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Abstract 22 

Horizontal pleiotropy, where one variant has independent effects on multiple traits, is important 23 

for our understanding of the genetic architecture of human phenotypes. We developed a 24 

method to quantify horizontal pleiotropy using genome-wide association summary statistics and 25 

applied it to 372 heritable phenotypes measured in 361,194 UK Biobank individuals. We 26 

observed horizontal pleiotropy is: 1) pervasive throughout the human genome; 2) especially 27 

prominent among highly polygenic phenotypes; 3) detected in 24,968 variants in 7,831 loci; and 28 

4) enriched in active regulatory regions. Our results highlight the central role horizontal 29 

pleiotropy plays in the genetic architecture of human phenotypes.  30 

Keywords 31 
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Background 33 

The term “pleiotropy” refers to a single genetic variant having multiple distinct phenotypic 34 

effects. In general terms, the existence and extent of pleiotropy has far-reaching implications on 35 

our understanding of how genotypes map to phenotypes (1), of the genetic architectures of 36 

traits (2,3), of the biology underlying common diseases (4) and of the dynamics of natural 37 

selection (5). However, beyond this general idea of the importance of pleiotropy, it quickly 38 

becomes difficult to discuss in specifics, because of the difficulty in defining what counts as a 39 

direct causal effect and what counts as a separate phenotypic effect.  40 

One particularly important dividing line in these conflicting definitions is the distinction between 41 

vertical pleiotropy and horizontal pleiotropy (6,7). When a genetic variant has a phenotypic 42 

effect that then has its own downstream effects in turn, that variant exhibits “vertical” pleiotropy. 43 
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For example, a variant that increases low density lipoprotein (LDL) cholesterol might also have 44 

an additional corresponding effect on coronary artery disease risk due to the causal relationship 45 

between these two traits, thus exhibiting vertical pleiotropy. Vertical pleiotropy has been 46 

conceptualized and measured by explicit genetic methods like Mendelian randomization. 47 

In contrast, a genetic cause that directly influences multiple traits, without one trait being 48 

mediated by another, would exhibit “horizontal” pleiotropy. Horizontal pleiotropy contains some 49 

conceptual difficulties, and consequently can be difficult to measure. In principle, we might 50 

imagine selecting a variant and counting how many phenotypes are associated with it. Indeed, 51 

several versions of this analysis have been performed for different lists of traits (8,2,3,9). 52 

However, the results of these analyses are highly dependent on the exact list of traits used, and 53 

traits of interest to researchers previously tend to involve only a small number of phenotypes 54 

and/or be heavily biased towards a small set of disease-relevant biological systems and 55 

processes. Due to these limitations, it is unknown to what extent horizontal pleiotropy affects 56 

genetic variation in the human genome at the genome-wide level. 57 

The proliferation of data sources like large-scale biobanks and metabolomics data that include a 58 

wide array of phenotypes in one dataset, combined with the growing public availability of 59 

genome-wide association studies (GWASs) summary statistic data, especially for extremely 60 

large meta-analyses, has allowed the development of methods that use these summary 61 

statistics to gain insight into human biology, and particularly into the genetic architecture of 62 

complex traits and diseases (10).  63 

Here, we present a method to measure horizontal pleiotropy using publicly available GWAS 64 

summary statistics. We focus on measuring horizontal pleiotropy of SNVs on observable traits, 65 

meaning a scenario where a single SNV affects multiple phenotypes without relying on a 66 

detectable causal relationship between those phenotypes. Using this framework, we are able to 67 
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score each SNV in the human genome for horizontal pleiotropy, giving us broad insight into the 68 

genetic architecture of pleiotropy. Because our framework explicitly removes correlations 69 

between the input phenotypes, and because these phenotypes represent a diverse array of 70 

traits and diseases, these insights are largely robust to the specific list of traits studied, and 71 

pertain to human biology overall rather than relationships between specific traits.  72 

Results 73 

Defining pleiotropy 74 

We narrowly define the scope of pleiotropy as applying only to genetic variants, and particularly 75 

variants investigated as part of GWASs. As effects, we are considering phenotypic outcomes 76 

measured by GWASs. By our definition, then, pleiotropy means that one variant shows 77 

significant associations across GWASs of multiple traits. We additionally restrict the scope of 78 

pleiotropy we are considering to include only horizontal pleiotropy, and to exclude vertical 79 

pleiotropy (Figure 1). To elaborate on this distinction, suppose we have identified a variant that 80 

influences two different traits, trait A and trait B. In vertical pleiotropy, the traits themselves are 81 

biologically related, so that the variant’s effect on trait A actually causes the effect on trait B. A 82 

key feature of vertical pleiotropy is that two traits that are biologically related should be related 83 

regardless of which specific gene or variant is causing the effect. This induces correlation 84 

between GWAS effect sizes on the two traits across an entire set of variants. For example, we 85 

expect that any variant that increases LDL cholesterol also increases risk of coronary artery 86 

disease, because we suspect that it is the increase in LDL cholesterol itself that causes 87 

increased disease risk. This results in a correlation between variant effect sizes for LDL 88 

cholesterol and coronary artery disease, which has been detected in multiple studies (11–13). 89 

The methodology of Mendelian Randomization uses this predicted correlation within a given set 90 
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of variants to formulate a statistical test for causal relationships among traits, which is now 91 

widely used for biological discovery (14,15). We extend this methodology to use the entire set of 92 

