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Abstract 

Understanding the nature and extent of horizontal pleiotropy, where one genetic variant has 

independent effects on multiple observable traits, is vitally important for our understanding of the 

genetic architecture of human phenotypes, as well as the design of genome-wide association 

studies (GWASs) and Mendelian randomization (MR) studies. Many recent studies have pointed 

to the existence of horizontal pleiotropy among human phenotypes, but the exact extent 

remains unknown, largely due to difficulty in disentangling the inherently correlated nature of 

observable traits. Here, we present a statistical framework to isolate and quantify horizontal 

pleiotropy in human genetic variation using a two-component pleiotropy score computed from 

summary statistic data derived from published GWASs. This score uses a statistical whitening 

procedure to remove correlations between observable traits and normalize effect sizes across 

all traits, and is able to detect horizontal pleiotropy under a range of different models in our 

simulations. When applied to real human phenotype data using association statistics for 1,564 

traits measured in 337,119 individuals from the UK Biobank, our score detects a significant 

excess of horizontal pleiotropy. This signal of horizontal pleiotropy is pervasive throughout the 

human genome and across a wide range of phenotypes and biological functions, but is 

especially prominent in regions of high linkage disequilibrium and among phenotypes known to 

be highly polygenic and heterogeneous. Using our pleiotropy score, we identify thousands of 

loci with extreme levels of horizontal pleiotropy, a majority of which have never been previously 

reported in any published GWAS. This highlights an under-recognized class of genetic variation 

that has weak effects on many distinct phenotypes but no specific marked effect on any one 

phenotype. We show that a large fraction of these loci replicate using independent datasets of 

GWAS summary statistics. Our results highlight the central role horizontal pleiotropy plays in the 

genetic architecture of human phenotypes, and the importance of modeling horizontal pleiotropy 

in genomic medicine. 
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Introduction 

The term “pleiotropy” refers to a single genetic variant having multiple distinct phenotypic 

effects. In general terms, the existence and extent of pleiotropy has far-reaching implications on 

our understanding of how genotypes map to phenotypes (Zhan et al., 2018), of the genetic 

architectures of traits (Chesmore et al., 2017; Socrates et al., 2017), of the biology underlying 

common diseases (Solovieff et al., 2013) and of the dynamics of natural selection (Keightley 

and Hill, 1990). However, beyond this general idea of the importance of pleiotropy, it quickly 

becomes difficult to discuss in specifics, because of the difficulty in defining what counts as a 

direct causal effect and what counts as a separate phenotypic effect.  

One particularly important dividing line in these conflicting definitions is the distinction between 

vertical pleiotropy and horizontal pleiotropy (Paaby and Rockman, 2013; Tyler et al., 2009). 

When a genetic variant has a phenotypic effect that then has its own downstream effects in turn, 

that variant exhibits “vertical” pleiotropy. For example, a variant that increases low density 

lipoprotein (LDL) cholesterol might also have an additional corresponding effect on coronary 

artery disease risk due to the causal relationship between these two traits, thus exhibiting 

vertical pleiotropy. Vertical pleiotropy has been conceptualized and measured by explicit genetic 

methods like Mendelian randomization 

In contrast, a genetic cause that directly influences multiple traits, without one trait being 

mediated by another, would exhibit “horizontal” pleiotropy. For example, a genetic variant that 

increases LDL cholesterol and has an additional effect on an unrelated trait, such as 

schizophrenia risk, may be an example of horizontal pleiotropy, as there is currently no known 

intrinsic causal relationship between these traits. Horizontal pleiotropy contains some 

conceptual difficulties, and consequently can be difficult to measure. In principle, we might 

imagine selecting a variant and counting how many phenotypes are associated with it. Indeed, 

several versions of this analysis have been performed for different lists of traits (Pickrell et al., 

2016; Chesmore et al., 2017; Socrates et al., 2017; Kanai et al., 2018). However, the results of 

these analyses are highly dependent on the exact list of traits used, and traits of interest to 

researchers previously tend to involve only a small number of phenotypes and/or be heavily 

biased towards a small set of disease-relevant biological systems and processes. Due to these 

limitations, it is unknown to what extent horizontal pleiotropy affects genetic variation in the 

human genome at the genome-wide level. 

The idea that horizontal pleiotropy may be ubiquitous has recently been advanced in the form of 

“network pleiotropy” (Boyle et al., 2017). According to this theory, traits are controlled by 

densely connected networks of biological regulators, and any perturbation in the network will 

affect all traits connected to that network. These effects fall off with increasing distance in the 

network, but can still be several significant steps away. This can lead to extreme polygenicity in 

many traits, since any one trait is controlled by all genes in the network, with a wide range of 

effect sizes depending on the position of the gene in the network. More importantly for our 

purposes, it has been suggested that this can also lead to widespread pleiotropy, since any 

variant in the network influences every trait connected to the network, even distantly. However, 
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there has been very little concrete evidence supporting this hypothesis, as most recent studies 

investigating pleiotropy have reported genetic correlations between specific pairs of traits or 

diseases, or have focused on genome-wide significant disease-associated single nucleotide 

variants (SNVs) only, rather than this kind of ubiquitous horizontal pleiotropy.  

The proliferation of data sources like large-scale biobanks and metabolomics data that include a 

wide array of phenotypes in one dataset, combined with the growing public availability of 

genome-wide association studies (GWASs) summary statistic data, especially for extremely 

large meta-analyses, has allowed the development of methods that use these summary 

statistics to gain insight into human biology, and particularly into the genetic architecture of 

complex traits and diseases (Pasaniuc and Price, 2017).  

Here, we present a method to measure horizontal pleiotropy using publicly available GWAS 

summary statistics. We focus on measuring horizontal pleiotropy of SNVs on observable traits, 

meaning a scenario where a single SNV affects multiple independent phenotypes that do not 

have a detectable causal relationship. Using this framework, we are able to score each SNV in 

the human genome for horizontal pleiotropy, giving us broad insight into the genetic architecture 

of pleiotropy. Because our framework explicitly removes correlations between the input 

phenotypes and the input phenotypes originate from a diverse array of traits and diseases, 

these insights are largely robust to the specific list of traits studied, and pertain to human biology 

overall rather than relationships between specific traits.  

