920 1.639 2.042 11.624

Levene
S0 4.955 0.961 0.938 0.971

S1.1 4.964 0.978 0.932 0.952
S1.2 4.962 0.970 0.953 0.958
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Table 5: Empirical T1E rates of LRTm and Scorem location tests for mean difference in Y across
the three G groups, and of LRTv and Levene scale tests for variance difference in Y , based on the
‘theoretical’ null design of S0 and the alternative ‘empirical’ null designs of S1.1 and S1.2. Alternative
empirical Y1 data were generated using the Cao’s genetic model as described in Table 2, and using two
difference sample sizes of n = 103 and 104. Empirical T1E rates outside α±3

√
α× (1− α)/nrep.in

are bolded in red.

α = 5× 10−2

n = 103 n = 104

Location

LRTm

S0 5.011 5.012
S1.1 4.992 5.003
S1.2 4.934 4.989

Scorem

S0 5.011 5.012
S1.1 4.993 5.003
S1.2 4.934 4.989

Scale

LRTv

S0 5.103 5.165
S1.1 7.034 7.125
S1.2 7.007 7.020

Levene
S0 4.924 4.945

S1.1 4.905 4.965
S1.2 4.874 4.825
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Table 6: Empirical T1E rates of LRTβGE
and ScoreβGE

location tests of the interaction coefficient
βGE for the G × E interaction term in a regression, based on the ‘theoretical’ null design of S0
and the alternative ‘empirical’ null designs of S1.1 and S1.2. Alternative empirical Y1 data were
generated using the Aschard’s genetic model as described in Table 2 when βGE = 1, but E was
assumed to be known in this case and direction interaction modelling was possible. Empirical T1E
rates outside α± 3

√
α× (1− α)/nrep.in are bolded in red.

n = 103 n = 104

α = 5× 10−2 1× 10−2 1× 10−3 5× 10−2 1× 10−2 1× 10−3

LRT (βGE)
S0 5.034 1.017 1.029 5.033 1.007 0.979

S1.1 7.091 1.763 2.422 6.886 1.709 2.410
S1.2 7.100 1.771 2.389 6.972 1.707 2.339

Score(βGE)
S0 4.982 1.003 1.002 5.021 1.004 0.972

S1.1 7.028 1.738 2.363 6.874 1.705 2.400
S1.2 7.040 1.747 2.339 6.960 1.703 2.326
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Figure 1: Marginal (mixture) and conditional (stratified by G and a binary E) histograms of em-
pirical phenotype data Y1, based on the Aschard’s model as described in Table 2 when βGE = 1.
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Figure 2: Comparison of the asymptotic distribution (black solid) and finite-sample distribution
(red dashed) of LRTv under the ‘empirical’ null, with χ2

2 (blue dot-dashed) which is the asymptotic
distribution of LRTv under the ‘theoretical’ null. Vertical lines correspond the 99.9% quantile cutoffs
for α = 0.001.
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