SNVs evaluated by GWAS, treating a GWAS-wide correlation between two traits as evidence of 93 

a vertical pleiotropic relationship between these traits. 94 

In the case of horizontal pleiotropy, an individual variant acts on traits A and B without mirroring 95 

any trait-level relationship between them. Unlike vertical pleiotropy, since we are not considering 96 

the variant-level effect as evidence of a relationship between the two traits, we cannot detect 97 

horizontal pleiotropy by detecting correlations between traits. Instead, each horizontally 98 

pleiotropic variant acts by its own unique mechanism. These particular pleiotropic variants, 99 

therefore, should show a relationship between the two traits that deviates from the relationship 100 

we would infer from the genome-wide correlation of effect sizes between them. This deviation 101 

from the correlation between traits is not a prediction of any kind of model of pleiotropy, but 102 

simply follows from our definition of the term “horizontal pleiotropy”: any pair of traits whose 103 

effect sizes are correlated across all variants is by definition related by vertical pleiotropy, while 104 

any variant whose effects on two traits substantially deviate from the trait-level relationship 105 

between those traits is by definition exhibiting horizontal pleiotropy. 106 

A quantitative score for pleiotropy 107 

We have developed a method to measure horizontal pleiotropy using summary statistics data 108 

from GWASs on multiple traits. Our method relies on applying a statistical whitening procedure 109 

to a set of input variant-trait associations, which removes correlations between traits caused by 110 

vertical pleiotropy and normalizes effect sizes across all traits. Using the decorrelated 111 

association Z-scores, we measure two related but distinct components of pleiotropy: the total 112 

magnitude of effect on whitened traits (“magnitude” score, denoted ��) and the total number of 113 

whitened traits affected by a variant (“number of traits” score, denoted ���. Both scores are then 114 
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scaled by the number of traits and multiplied by 100, so that the final score represents the value 115 

as it would be measured in a dataset of 100 traits. This two-component quantitative pleiotropy 116 

score allows us to measure both the magnitude (pleiotropy magnitude score ��) and quantity 117 

(pleiotropy number of traits score ��) of horizontal pleiotropy for all SNVs in the human genome. 118 

In principle these are distinct quantities: the magnitude score �� measures the total pleiotropic 119 

effect size of a variant across all traits, while the number of traits score �� measures the number 120 

of distinct pleiotropic effects a variant has. A variant with a high �� score and a low �� score has 121 

a large effect spread over a small number of traits; a variant with a low �� score and a high �� 122 

score has only a minor effect overall, but that effect is spread out across a large number of 123 

traits; and a variant with high scores on both components has a large effect that is spread 124 

across a large number of traits. Since we expect these scores to be heavily influenced by 125 

linkage disequilibrium (LD), we regress �� and �� against LD scores to produce an LD-126 

corrected score (��
�� and ��

��) (Figures 2, 3; Methods). 127 

Calculating significance of pleiotropy 128 

We compute P-values for the two components of our pleiotropy score using two different 129 

procedures, corresponding to two different null expectations. 130 

1. Theoretical P-values (Raw pleiotropy score [�� and ��] or LD-corrected pleiotropy score 131 

[��
�� and ��

���), calculated analogously to P-values for genetic association studies 132 

including GWAS, based on a null scenario where variants do not exhibit pleiotropic 133 

effects on observed traits.  134 

2. Empirical P-values (Polygenicity/LD-corrected pleiotropy score [��
� and ��

�]), calculated 135 

by permutation of the observed distributions of whitened traits. These P-values are 136 

based on a null scenario where variants may have significant effects on one or more 137 
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traits, but the effects of each variant on each trait are independent and the number of 138 

variants with effects on multiple traits is no more than would be expected by chance. 139 

This empirical correction for polygenicity is required because polygenicity is a major factor that 140 

can produce pleiotropy. For example, it has been estimated that approximately 100,000 141 

independent loci are causal for height in humans (16). If the total number of independent loci in 142 

the human genome is approximately 1 million, this corresponds to about 10% of the human 143 

genome having an effect on height. If we imagine multiple phenotypes with this same highly 144 

polygenic genetic architecture, we should expect substantial overlap between causal loci for 145 

multiple different traits, even in the absence of any true causal relationship between the traits, 146 

resulting in horizontal pleiotropy (Figure 2).  147 

Power to detect pleiotropy in simulations 148 

We conducted a simulation study to evaluate the performance of our two-component pleiotropy 149 

score. We simulated 800,000 variants controlling 100 traits, varying the per-trait liability scale 150 

heritability of all traits �� and the proportion of pleiotropic and non-pleiotropic causal variants. To 151 

introduce LD in the simulations, we used real LD architecture from 800000 SNVs from 1000 152 

Genomes European population. We simulated Z-scores independently for each SNV and then 153 

propagate LD for a given SNV by “contaminating” its Z-score according to the Z-scores of the 154 