Results 

A quantitative score for pleiotropy 

We have developed a method to measure horizontal pleiotropy using summary statistics data 

from GWASs on multiple traits. Our method relies on applying a statistical whitening procedure 

to a set of input variant-trait associations, which removes correlations between traits and 

normalizes effect sizes across all traits. Using the whitened (decorrelated) association Z-scores, 

we measure two related but distinct components of pleiotropy: the total magnitude of effect on 

independent traits (“total magnitude” score, denoted 𝑃𝑚) and the total number of independent 

traits affected by a variant (“number of traits” score, denoted 𝑃𝑛), both calculated after 

accounting for correlation between traits. The total magnitude score 𝑃𝑚 is defined as the 

Euclidean norm of the vector of trait associations, or the square root of the sum of squared trait 

associations. Meanwhile, the number of traits score 𝑃𝑛 is defined as the number of whitened 

traits with associations stronger than some arbitrarily chosen Z-score cutoff - we use Z-score ≥ 

2, approximately corresponding to nominal significance (P < 0.05). More formally, 

𝑃𝑚 = √∑ 𝑧𝑖
2

𝑙

1
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𝑃𝑛 =  ∑ 𝐻(𝑧𝑖  
−  2)

𝑙

1

 

where 𝑧𝑖 are the whitened variant-trait associations, 𝑙 is the total number of traits, and 𝐻 is the 

Heaviside step function. This two-component quantitative pleiotropy score allows us to measure 

both the magnitude (pleiotropy magnitude score 𝑃𝑚) and quantity (pleiotropy number of traits 

score 𝑃𝑛) of horizontal pleiotropy for all SNVs in the human genome (See Supplemental 

Information). In addition, we can compute P-values for the two components of our pleiotropy 

score based on the theoretically expected distributions of the scores under the null hypothesis 

of no pleiotropy - that is, that the effect of each variant on each whitened trait obeys an 

independent standard Gaussian distribution (Figure 1; Supplemental Information). 

Power to detect pleiotropy in simulations 

We conducted a simulation study to evaluate the performance of our two-component pleiotropy 

score. We simulated 800,000 variants controlling 100 traits. Under the null model, all trait-

variant associations were independent, and no horizontal pleiotropy was added. Under the 

added-pleiotropy models, we randomly chose a fraction of variants and forced them to have 

simultaneous associations with multiple traits, varying the number of traits (𝜈) and the strength 

of association (𝜇). The simulation study showed that both components of the pleiotropy score 

were well-powered to detect horizontal pleiotropy (Table 1). Under the null hypothesis of no 

added horizontal pleiotropy, the false positive rate was well controlled for both scores. In the 

presence of added horizontal pleiotropy, using a P-value cut-off of 0.05, our approach was 

powered to detect pleiotropy with effect size 𝜇 as small as 2 and number of traits 𝜈 as small as 

10. With a more stringent P-value cutoff (P < 5 × 10-8, corresponding to the threshold for 

genome-wide significance), we could still detect pleiotropic variants with 𝜇 ≥ 3 and 𝜈 ≥ 20. As 

expected, both scores responded in the presence of horizontal pleiotropy, but the magnitude 

score 𝑃𝑚 was much more sensitive to effect size parameter 𝜇, while the number of traits score 

𝑃𝑛 responded similarly to perturbations of both parameters. Adding a realistic correlation 

structure between the traits neither caused any inflation of the false positive rate nor any loss of 

power to detect pleiotropy. Furthermore, the values of the score were very similar regardless of 

the presence or absence of correlation between the traits (Table S1). In contrast, the false 

positive rate was highly inflated when the decorrelation step was skipped in the presence of 

correlation (Table S2). 

Genome-Wide Pleiotropy Study (GWPS) reveals pervasive 

pleiotropy 

To apply our method to real human association data, we used GWAS association statistics for 

1,564 medical traits measured in 337,119 individuals from the UK Biobank. We successfully 

computed our two-component pleiotropy score for 767,095 variants genome-wide. Since we can 

compute P-values for our two-component pleiotropy score for every variant genome-wide, we 

were able to use our pleiotropy score to conduct a genome-wide pleiotropy study (GWPS), by 

analogy to a standard GWAS (Figure 1; Supplemental Information). 
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Figure S1 shows the resulting quantile-quantile plots (Q-Q plots). We observed significant 

inflation for both the magnitude score 𝑃𝑚 (𝜆𝐺𝐶 = 9.95) and the number of traits score 𝑃𝑛 (𝜆𝐺𝐶 = 

7.92). Furthermore, we observed across both scores that horizontal pleiotropy was widely 

distributed across the genome, rather than being localized to a few specific loci (Figure S2). 

Testing an alternative strategy for computing the phenotype-correlation matrix using a pruned 

set of SNVs (𝑟2 < 0.1) indicated comparable results (Pearson 𝑟 = 0.78 and 0.91 for 𝑃𝑚 and 𝑃𝑛 

respectively) to our strategy of using genetic correlations computed using all variants (Figure 

S3). Taken together, these observations point to a significant inflation of pleiotropy genome-

wide, affecting not only most of the functional loci detectable by GWAS, but also a very large 

number of loci with weak effects on many different traits. 

Pleiotropy is driven by linkage disequilibrium 

We next investigated the origins of this pervasive signal of pleiotropy. The naive model of 

pleiotropy is that certain specific variants affect multiple traits due to having multiple biological 

functions. However, it is likely that pleiotropy can also arise as a consequence of certain 

features of genetic architecture (Figure 1). One example of this is linkage disequilibrium (LD). 

Multiple variants in LD with each other that are causal to different traits will be associated with 

all of these traits, resulting in inflated association test statistics compared to the scenario where 

these variants are not in LD with each other. This results in the known phenomenon of LD 

inducing correlation in GWAS association statistics (Bulik-Sullivan et al., 2015a, 2015b). This 

situation may look indistinguishable from biological pleiotropy, where a single causal variant is 

associated with two or more traits, each through a separate biological pathway. We therefore 

hypothesize that our pleiotropy score may detect higher levels of pleiotropy in areas of high LD. 

To examine the contribution of LD to our pleiotropy score, we divided the genome into 15 equal-

sized bins of about 50,000 variants each based on LD score in European samples from the 

1000 Genomes Project (Bulik-Sullivan et al., 2015b) (Supplemental Information). We 

observed a strong relationship between LD score and inflation of the pleiotropy score, with 

stronger LD corresponding to higher levels of pleiotropy (Figure 2 a-b; Table S3). This 

demonstrates that LD drives a portion of our signal of widespread pleiotropy. Using an LD-

corrected version of our pleiotropy score (Supplemental Information) reduced the level of 

pleiotropy observed genome-wide, but we still observed substantial inflation in our pleiotropy 

score genome-wide (𝜆𝐺𝐶 = 5.99 for 𝑃𝑚 and 4.94 for 𝑃𝑛). 

Pleiotropy is driven by polygenicity 

Another feature of genetic architecture that may result in elevated pleiotropy is extreme 

polygenicity. For example, it has been estimated that approximately 100,000 independent loci 

are causal for height in humans (Boyle et al., 2017). If the total number of independent loci in 

the human genome is approximately 1 million, this corresponds to about 10% of the human 

genome having an effect on height. If we imagine multiple phenotypes with this same highly 

polygenic or omnigenic genetic architecture, we should expect substantial overlap between 

causal loci for multiple different traits, even in the absence of any true causal relationship 
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between the traits, resulting in horizontal pleiotropy. Using our simulation framework and our 

pleiotropy score, we tested this model and detected significant inflation of pleiotropy solely from 

including multiple extremely polygenic traits, without any specifically added pleiotropy (Table 

S4). This demonstrates that widespread horizontal pleiotropy is a consequence of extreme 

polygenicity amongst multiple phenotypes and that pleiotropy induced in this way is detected by 

our method. 

Similarly to our test for LD, to test whether polygenicity drives pleiotropy, we calculated the 

polygenicity of the same 1,564 traits from the UK Biobank for which LD score regression could 

be performed. We measured polygenicity using a version of the genomic inflation factor 

corrected using LD score 𝜆𝐺𝐶
𝑐  (Bulik-Sullivan et al., 2015b). We then used 𝜆𝐺𝐶

𝑐  to divide these 

1,564 traits into 15 equal-sized bins of about 100 traits each (Supplemental Information), and 

calculated the two-component pleiotropy score and P-values for each component independently 

for every variant in the genome using each of these bins of traits. We observed substantial 

inflation in both scores in the 8th through 15th high-polygenicity bins, corresponding to 35.56 ≥ 

𝜆𝐺𝐶
𝑐  > 2.04 (𝑃𝑚) and 24.25 ≥ 𝜆𝐺𝐶

𝑐  > 1.09 (𝑃𝑛), and lower inflation for traits with polygenicity below 

this level (Figure 2 c-d; Table S5). This suggests that extreme polygenicity drives pleiotropy as 

predicted by our simulations, and that this has a profound effect on the genetic architecture of 

human phenotypes.  

Genome-wide distribution of pleiotropy score gives insight into genetic 

architecture  

In addition to observing genome-wide inflation of the pleiotropy score, we can also gain insight 

from the distribution of the pleiotropy score on a more granular level. For a more accurate 

representation of pleiotropy, we limited our further analyses to only significantly heritable traits 

within the UK Biobank (heritability significant at Bonferroni-corrected cut-off P < 0.05/1,564), 

since association statistics for these traits are more likely to represent true biological 

associations. This left a total of 367 traits for analysis. Restricting in this way increased the 

inflation observed above for the LD-corrected pleiotropy score: 𝜆𝐺𝐶 = 14.55 for 𝑃𝑚 and 𝜆𝐺𝐶 = 

10.66 for 𝑃𝑛. 

Figure 3a shows the distribution of pleiotropy score for independent SNVs (LD pruned to a 

threshold of 𝑟2 < 0.1). The median variant has an LD-corrected 𝑃𝑛 score of 24.3 and an LD-

corrected 𝑃𝑚 score of 20.3. Under the null hypothesis that effects of SNVs on different traits are 

drawn from independent Gaussian distributions, we would expect a median 𝑃𝑛 score of 17.0 and 

a 𝑃𝑚 score of 19.1. This represents a large excess in the number of traits affected by each 

variant, and a smaller but still highly significant excess in total magnitude pleiotropic effect. This 

excess comes in part from a long tail of highly pleiotropic loci that pass the threshold of 

genome-wide significance (dashed line in Figure 3a), but is primarily driven by weak pleiotropy 

among loci that do not reach genome-wide significance. 

Pleiotropy score is correlated with molecular and biological 

function 
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To further investigate the properties of pleiotropic variants, we examined the effects of various 

functional and biochemical annotations on our pleiotropy score (Table 2; Supplemental 

Information). Using annotations from Ensembl Variant Effect Predictor (McLaren et al., 2016), 

we observed that both components of the pleiotropy score are higher on average in transcribed 

regions (coding and UTR) than in intergenic noncoding regions. This result was confirmed and 

expanded by annotations from Roadmap Epigenomics (Bernstein et al., 2010), which showed 

that regions whose chromatin configurations were associated with actively transcribed regions, 

promoters, enhancers, and transcription factor binding sites had significantly higher levels of 

both components of the pleiotropy score, while heterochromatin and quiescent chromatin states 

had significantly lower levels. Investigating individual histone marks, we found that both the 

repressive histone mark H3K27me3 and the activating histone mark H3K27ac were associated 

with elevated levels of pleiotropy, although the activating mark H3K27ac had a larger effect. 

This may indicate that being under active regulation at all indicates higher levels of pleiotropy, 

whether that regulation is repressive or activating.  