SNVs in LD with it. Under the null model, all trait-variant associations were independent, and no 155 

horizontal pleiotropy was added. Under the added-pleiotropy models, we randomly chose a 156 

fraction of causal variants and forced them to have simultaneous associations with multiple 157 

traits. The simulation study showed that both components of the pleiotropy score were well-158 

powered to detect horizontal pleiotropy (Figure 4), and that the LD correction dramatically 159 

reduces the dependence of the pleiotropy score on LD (Supplementary Figure 1). Under the 160 

null hypothesis of no added horizontal pleiotropy, the false positive rate was well controlled for 161 
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both scores when there was low heritability or few causal variants. However, when there are 162 

many causal variants and high per-variant heritability, the LD-corrected pleiotropy score (��
�	 163 

and �

�	) detects a large excess of pleiotropic variants, due to serendipitous overlap between 164 

causal variants without explicitly induced pleiotropy. The LD/polygenicity-corrected empirical P-165 

value (��
�  and �


�) does not detect this serendipitous pleiotropy at the same high rate. 166 

In the presence of added horizontal pleiotropy, our approach was powered to detect pleiotropy 167 

with per-variant heritability �� as small as 0.002 if there are no non-pleiotropic causal variants. 168 

In the presence of both pleiotropic and non-pleiotropic causal variants, detecting pleiotropy was 169 

more difficult, but our approach still had appreciable power to detect pleiotropic variants, which 170 

increased with increasing per-variant heritability and decreased with increasing numbers of non-171 

pleiotropic causal variants. Adding the correction for polygenic architecture (��
�  and �


�) 172 

reduced this power only slightly. The power of our method was not substantially reduced by 173 

increasing the number of traits affected by pleiotropic variants (Supplementary Figure 2) or by 174 

adding a realistic correlation structure between the traits (Supplementary Figure 3).  175 

Genome-Wide Pleiotropy Study (GWPS) reveals pervasive 176 

pleiotropy 177 

To apply our method to real human association data, we used GWAS association statistics for 178 

372 heritable medical traits measured in 337,119 individuals from the UK Biobank (17–19) . We 179 

successfully computed our two-component pleiotropy score for 767,057 variants genome-wide 180 

and conducted a genome-wide pleiotropy study (GWPS), by analogy to a standard GWAS 181 

(Figure 3; Methods). Supplementary Figure 4 shows the resulting quantile-quantile plots (Q-Q 182 

plots). We observed significant inflation for both the LD-corrected magnitude score ��
�� and 183 

number of traits score ��
�� (Mann-Whitney U test � � 10��� for both). Furthermore, we 184 
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observed across both scores that horizontal pleiotropy was widely distributed across the 185 

genome, rather than being localized to a few specific loci (Supplementary Figure 5). Testing 186 

an alternative strategy for computing the phenotype-correlation matrix using all SNVs produced 187 

comparable results (Pearson � = 0.995 and 0.964 for ��
�� and ��

�� respectively) to our strategy 188 

of using a pruned set of SNVs to account for LD (�� < 0.1) (Supplementary Figure 6).  189 

Pleiotropy is driven by polygenicity 190 

We applied the permutation-based empirical P-value calculation (Polygenicity/LD-corrected 191 

pleiotropy score: ��
�  and ��

�) to correct for the known polygenic architecture of traits and test 192 

whether any loci are pleiotropic to a greater extent than would be expected due to polygenicity. 193 

Supplementary Figures 7 and 8 show the resulting Q-Q plots and Manhattan plots. In contrast 194 

to the results from the LD-corrected pleiotropy score (��
��  and ��

��), we do not find pleiotropy 195 

significantly in excess of what would be expected from the known polygenic architecture of 196 

traits: there are dramatically fewer loci with genome-wide significant levels of pleiotropy after 197 

correcting for polygenic architecture, and the genome-wide distribution of pleiotropy score 198 

shows less pleiotropy than expected (Mann-Whitney U test � � 10��� for both ��
�  and ��

�). 199 

As an additional test of whether the pleiotropy we observe is driven by polygenicity, we 200 

calculated the polygenicity of the same 372 heritable traits from the UK Biobank. We measured 201 

polygenicity using a version of the genomic inflation factor corrected using LD score 
��
�  (20). 202 

We then stratified these traits by 
��
�  after controlling for heritability (Methods), and calculated 203 

the two-component LD-corrected pleiotropy score [��
��  and ��

���) and P-values for each 204 

component independently for every variant in the genome using each of these bins of traits. We 205 

observed that both scores are highly dependent on polygenicity, with the lowest-polygenicity 206 

bins in each heritability class showing very little inflation. (Figure 5; Supplementary Table 1). 207 
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Taken together, these results suggest that extreme polygenicity drives horizontal pleiotropy, and 208 

that this has an extremely large effect on the genetic architecture of human phenotypes.  209 

Genome-wide distribution of pleiotropy score gives insight into 210 

genetic architecture  211 

In addition to observing genome-wide inflation of the pleiotropy score, we can also gain insight 212 

from the distribution of the pleiotropy score on a more granular level.  213 

Figure 6a shows the distribution of pleiotropy score for independent SNVs (LD pruned to a 214 

threshold of �� < 0.1) compared to the expectation under the null hypothesis of no pleiotropic 215 

effect. We observe a large excess in the number of traits score ��
��, and a smaller but still highly 216 

significant excess in total magnitude of pleiotropic effect ��
��. This excess comes in part from a 217 

long tail of highly pleiotropic loci that pass the threshold of genome-wide significance (dashed 218 

line in Figure 6a), but is primarily driven by weak pleiotropy among loci that do not reach 219 

genome-wide significance.  220 

Pleiotropy score is correlated with molecular and biological 221 

function 222 

To further investigate the properties of pleiotropic variants, we examined the effects of various 223 

functional and biochemical annotations on our LD-corrected pleiotropy score (��
��  and ��

��) 224 

(Table 1; Methods). Using annotations from Ensembl Variant Effect Predictor (21), we 225 

observed that both components of the pleiotropy score are higher on average in transcribed 226 

regions (coding and UTR) than in intergenic noncoding regions. This result was confirmed and 227 

expanded by annotations from Roadmap Epigenomics (22), which showed that regions whose 228 

chromatin configurations were associated with actively transcribed regions, promoters, 229 

enhancers, and transcription factor binding sites had significantly higher levels of both 230 

components of the pleiotropy score, while heterochromatin and quiescent chromatin states had 231 
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significantly lower levels. Investigating individual histone marks, we found that both the 232 

repressive histone mark H3K27me3 and the activating histone mark H3K27ac were associated 233 

with elevated levels of pleiotropy, although the activating mark H3K27ac had a larger effect. 234 

This may indicate that being under active regulation at all produces higher levels of pleiotropy, 235 

whether that regulation is repressive or activating.  236 

We also used data from the Genotype-Tissue Expression (23) project to measure the 237 

connection between transcriptional effects and our pleiotropy score (Table 1). Consistent with 238 

the previous observation that functional regions had higher pleiotropy scores, we found that 239 

variants that were identified as cis-eQTLs for any gene in any tissue had higher pleiotropy 240 

scores on average. Within eQTLs, we also observed significant correlations between our 241 

pleiotropy score and the numbers of genes (��
��: � = 0.036, P < 2.2 × 10-16; ��

��: � = 0.035, P < 242 

2.2 × 10-16) and tissues (��
��: � = 0.062, P < 2.2 × 10-16; ��

��: � = 0.059, P < 2.2 × 10-16) where 243 

the variant was annotated as an eQTL, showing that our pleiotropy score is related to 244 

transcriptional measures of pleiotropy.  245 

Finally, we found that variants that are eQTLs for genes whose orthologs are associated with 246 

multiple measurable phenotypes in mice or yeast have higher pleiotropy scores, demonstrating 247 

that our pleiotropy score is also related to pleiotropy in model organisms.  248 

All these results are consistent when using the Polygenicity/LD-corrected pleiotropy score 249 

(��
�  and ��

��, indicating that the association of pleiotropy with molecular and biological function is 250 

not exclusively driven by highly polygenic architecture (Additional File 1).  251 

Genome-wide pleiotropy study identifies novel biological loci  252 

By analogy to standard GWAS, our GWPS methodology can identify individual variants that 253 

have a genome-wide significant level of horizontal pleiotropy. Using the LD-corrected magnitude 254 
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score ��
��, we identified 74,335 variants in 8,093 independent loci with a genome-wide 255 

significant level of horizontal pleiotropy, while using the LD-corrected number of traits score 256 

��
��  identified 18,393 variants in 2,859 independent loci with a genome-wide significant level of 257 

horizontal pleiotropy, all of which are also identified by the LD-corrected magnitude score ��
�� 258 

(Methods, Supplementary Table 2). Applying the same analysis to the Polygenicity/LD-259 

corrected pleiotropy score, using the Polygenicity/LD-corrected magnitude score ��
� identified 260 

no genome-wide significant loci, but using the Polygenicity/LD-corrected number of traits score 261 

��
� identified 2,674 variants in 432 loci. Strikingly, a majority of loci significant in ��

��  (1,519 of 262 

2,859) or ��
� (294 of 432), along with a sizeable minority of loci significant in ��

�� (2,934 of 263 

8,093), have no entry in the NHGRI-EBI GWAS catalog, meaning that they have never been 264 

reported as an associated locus in any published GWAS. These loci represent an under-265 

recognized class of genetic variation that has multiple weak to intermediate effects that are 266 

collectively significant, but no specific strong effect on any one particular trait. Functional 267 

enrichment analysis on genes near these genome-wide significant loci implicates a wide range 268 

of biological functions, including cell adhesion, post-translational modification of proteins, 269 

cytoskeleton, transcription factors, and intracellular signaling cascades (Additional File 2). Loci 270 

significant in ��
� show a more focused subset of functions, with a greater role for nuclear 271 

proteins regulating transcription and chromatin state, suggesting that these are the functions 272 

that exhibit horizontal pleiotropy beyond the baseline level induced by polygenicity. The role of 273 

these novel loci and these biological processes in human genetics and biology may be a fruitful 274 

area for future study, with the potential for biological discovery. 275 

Pleiotropic loci replicate in independent GWAS datasets 276 

As replication datasets, we used two additional sources of GWAS summary statistics to 277 

calculate our LD-corrected pleiotropy score (��
��  and ��

��): previously published GWASs and 278 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/311332doi: bioRxiv preprint 

https://doi.org/10.1101/311332
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 
 

meta-analyses for 73 human complex traits and diseases, which we collected and curated 279 

manually from the literature (Methods, Supplementary Table 3) (24); and a previously 280 

published study of 430 blood metabolites measured in 7,824 European adults (25). For all 281 

variants covered by the UK Biobank, we were able to compute our pleiotropy score 282 

independently using these two datasets (Figure 7). In the traits and diseases dataset, we 283 

observed that 57% of ��
�� loci and 38% of ��

�� loci replicated, while in the blood metabolites 284 

dataset, we observed that 17% of ��
�� loci and 12% of ��

�� loci replicated, compared to 5% of 285 

��
�� loci and 6% of ��

�� loci expected by chance according to a permutation-based null model. 286 

This high level of replication using independent sets of GWAS summary statistics suggests that 287 

our pleiotropy score is capturing an underlying biological property, rather than an artifact of the 288 