We also used data from the Genotype-Tissue Expression (GTEx Consortium et al., 2017) 

project to measure the connection between transcriptional effects and our pleiotropy score 

(Table 2). Consistent with the previous observation that functional regions had higher pleiotropy 

scores, we found that variants that were identified as cis-eQTLs for any gene in any tissue had 

higher pleiotropy scores on average. Within eQTLs, we also observed significant correlations 

between our pleiotropy score and the numbers of genes (𝑃𝑚: 𝑟 = 0.027, P = 5.7 × 10-13; 𝑃𝑛: 𝑟 = 

0.029, P = 1.2 × 10-14) and tissues (𝑃𝑚: 𝑟 = 0.051, P = 2.4 × 10-43; 𝑃𝑛: 𝑟 = 0.052, P = 4.9 × 10-44) 

where the variant was annotated as an eQTL, showing that our pleiotropy score is related to 

transcriptional measures of pleiotropy. Similarly, we found higher values of our pleiotropy score 

in eQTLs identified as master regulators (𝑃𝑚: +1.93 (±0.56), P = 5.62 × 10-4; 𝑃𝑛: +6.47 (±1.92), P 

= 7.82 × 10-4) (Tong et al., 2017).  

Finally, we used model organism phenotypes measured by the International Mouse 

Phenotyping Consortium (IMPC) (Dickinson et al., 2016) and the Saccharomyces Cerevisiae 

Morphological Database (SCMD) (Saito et al., 2004) to test whether our pleiotropy score 

predicts functional genes in model organisms. We found that variants that are eQTLs for genes 

whose orthologs are associated with multiple measurable phenotypes in mice or yeast have 

higher pleiotropy scores (𝑃𝑚: +0.18 (±0.04), P = 5.65 × 10-5; 𝑃𝑛: +0.75 (±0.17), P = 5.87 × 10-6 

for mouse; and 𝑃𝑚: +0.26 (±0.04), P = 1.56 × 10-12; 𝑃𝑛: +0.94 (±0.14), P = 5.31 × 10-12 for yeast). 

This indicates that our pleiotropy score is also related to pleiotropy in model organisms. 

Genome-wide pleiotropy study identifies novel biological loci  

Much as standard GWAS is used with a P-value threshold of 5 × 10-8 to find genome-wide 

significant associations, our GWPS methodology can identify individual variants that have a 

genome-wide significant level of horizontal pleiotropy, and therefore, extreme levels of 

horizontal pleiotropy. Using the LD-corrected number of traits score 𝑃𝑛 we identified 43,424 

variants in 6,645 independent loci with a genome-wide significant level of horizontal pleiotropy 

(Supplemental Information). The magnitude of pleiotropy score 𝑃𝑚 showed a larger number of 

significant loci (96,364 variants in N = 12,375 loci), indicating that these loci may have a 
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significant effect on only a few traits without being associated with an unexpectedly high number 

of traits (Table S6). Strikingly, about a third of loci for the number of traits score 𝑃𝑛 identified in 

this way (2,216 of 6,645) do not reach genome-wide significance for any of the 367 component 

traits used to calculate our pleiotropy score. Furthermore, a majority of these highly pleiotropic 

loci (4,234 of 6,645) have no entry in the NHGRI-EBI GWAS catalog, meaning that they have 

never been reported as an associated locus in any published GWAS. These loci represent an 

under-recognized class of genetic variation that has multiple weak to intermediate effects on 

many independent phenotypes, but no specific strong effect on any one particular trait. Given 

the lack of specific significant associations, it is difficult to characterize precisely which biological 

processes these may be. Functional enrichment analysis on genes overlapping these loci 

includes a wide range of biological functions, including genes involved in neurogenesis, 

synapse formation, and production and regulation of neurotransmitters; components of the 

cytoskeleton; transcription factors; and components of intracellular signaling cascades (Table 

S7). The role of these novel loci and these biological processes in human genetics and biology 

may be a fruitful area for future study, with the potential for biological discovery. 

Pleiotropic loci replicate in independent GWAS datasets 

As replication datasets, we used two additional sources of GWAS summary statistics to 

calculate our scores: previously published GWASs and meta-analyses for 82 human complex 

traits and diseases, which we collected and curated manually from the literature (Supplemental 

Information) (Verbanck et al., 2018); and a previously published study of 453 blood metabolites 

measured in 7,824 European adults (Shin et al., 2014). For all variants covered by the UK 

Biobank, we were able to compute our pleiotropy score independently using these two datasets 

(Figure 4). In general, we should expect only 5% of loci to replicate by chance in each 

replication dataset; however, it is possible that this number might increase because of 

polygenicity in the underlying GWAS statistics and the resulting inflation in our pleiotropy score, 

which causes substantially more than 5% of the genome to be assigned P < 0.05. To correct for 

this, we performed random permutations of the whitened Z-scores independently for each trait 

and used these permuted Z-scores to compute our LD-corrected pleiotropy score. This 

generates a null expectation that preserves the polygenicity and inflation within each dataset. 

Under this null model, we did indeed find that an inflated fraction of loci replicated; however, the 

fraction that replicated in the actual data was still substantially higher. In the traits and diseases 

dataset, our null model expected that 22% of 𝑃𝑚  loci and 15% of loci for 𝑃𝑛 should replicate; in 

the actual data, we found that 51% of 𝑃𝑚 loci and 42% of 𝑃𝑛 loci replicated. Likewise, in the 

blood metabolites dataset, our null model expected that 7% of 𝑃𝑚 loci and 9% of 𝑃𝑛 loci should 

replicate; in the actual data, we found that 11% of 𝑃𝑚 loci and 12% of 𝑃𝑛 loci replicated. This 

high level of replication using independent sets of GWAS summary statistics suggests that our 

pleiotropy score is capturing an underlying biological property, rather than an artifact of the UK 

Biobank study. 

Pleiotropic loci are enriched for specific complex traits and 

diseases 
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To characterize the phenotypic associations of these loci, we used our replication dataset of 

published GWAS summary statistics for 82 human quantitative traits and diseases 

(Supplementary Information). Figure 3c shows the correlation between our pleiotropy score 

and the association statistics for these 82 traits and diseases. The most strongly correlated 

traits were anthropometric traits like body mass index, waist and hip circumference, and height; 

certain blood lipid levels, including total cholesterol and triglycerides; childhood obesity, pubertal 

growth, schizophrenia, educational attainment, and age at menarche. These are all known to be 

highly polygenic and heterogeneous traits. The least correlated traits include several 

measurements of insulin sensitivity and glucose response, certain features of brain morphology, 

eating disorder, lipoprotein(a), and gout. This is likely due to low sample size of the 

corresponding GWASs. However, these correlations do not appear to be driven exclusively by 

sample size: in cases where multiple GWASs for the same trait have been performed on 

subsamples of the population (for example, males only, female only, and combined), the sample 

size only marginally affects the correlation (Table S8). 

Potential application to Genomic Medicine 

Our observation that horizontal pleiotropy is widespread has important clinical implications for 

genomic medicine, particularly in the areas of genome editing and drug target discovery and 

validation (Visscher and Yang, 2016). In genome editing, understanding the pleiotropic effects 

of corrected mutations can help to avoid unexpected secondary phenotypic effects. 

Furthermore, genetic associations have been shown to provide predictive evidence for main 

indications and adverse side effects for therapeutics in clinical trials (Nelson et al., 2015; 

Nguyen et al., 2018). To this end, we produced a catalogue of pleiotropic effects by gene using 

a combination of variants localized to each gene and variants controlling expression of each 

gene in any tissue. Using this catalogue, we observed a wide range of pleiotropy across all of 

the genes. Figure 3b lists the top ten genes and the genes scoring zero for each component of 

the pleiotropy score.  

As a case example of the clinical utility of such a catalogue, we restricted to a selected list of 

genes for coronary artery disease (CAD) (Dewey et al., 2017; Khera and Kathiresan, 2017; 

Stitziel et al., 2017) and type 2 diabetes (T2D) (Thomsen and Gloyn, 2017) that are current drug 

targets and have been shown to have prior human genetic evidence for these traits. We 

observed that these genes exhibited a range of levels of pleiotropy, with exceptionally high 

pleiotropy in the T2D drug targets PPARG, KCNJ11, and GCKR and substantially elevated 

pleiotropy in the CAD drug targets NPC1L1, ANGPTL4, and LPA, in addition to generally high 

horizontal pleiotropy across all genes (Table 3).  
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Discussion 

We have presented a framework for scoring horizontal pleiotropy across human genetic 

variation. In contrast to previous analyses, our framework explicitly distinguishes between 

horizontal pleiotropy and vertical pleiotropy or biological causation. This means that loci 

identified as pleiotropic by our analyses have effects on multiple biological processes which are 

themselves largely independent. After applying both components of our pleiotropy score to 367 

heritable medical traits from the UK Biobank, we made the following observations: 1) horizontal 

pleiotropy is pervasive and widely distributed across the genome; 2) horizontal pleiotropy is 

driven by LD; 3) horizontal pleiotropy is driven by extreme polygenicity of traits; 4) horizontal 

pleiotropy occurs predominantly amongst variants with weak effects on multiple traits, but no 

singular strong effect on any one trait; 5) horizontal pleiotropy is significantly enriched in actively 

transcribed regions and active regulatory regions, and is correlated with the number of genes 

and tissues for which the variant is an eQTL; 6) there are thousands of loci that exhibit extreme 

levels of horizontal pleiotropy, a majority of which have no previously reported associations; 7) 

pleiotropic loci are enriched in specific complex traits including body mass index, height and 

educational attainment; and 8) a number of drug target genes for coronary artery disease and 

type 2 diabetes have significant elevated levels of horizontal pleiotropy. 

Our findings are in keeping with several recent studies that have found abundant pleiotropy in 

the genome (Wang et al., 2010; Sivakumaran et al., 2011; Pickrell et al., 2016; Chesmore et al., 

2017; Kanai et al., 2018). Our pleiotropy score goes a step further than many of these studies 

by explicitly removing vertical pleiotropy between traits, which are indicative of fundamental 

biological relationships between traits (Bowden et al., 2017; Pickrell et al., 2016; Verbanck et al., 

2018). Furthermore, the current study has evaluated horizontal pleiotropy in human genetic 

variation at the genome-wide level whereas previous studies have focused on only a small 

subset of disease-associated variants identified from GWAS. Our results therefore suggest that 

there is substantial complexity and heterogeneity not only in causal relationships between 

human traits, but also in the genetic architecture of individual traits. 

Our findings have several important implications for the field of human genetics. First, our 

observation of ubiquitous horizontal pleiotropy is problematic for Mendelian Randomization 

(MR) methods, which assumes horizontal pleiotropy to be absent. Recent developments in the 

field of MR include methods that account for horizontal pleiotropy explicitly (Bowden et al., 2015, 

2017; Verbanck et al., 2018); our results reinforce the importance of these methods. Indeed, the 

presence of widespread horizontal pleiotropy suggests that single-instrument methods that 

independently account for every variant, each of which presumably has pleiotropic effects on 

many different distinct traits, should be considered in addition to multi-instrument methods for 

MR, which collapse many variants into a single polygenic score for analysis, and therefore treat 

all variants equivalently. 

Second, our results appear to support the “network pleiotropy” hypothesis of Boyle, Li, and 

Pritchard (Boyle et al., 2017), which proposes widespread pleiotropy driven by small 

perturbations of densely connected functional networks, where any perturbation in a relevant 
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cell type will have at least a small effect on all phenotypes affected by that cell type. Many of the 

functional enrichments we observe, including transcription factors, cytoskeleton, and 

intracellular signaling cascades, represent components that can plausibly influence a wide 

variety of cell types and processes, providing evidence for this model over one where a specific 

biological component is largely responsible for pleiotropy. Connected to this idea of network 

pleiotropy, Boyle, Li, and Pritchard propose an “omnigenic” model of genetic architecture, 

wherein traits are controlled by an extremely large number of genetic loci spread throughout the 

whole genome, with each trait being controlled by as many as 100,000 independent loci.  