UK Biobank study. 289 

Pleiotropy is correlated with specific complex traits and diseases 290 

To characterize the phenotypic associations of these loci, we used our replication dataset of 291 

published GWAS summary statistics for 73 human quantitative traits and diseases, plus nine 292 

additional traits we excluded from our replication dataset for a total of 82 (Methods). We are not 293 

able to compute directly the degree of pleiotropy exhibited by these traits, since our definition of 294 

horizontal pleiotropy applies only to individual variants and does not apply to traits. However, we 295 

can identify traits whose GWAS variant associations are correlated to our pleiotropy score, 296 

which in some sense represents the traits that contribute most to our signal of pervasive 297 

horizontal pleiotropy. Figure 6c shows the correlations between our LD-corrected pleiotropy 298 

score (��
��  and ��

��) and the association statistics for these 82 traits and diseases. The most 299 

strongly correlated traits were anthropometric traits like body mass index, waist and hip 300 

circumference, and height; certain blood lipid levels, including total cholesterol and triglycerides; 301 

and schizophrenia. These are all known to be highly polygenic and heterogeneous traits. The 302 

least correlated traits include several measurements of insulin sensitivity and glucose response, 303 
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such as the insulin sensitivity index (ISI), certain features of brain morphology, and the 304 

inflammatory biomarker lipoprotein(a). This may be partly due to low sample size of the 305 

corresponding GWASs. However, these correlations do not appear to be driven exclusively by 306 

sample size: in cases where multiple GWASs for the same trait have been performed on 307 

subsamples of the population (for example, males only, female only, and combined), the sample 308 

size only marginally affects the correlation (Supplementary Table 4). Another contributing 309 

factor may be heritability: height, in particular, is among the most heritable traits we examined, 310 

while ISI and the brain morphology features are among the least.  311 

Discussion 312 

We have presented a framework for scoring horizontal pleiotropy across human genetic 313 

variation. In contrast to previous analyses, our framework explicitly distinguishes between 314 

horizontal pleiotropy and vertical pleiotropy or biological causation. After applying both 315 

components of our pleiotropy score to 372 heritable medical traits from the UK Biobank, we 316 

made the following observations: 1) horizontal pleiotropy is pervasive and widely distributed 317 

across the genome; 2)) horizontal pleiotropy is driven by extreme polygenicity of traits; 3) 318 

horizontal pleiotropy is significantly enriched in actively transcribed regions and active regulatory 319 

regions, and is correlated with the number of genes and tissues for which the variant is an 320 

eQTL; 4) there are thousands of loci that exhibit extreme levels of horizontal pleiotropy, a 321 

majority of which have no previously reported associations; and 5) pleiotropic loci are enriched 322 

in specific complex traits including body mass index, height, and schizophrenia. These findings 323 

are largely consistent between the magnitude of pleiotropy score �� and the number of traits 324 

score ��, although we note some differences where some variants are primarily associated with 325 

��
�� but not ��

��. This indicates that these signals are driven by loci that both influence a large 326 

number of traits and have relatively large combined effects, and secondarily by loci that have 327 
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large combined effects but only influence a handful of traits each, with minimal contribution from 328 

loci that influence a large number of traits but have small combined effects. Conversely, after 329 

applying the correction for polygenicity, we only observe variants that are significant for ��
�, but 330 

not for ��
�. This indicates that, while there do exist horizontal pleiotropic master control loci that 331 

affect more traits than we would expect from the random overlap of multiple highly polygenic 332 

traits, the overall effect of these loci is not noticeably larger than we would expect. 333 

This analysis is enabled by the technique of whitening trait associations to remove correlations 334 

between traits. This lets us count pleiotropic effects in a more objective and systematic way, as 335 

opposed to manually selecting putatively independent traits to count, or manually grouping traits 336 

into independent blocks. However, it does come with three major limitations compared to these 337 

approaches. First, it is somewhat more difficult to tell which specific traits are driving a signal of 338 

pleiotropy at a particular locus. Our whitened traits are combinations of real observed traits, and 339 

do not necessarily correspond to any specific biological traits of interest. However, it is relatively 340 

easy to inspect the input GWAS summary statistics for a particular variant of interest to see 341 

which traits it is associated with. Furthermore, since pleiotropic loci are by definition associated 342 

with a large cross-section of traits, this kind of inspection is not likely to be very informative 343 

about specific traits. Second, the whitening procedure has the counterintuitive property that a 344 

variant that has a narrow effect on a single trait without also affecting correlated traits can 345 

appear to be highly pleiotropic. For example, if a variant had a strong risk-increasing effect on 346 

coronary artery disease (CAD), but no effect on any of the known upstream risk factors of CAD 347 

(such as blood lipid levels or adiposity) or any of the known downstream consequences of CAD 348 