While our results largely support this network pleiotropy hypothesis, we have also demonstrated 

an alternate view of horizontal pleiotropy in the context of highly polygenic causation. In our 

simulations, introducing extreme polygenicity at the levels suggested by Boyle, Li, and Pritchard 

inherently results in high levels of horizontal pleiotropy detectable by our score, independent of 

any assumptions about the mechanism of pleiotropy or of polygenicity. Indeed, our null 

hypothesis of no horizontal pleiotropy, that 5% of the genome is independently causal to each 

trait with P < 0.05 is trivially rejected when a single trait is influenced by an unexpectedly large 

fraction of the genome. This means that, on some level, widespread horizontal pleiotropy in 

human genetic variation is simply a logical consequence of widespread polygenicity of human 

traits, regardless of the specific mechanism of either. In simple terms, the more loci are 

associated with each trait, the more chances there are for associations with multiple traits to 

overlap. Supporting this result, we find that our signal of widespread horizontal pleiotropy is 

most pronounced in the most highly polygenic traits, and restricting to oligogenic traits 

significantly attenuates our signal. It may be the case that horizontal pleiotropy is only truly 

widespread among the most complex and polygenic subset of human traits. 

Third, we have identified thousands of novel pleiotropic loci, with extreme levels of horizontal 

pleiotropy but no previously known primary associations with any individual trait. Individually, 

each of these loci represents an understudied but biologically important gene or region, and 

functional investigation of the most highly pleiotropic of these novel is likely to reveal important 

unknown biology. As a group, they represent an under-recognized class of genetic variation 

exhibiting broad pleiotropy but weak primary effects. These loci are largely invisible to standard 

GWAS methodology, pointing to the need for GWAS methods that account for effects on 

multiple traits simultaneously (Maier et al., 2018; Turley et al., 2018). They also demonstrate an 

underappreciated fact about fine mapping of causal genes and variants, in both GWAS and 

traditional genetics: most currently-available tools for variant and gene prioritization, including 

CADD (Kircher et al., 2014), SIFT (Kumar et al., 2009), PolyPhen-2 (Adzhubei et al., 2013), 

phyloP (Pollard et al., 2010), and the ExAC and gnoMAD constraint scores (Lek et al., 2016), 

prioritize using signals of natural selection, under the assumption that natural selection is a good 

proxy for overall biological function. However, our results demonstrate that overall biological 

function is not necessarily a good proxy for any specific trait. On the contrary, many of the 

specific traits and diseases we examined show little correlation with pleiotropic biological 

function, and a majority of loci with high levels of pleiotropic biological function show no 

association with any specific trait. This demonstrates the need for caution when interpreting the 

output of these prioritization tools, and the need for trait-specific prioritization tools. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2018. ; https://doi.org/10.1101/311332doi: bioRxiv preprint 

https://doi.org/10.1101/311332
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Fourth and finally, it is now becoming common to use genetic associations, particularly from 

GWAS, to identify potential drug targets. There is substantial evidence that drug trials supported 

by genetic associations are more likely to succeed (Nelson et al., 2015; Nguyen et al., 2018); 

however, the fact that we are able to detect widespread horizontal pleiotropy using the same 

GWAS association summary statistics indicates that many drug targets supported by GWAS 

may have multiple off-target associations. Our score could potentially be useful as an additional 

screening step in drug development, to select drug targets with a smaller chance of having 

undesirable off-target effects. 

In this study, we have presented a quantitative score for horizontal pleiotropy in human genome 

variation. Using this score, we have identified a genome-wide trend of highly inflated levels of 

horizontal pleiotropy, an underappreciated relationship between horizontal pleiotropy with 

polygenicity, LD and functional biology, and a large number of specific novel loci with high levels 

of horizontal pleiotropy. We expect further investigations using this score to yield deep insights 

into the genetic architecture of human traits and to uncover important novel biology. 
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Figures 

Figure 1: Schematic of different types of pleiotropy (a-d) and two-component pleiotropy 

score method (e). 
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Previous studies distinguish between vertical pleiotropy (a), where effects on one trait are 

mediated through effects on another trait, and horizontal pleiotropy (b), where effects on 

multiple traits are independent. In this study, we also discuss linkage disequilibrium (LD)-

induced pleiotropy (c), where two linked SNVs have independent effects on different traits, and 

polygenicity-induced pleiotropy (d), where two highly polygenic traits have an overlap in their 

polygenic footprint. In panel e, we (i) collect association statistics from the UK Biobank, (ii) 

process them using Mahalanobis whitening, (iii) compute the two components of our pleiotropy 

score (Pm and Pn) based on the whitened association statistics, and (iv) use LD scores to 

correct for LD-induced pleiotropy.
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Figure 2: Quantile-quantile (Q-Q) plots showing the inflation of the pleiotropy score as a 

function of linkage disequilibrium (LD score) and polygenicity. 

 

In panels a (𝑃𝑚) and b (𝑃𝑛), variants are stratified into 15 batches of about 50,000 variants each 

by LD score, with light red representing low LD score and dark red representing high LD score. 

In panels c (𝑃𝑚) and d (𝑃𝑛), traits are stratified into 15 batches of about 100 traits each by 

polygenicity, as measured by corrected genomic inflation factor 𝜆𝐺𝐶
𝑐 , with light blue representing 

low polygenicity and dark blue representing high polygenicity. All panels show -log10 

transformed P-values. The black lines show the expected value under the null hypothesis.

a b 

c d 
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Figure 3: Distribution of the pleiotropy score among variants (a), genes (b), and traits (c). 
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Panel a shows the global distribution of 𝑃𝑚 (left) and 𝑃𝑛 (right) for the 762,847 tested variants. 

The expected distribution under the null hypothesis of no pleiotropy is shown in red and the 

observed distribution is shown in blue. The vertical line represents the value of the pleiotropy 

score corresponding to genome-wide significance (P < 5 × 10-8). 1,769 (𝑃𝑚) and 643 (𝑃𝑛) 

variants are not represented for the sake of clarity, because they have extreme values for the 

pleiotropy score. Panel b shows the distribution of the average pleiotropy score for coding 

variants in each gene for 𝑃𝑚 (left) and 𝑃𝑛 (right). The top ten genes are represented on the right 

side of the plots, whereas genes with a pleiotropy score of 0 are represented on the left side of 

the plots. Panel c shows correlation coefficients between the absolute value of Z-scores of 82 

complex traits and diseases and the pleiotropy score among variants that are genome-wide 

significant for the pleiotropy score (P < 5 × 10-8 for 𝑃𝑚 and 𝑃𝑛 respectively).
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Figure 4: Replication analysis for the genome-wide pleiotropy study. 