(such as inflammatory biomarkers or increased mortality), such a variant would appear as highly 349 

pleiotropic in our analysis. Our analysis would interpret the variant as increasing the risk of CAD 350 

while suppressing these upstream and downstream factors. We believe this treatment is 351 

appropriate, however counterintuitive. Regardless, these kinds of isolated effects are fairly rare: 352 
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in our dataset of 372 heritable traits from UK Biobank, only 6% of variants (42,684 of 767,057) 353 

reach genome-wide significance for only a single trait. Indeed, it is unlikely by definition that a 354 

variant is associated with only one trait from a set of correlated traits, since we compute our 355 

correlations from observed association statistics. Third, we assume all genetic effects are 356 

additive and independent, and we do not model epistasis or other more complex genetic 357 

architectures. 358 

Our findings are in keeping with several recent studies that have found abundant pleiotropy in 359 

the genome (26,27,8,2,9). Our pleiotropy score goes a step further than many of these studies 360 

by explicitly removing vertical pleiotropy between traits, which are indicative of fundamental 361 

biological relationships between traits (8,24,28). Furthermore, the current study has evaluated 362 

horizontal pleiotropy in human genetic variation genome-wide, whereas previous studies have 363 

focused on only a small subset of disease-associated variants identified from GWAS. Our 364 

results therefore suggest that there is substantial complexity and heterogeneity not only in 365 

causal relationships between human traits, but also in the genetic architecture of individual 366 

traits. 367 

Our findings have several important implications for the field of human genetics. First, our 368 

observation of ubiquitous horizontal pleiotropy is problematic for Mendelian Randomization 369 

(MR) methods, which assumes horizontal pleiotropy to be absent. Recent developments in the 370 

field of MR include methods that account for horizontal pleiotropy explicitly (24,28,29); our 371 

results reinforce the importance of these methods. The presence of widespread horizontal 372 

pleiotropy suggests that single-instrument methods that independently account for every variant, 373 

each of which presumably has pleiotropic effects on many different distinct traits, should be 374 

considered in addition to multi-instrument methods for MR, which collapse many variants into a 375 

single polygenic score for analysis, and therefore treat all variants equivalently. 376 
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Second, our results appear to support the “network pleiotropy” hypothesis of Boyle, Li, and 377 

Pritchard (16), which proposes widespread pleiotropy driven by small perturbations of densely 378 

connected functional networks, where any perturbation in a relevant cell type will have at least a 379 

small effect on all phenotypes affected by that cell type. A subsequent paper detailed a more 380 

specific mechanism, where causal effects are driven by many biological components that are 381 

only indirectly related to the phenotype itself (30). Many of the functional enrichments we 382 

observe, including transcription factors, cytoskeleton, and intracellular signaling cascades, 383 

represent components that can plausibly influence a wide variety of cell types and processes, 384 

providing evidence for this model over one where a specific biological component is largely 385 

responsible for pleiotropy. The fact that the magnitude of pleiotropy score �� and the number of 386 

traits score �� give largely consistent results also supports this model, where a larger biological 387 

effect in a given tissue will perturb a greater number of phenotypes relevant to that tissue, 388 

although we note that some variants have high magnitude of pleiotropy score �� and low 389 

number of traits score ��, which may represent a small class of variants that has large biological 390 

effects without perturbing a large number of phenotypes. 391 

While our results largely support this network pleiotropy hypothesis, we have also demonstrated 392 

an alternate view of horizontal pleiotropy in the context of highly polygenic causation. In our 393 

simulations, introducing extreme polygenicity at the levels suggested by these papers inherently 394 

results in high levels of horizontal pleiotropy detectable by our score, independent of any 395 

assumptions about the mechanism of pleiotropy or of polygenicity. Indeed, our null hypothesis 396 

of no horizontal pleiotropy, that 5% of the genome is independently causal to each trait with P < 397 

0.05, is trivially rejected when a single trait is influenced by an unexpectedly large fraction of the 398 

genome. This means that, on some level, widespread horizontal pleiotropy in human genetic 399 

variation is simply a logical consequence of widespread polygenicity of human traits, regardless 400 

of the specific mechanism of either. In simple terms, the more loci are associated with each trait, 401 
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the more chances there are for associations with multiple traits to overlap. Supporting this 402 

result, we find that controlling for the polygenic architecture of the input traits significantly 403 

attenuates our signal of pleiotropy, as does restricting to oligogenic traits. It may be the case 404 

that horizontal pleiotropy is only truly widespread among the most complex and polygenic 405 

subset of human traits. 406 

Conclusions 407 

In this study, we have presented a quantitative score for horizontal pleiotropy in human genome 408 

variation. Using this score, we have identified a genome-wide trend of highly inflated levels of 409 

horizontal pleiotropy, an underappreciated relationship between horizontal pleiotropy with 410 

polygenicity and functional biology, and a large number of specific novel loci with high levels of 411 

horizontal pleiotropy. We expect further investigations using this score to yield deep insights into 412 

the genetic architecture of human traits and to uncover important novel biology.  413 

Methods 414 

We developed a statistical method to measure horizontal pleiotropy using a two-component 415 

pleiotropy score. For a given variant, we measured 1) the total magnitude of pleiotropic effect 416 

the variant has and 2) the number of whitened traits affected by the variant.  417 

Z-scores decorrelation strategy 418 

Observable traits and diseases can be highly correlated, which can lead to inflation of our 419 

pleiotropy score if the correlation is not properly accounted for. Therefore, we developed an 420 

efficient strategy to remove this correlation and obtain decorrelated traits. Let ���� denote the 421 

matrix of raw Z-scores, with variants in columns and traits in rows, and � denote the 422 
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corresponding correlation matrix between the Z-scores. Under the null hypothesis of no 423 

horizontal pleiotropy, Z-scores for each trait are assumed to follow a Gaussian distribution 424 

�0,1�, and the columns of ���� collectively follow a multivariate Gaussian distribution �0, ��. 425 

Our goal is to eliminate the extra-diagonal terms of the correlation matrix �. To achieve this, we 426 

use a Mahalanobis whitening transformation on the matrix ���� to obtain a whitened Z-score 427 

matrix �. The procedure to obtain � can be formally expressed as: 428 

� � ���

� ���� 

Under the null hypothesis of no horizontal pleiotropy, we expect � to follow a multivariate 429 

Gaussian distribution �0, ����, where ��� is the identity matrix of size �, � being the number of 430 

traits. 431 

In reality, the true correlation matrix � is unknown, and we must use an estimated correlation 432 

matrix �~ obtained by measuring the genome-wide correlation between actual Z-scores. We 433 

tested two approaches to obtain �~, either using all genotyped variants genome-wide or using a 434 

subset of variants pruned to �� < 0.1 in the 1000 Genomes European population to account for 435 

the effects of linkage disequilibrium (LD). Both approaches produced similar results (See 436 

Supplementary Figure 6). In all subsequent analysis, we used covariance matrices estimated 437 

from pruned variants. 438 

Computation of the pleiotropy score 439 

We computed two different scores to capture both the magnitude and number of traits of 440 

pleiotropy. First, we quantify the total pleiotropic magnitude of effect a variant using the 441 

magnitude pleiotropy score ��: 442 
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�� � 100� �� ��
�

�

�

 

where ��  is the whitened Z-score for trait � for a given variant. Second, we quantify the number 443 

of whitened traits affected by a variant using the number of pleiotropic traits score ��: 444 

�� �  100� � ����  
�  2��

�

 

where z� is the whitened Z-score for trait � for the tested variant and ��� is the Heaviside step 445 

function which equals 1 if |z�| � 2 and 0 otherwise. 2 represents a standard value of the Z-score 446 

which represents the normal threshold for nominal significance (P < 0.05). 447 

LD-corrected pleiotropy score 448 

Similarly to LD score regression, each component of the pleiotropy score was regressed on the 449 

LD scores for all variants. Then, we regressed out the effect of LD on each component of the 450 

pleiotropy score independently to obtain an LD-corrected pleiotropy score. The LD-corrected 451 

pleiotropy score components ��
��and ��

��are given by:  452 

��
�� � �� � ��� 

��
�� � �� � ��� 

where � is the LD score of the variant site, and �� and �� are the regression coefficients for LD 453 

score on �� and ��, respectively. 454 

Computation of theoretical P-values for the pleiotropy score 455 

Based on the observation that � follows a multivariate standard Gaussian distribution �0, ���� 456 

under the null hypothesis of no pleiotropy, P-values can easily be computed for �� and ��. 457 
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Under the null hypothesis, the square of �� (or ��
�	) follows a chi-square distribution  ���� 458 

where � is the total number of traits. Likewise, �� (or �

�	) follows a binomial distribution !��, "� 459 

where � is the total number of traits and p the probability to get a Z-score greater than 2 under 460 

the standard Gaussian distribution (P # 0.045).  461 

Computation of empirical (polygenicity/LD-corrected) P-values for 462 

the pleiotropy score 463 

To correct for the known polygenic architecture of traits in addition to LD, we additionally 464 

computed empirical permutation-based P-values for both ��
�� and ��

��. We performed 25 465 

random permutations of the input Z-scores for each observable trait, producing millions of 466 

permuted variants. We calculated �� and �� for each of these permuted variants, and then rank 467 

ordered the resulting scores. The empirical P-value corresponding to a value of ��
�� or ��

�� is 468 

given by the fraction of permuted variants with higher scores than the given value. We 469 

converted these P-values into polygenicity/LD-corrected ��
� and ��

� scores by converting each 470 

P-value into the score it would correspond to under the expected (theoretical) distributions 471 

described above. 472 

Simulation framework 473 

We simulated a realistic matrix of Z-scores � with 100 traits and 800,000 genotyped variants. 474 

For non-causal variants, Z-scores for each trait were drawn from an independent Gaussian 475 

distribution �0,1�. A subset of variants was designated as causal, either pleiotropically or non-476 

pleiotropically. For these causal variants, Z-scores were drawn from a different Gaussian 477 

distribution �0, ���,where �� is a parameter representing the per-variant heritability of each 478 

trait. Non-pleiotropic variants were selected independently for each trait, while pleiotropic 479 

variants were selected globally and each forced to be causal for a specified number of traits $. 480 
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Simulations were run for all combinations of the following parameters: 1) correlation structure: 481 

absent or present; 2) proportion of pleiotropic causal variants: 0.1% (800/800,000 variants) or 482 

1% (8,000/800,000 variants); 3) proportion of non-pleiotropic causal variants: 0 (0/800,000 483 

variants), 0.1% (800/800,000 variants), or 1% (8,000/800,000 variants); 4) number of traits 484 

involved in horizontal pleiotropy $: 10 or 20; 5) per-variant heritability of traits ��: 0.0002, 0.002, 485 