 

We used 367 UK Biobank heritable medical traits as our discovery dataset, and independent datasets of 82 complex traits and 

diseases and 453 blood metabolites as replication datasets. In each case, expected fraction of replication was empirically determined 

using a permutation analysis.
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Tables 

Table 1: False positive rate and power to detect horizontal pleiotropy in simulations. 

    
False positive rate Power 

Correlation % 

Pleiotropy 

Pleiotropy 

magnitude 

(𝝁) 

Pleiotropy 

number 

traits (𝝂) 

0.05 cut-off 5x10-8 cut-off 0.05 cut-off 5x10-8 cut-off 

𝑷𝒎 𝑷𝒏 𝑷𝒎 𝑷𝒏 𝑷𝒎 𝑷𝒏 𝑷𝒎 𝑷𝒏 

No 0 0 0 5.00 8.59 6.25x10-6 8.75x10-6 - - - - 

No 0.1 2 10 5.00 8.59 6.26x10-6 1.25x10-5 79.08 72.81 0.45 0.04 

No 0.1 3 10 5.00 8.59 5.01x10-6 7.51x10-6 99.91 99.14 41.27 0.81 

No 1 2 20 5.00 8.59 3.79x10-6 1.14x10-5 99.64 98.65 25.79 5.04 

No 1 3 20 5.00 8.59 3.79x10-6 1.39x10-5 100 100 99.90 78.83 

Yes 0 0 0 5.00 8.59 5.00x10-6 8.75x10-6 - - - - 

Yes 0.1 2 10 5.00 8.59 3.75x10-6 1.00x10-5 79.40 71.82 0.44 0.06 

Yes 0.1 3 10 5.00 8.59 1.25x10-5 1.88x10-5 99.91 99.03 41.20 3.77 

Yes 1 2 20 5.00 8.60 3.79x10-6 5.05x10-6 99.63 98.24 25.74 5.63 

Yes 1 3 20 5.00 8.60 5.05x10-6 1.39x10-5 100 100 99.89 83.83 

We simulate ten scenarios, varying (i) the presence or absence of a correlation structure, (ii) the fraction of variants with pleiotropic 

effects, (iii) the number of traits ν affected by a pleiotropic variant, and (iv) the mean magnitude μ of pleiotropic effects. Using both 

nominal significance (P < 0.05) and genome-wide significance (P < 5 × 10-8) cutoffs, our two-component pleiotropy score has 

controlled false positive rates and is well-powered to detect horizontal pleiotropy under all scenarios.  
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Table 2: Functional enrichment analysis of pleiotropy score. 

   

𝑷𝒎 𝑷𝒏 

Variant effect 

predictor 

UTR +0.75 (±0.03); P = 2.82x10-178 +2.86 (±0.1); P = 1.87x10-186 

coding synonymous +0.61 (±0.04); P = 3.25x10-50 +2.26 (±0.15); P = 2.11x10-49 

non synonymous +0.51 (±0.04); P = 2.37x10-44 +1.83 (±0.14); P = 5.59x10-41 

Roadmap 

H327ac +0.62 (±0.01); P < 10-308 +2.3 (±0.02); P < 10-308 

H3K27me3 +0.06 (±0.01); P = 9.98x10-15 +0.09 (±0.03); P = 2.6x10-3 

Active TSS +0.64 (±0.06); P = 9.32x10-27 +2.46 (±0.21); P = 8.9x10-31 

Promoter 

Promoter Upstream TSS +0.51 (±0.02); P = 1.51x10-97 +1.87 (±0.09); P = 7.45x10-92 

Promoter Downstream TSS 1 +1.07 (±0.04); P = 4.24x10-155 +4 (±0.14); P = 6.3x10-169 

Promoter Downstream TSS 2 +0.95 (±0.04); P = 2.45x10-160 +3.61 (±0.13); P = 8.86x10-173 

Transcription 

Transcribed - 5' preferential +0.95 (±0.02); P < 10-308 +3.73 (±0.06); P < 10-308 

Strong transcription +1.11 (±0.02); P < 10-308 +4.37 (±0.08); P < 10-308 

Transcribed - 3' preferential +0.88 (±0.01); P < 10-308 +3.44 (±0.05); P < 10-308 

Weak transcription +0.68 (±0.01); P < 10-308 +2.59 (±0.03); P < 10-308 

Transcription 

& regulation 

Transcribed & regulatory 

(Prom/Enh) 
+1.07 (±0.02); P < 10-308 +4.16 (±0.08); P < 10-308 

Transcribed 5' preferential and 

Enh 
+1.06 (±0.02); P < 10-308 +4.09 (±0.07); P < 10-308 
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Transcribed 3' preferential and 

Enh 
+0.99 (±0.02); P < 10-308 +3.83 (±0.08); P < 10-308 

Transcribed and Weak Enhancer +1.02 (±0.02); P < 10-308 +4.04 (±0.07); P < 10-308 

Active 

enhancer 

Active Enhancer 1 +0.39 (±0.01); P = 5.32x10-209 +1.38 (±0.05); P = 5.7x10-182 

Active Enhancer 2 +0.33 (±0.01); P = 8.97x10-220 +1.16 (±0.04); P = 1.29x10-184 

Active Enhancer Flank +0.34 (±0.01); P = 1.86x10-247 +1.23 (±0.04); P = 5.28x10-226 

Weak 

enhancer 

Weak Enhancer 1 +0.19 (±0.01); P = 3.42x10-56 +0.63 (±0.04); P = 1.04x10-44 

Weak Enhancer 2 +0.28 (±0.01); P = 8.45x10-305 +1.01 (±0.03); P = 4.32x10-268 

Primary H3K27ac possible 

Enhancer 
+0.31 (±0.01); P = 5.83x10-204 +1.08 (±0.04); P = 2.72x10-172 

Primary DNase +0.12 (±0.01); P = 1.08x10-27 +0.35 (±0.04); P = 2.04x10-18 

ZNF genes & repeats +0.2 (±0.05); P = 4.03x10-5 +0.79 (±0.19); P = 2.6x10-5 

Heterochromatin -0.72 (±0.02); P < 10-308 -2.89 (±0.07); P < 10-308 

Poised Promoter +0.13 (±0.01); P = 4.38x10-22 +0.41 (±0.05); P = 1.51x10-15 

Bivalent Promoter +0.61 (±0.03); P = 1.45x10-85 +2.29 (±0.12); P = 1.16x10-83 

Repressed Polycomb +0.12 (±0.01); P = 2.53x10-26 +0.34 (±0.04); P = 8.18x10-15 

Quiescent/Low -1.25 (±0.01); P < 10-308 -5.01 (±0.04); P < 10-308 

GTEx - number 

of genes the 

eGenes<10 +0.31 (±0.01); P = 4.61x10-119 +1.11 (±0.05); P = 9.55x10-104 

eGenes>10 & <15 +0.48 (±0.03); P = 2.16x10-57 +1.77 (±0.11); P = 2.24x10-53 
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variant is an 

eQTL for 

eGenes>15 & <20 +0.91 (±0.07); P = 2.12x10-35 +3.59 (±0.28); P = 2.95x10-37 

eGenes>20 +2.37 (±0.22); P = 1.31x10-27 +8.53 (±0.83); P = 1.32x10-24 

GTEx - number 

of tissues the 

variant is an 

eQTL for 

eTissue<30 +0.28 (±0.01); P = 7.87x10-92 +0.98 (±0.05); P = 5.42x10-79 

eTissue>30 & <35 +0.59 (±0.03); P = 6.98x10-118 +2.17 (±0.1); P = 6.6x10-110 

eTssue>35 & <40 +1.1 (±0.07); P = 8.56x10-61 +4.31 (±0.26); P = 1.26x10-63 

eTissue>40 +1.2 (±0.17); P = 1.65x10-12 +3.79 (±0.65); P = 6.43x10-9 

Tong et al. 
eVariant +0.87 (±0.15); P = 7.01x10-9 +2.86 (±0.51); P = 3.29x10-8 

Master eVariant +1.93 (±0.56); P = 5.62x10-4 +6.47 (±1.92); P = 7.82x10-4 

International 

Mouse 

Phenotyping 

Consortium 

Phenotypes > 1 +0.18 (±0.04); P = 5.65x10-5 +0.75 (±0.17); P = 5.87x10-6 

Saccharomyces 

cerevisiae 

Morphological 

Database  

Phenotypes > 1 +0.26 (±0.04); P = 1.56x10-12 +0.94 (±0.14); P = 5.31x10-12 

We grouped variants by (i) molecular function as annotated by Ensembl, (ii) predicted chromatin state as annotated by the NIH 

Roadmap Epigenomics Project, (iii) transcriptional effects as annotated by the NIH Genotype-Tissue Expression (GTex) Project, and 

(iv) effects on model organism phenotypes as annotated by the International Mouse Phenotyping Consortium (IMPC) and 

Saccharomyces Cerevisiae Morphological Database (SCMD). For each grouping, we computed the mean LD-corrected pleiotropy 

score and used a two-sample Student’s t-test to determine whether the mean was significantly different from the baseline. We found 

(i) that coding regions have higher pleiotropy scores than noncoding regions, (ii) that active promoters and enhancers have the 

highest pleiotropy scores and quiescent and heterochromatin have the lowest, (iii) that variants that control expression of more genes 
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in more tissues have higher pleiotropy scores, and (iv) that genes associated with more than one model organism phenotype have 

higher pleiotropy scores.
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Table 3: Pleiotropy score for a selection of medically relevant genes for coronary artery disease and type 2 diabetes. 

Gene Original Trait 

# of 

variants 

Average 

𝑷𝒎 Score 

P-value 

for 𝑷𝒎 

Average 

𝑷𝒏 Score 

P-value 

for 𝑷𝒏 

PCSK9 Coronary Artery Disease 11 22.23 1.0x10-5 31.13 4.2x10-4 

NPC1L1 Coronary Artery Disease 7 22.70 5.0x10-7 31.43 4.2x10-4 

APOC3 Coronary Artery Disease 1 21.57 3.7x10-4 29.87 1.5x10-3 

ANGPTL4 Coronary Artery Disease 2 22.92 1.1x10-7 33.86 1.0x10-4 

LPA Coronary Artery Disease 27 23.02 5.1x10-8 34.13 4.8x10-5 

ANGPTL3 Coronary Artery Disease 5 26.18 1.4x10-21 30.82 8.2x10-4 

PPARG Type 2 Diabetes 76 26.13 2.6x10-21 44.62 4.7x10-9 

KCNJ11 Type 2 Diabetes 14 26.00 1.4x10-20 46.24 5.4x10-10 

ABCC8 Type 2 Diabetes 60 22.45 2.6x10-6 32.50 2.1x10-4 

SLC30A8 Type 2 Diabetes 75 21.43 7.4x10-4 27.54 4.7x10-3 

GCK Type 2 Diabetes 17 22.30 6.5x10-6 32.52 2.1x10-4 

GCKR Type 2 Diabetes 10 32.96 2.7x10-72 62.30 5.8x10-19 

SGLT2 Type 2 Diabetes 5 21.44 7.0x10-4 24.36 1.9x10-2 

PTEN Type 2 Diabetes 9 23.64 3.8x10-10 37.78 4.1x10-6 

We selected genes for coronary artery disease and type 2 diabetes that are current drug targets and have been shown to have prior 

human genetic evidence for these traits. We measured the pleiotropy score of variants located in these genes and/or annotated as 
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eQTLs for these genes. These genes exhibit a range of pleiotropy scores, but all are higher than expected under the null hypothesis 

of no pleiotropy. 
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