0.02, or 0.2. Each scenario was replicated 10,000 times. 486 

Collection of genome-wide association (GWA) summary statistics 487 

datasets 488 

First, we retrieved GWA publicly available summary statistics from 545 continuous traits in 489 

361,194 samples from the UK Biobank (17), and 1,403 binary traits from the same dataset 490 

calculated using SAIGE (18,19). We used LD score regression to calculate heritability for each 491 

trait, using the liability scale for binary traits, and restricted the sample to only traits with a 492 

significant P-value for nonzero heritability after Bonferroni correction. For every pair of traits with 493 

correlation coefficient between Z-scores �� � 0.8, we additionally removed the member of the 494 

pair with lower heritability. This left a total of 372 traits. 495 

Second, we retrieved publicly available genome-wide association (GWA) summary statistics 496 

data for 82 complex traits and diseases (31–66) (Table S9). For each dataset, we retrieved the 497 

appropriate variant annotation (build, rsid, chromosome, position, reference and alternate 498 

alleles) and summary statistics (effect size, standard errors, P-values and sample size of the 499 

study). All variant coordinates (chr, pos) were lifted over to hg19 using the UCSC Genome 500 

Browser LiftOver Tool and aligned to the reference and alternate alleles retrieved from the 501 

Ensembl variation database. After performing the same pruning of highly correlated phenotypes, 502 

we were left with 73 traits and diseases. 503 
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Third, we retrieved GWA summary statistics datasets from a GWAS of 453 blood metabolites in 504 

7,824 individuals (67). After performing the same pruning of highly correlated phenotypes, we 505 

were left with 430 metabolites. 506 

Genome-wide pleiotropy study (GWPS) 507 

Using the two components of the pleiotropy score, we can run a genome-wide pleiotropy study 508 

(GWPS) which consists of computing two P-values for each component of the score (��
�� and 509 

��
��) and for all variants genome-wide. We computed the pleiotropy score separately for each of 510 

the three datasets described above (372 UK Biobank phenotypes, 73 traits and diseases, and 511 

430 blood metabolites). Additionally, we computed the pleiotropy score on a subset of 372 traits 512 

with genome-wide significant heritability as calculated by LD Score Regression (20) (univariate 513 

heritability significant after Bonferroni correction). The 372 UK Biobank heritable traits were 514 

used for discovery, and the 73 traits and diseases and 430 blood metabolites datasets were 515 

used for replication. There was a total of 768,756 variants genotyped across all three datasets. 516 

Study of polygenicity on horizontal pleiotropy 517 

To study the effect of polygenicity on horizontal pleiotropy, we first estimated the liability-scale 518 

heritability of all 372 traits in our UK Biobank dataset using LD score regression, and stratified 519 

all traits into four equally-sized classes of heritability, in order to control for the effect of high 520 

heritability separate from the effect of high polygenicity. Next, we estimated the polygenicity of 521 

the 372 traits using a corrected version of the genomic inflation factor 
��
�  (20). The intercept of 522 

LD score regression minus one is an estimator of the mean contribution of confounding bias to 523 

the inflation in the test statistics. Therefore, we computed a corrected version of the genomic 524 

inflation factor by subtracting the quantity (intercept of LD score regression - 1) from 
��. The 525 

372 phenotypes were then ranked according to 
��
�  within each heritability class, and grouped 526 

into 5 equal-sized bins of about 20 phenotypes each. We then recomputed the LD-corrected 527 
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pleiotropy score components (��
��and ��

��) for the subset of phenotypes in each bin. The 528 

inflation of the pleiotropy score was measured per bin to represent pleiotropy score inflation as a 529 

function of polygenicity. 530 

Characterization of the pleiotropic variants 531 

We performed various enrichment analyses for the pleiotropy score to characterize the 532 

pleiotropic variants using a variety of annotations that could be a direct consequence of 533 

horizontal pleiotropy. Each analysis uses the principle of assigning each variant an annotation 534 

category and selecting one category as the reference category. Then, for each category, we 535 

selected a set of variants from the corresponding reference category with minor allele 536 

frequencies matched to those in the query category, and performed a Student’s t-test to test 537 

whether the average LD-corrected pleiotropy score (��
��and ��

��) of the variants in each given 538 

category is different from the average LD-corrected pleiotropy score of the selected reference 539 

variants.  540 

First, we used Ensembl Variant Effect Predictor (21) to classify each variant as noncoding, UTR, 541 

nonsynonymous, or coding synonymous, treating noncoding as the reference class. These were 542 

complemented by annotations from Roadmap Epigenomics (22). We used the 25-state 543 

chromatin state model published by Roadmap Epigenomics to assign each variant 25 scores 544 

from 0 to 127, where each score represents the number of epigenomes for which that site is 545 

assigned to the corresponding category. We did the same for two specific chromatin marks: the 546 

activating mark H3K27ac and the repressive mark H3K27me3. For these annotations, we used 547 

a combination of all other categories as a reference set. In other words, the reference set for 548 

each category is all variants that are not in that category. 549 

In addition to these molecular annotations, we used expression-related annotations from the 550 

Genotype-Tissue Expression project (23). For each variant, we retrieved the number of genes 551 
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for which the variant is referenced as a cis eQTL (expression quantitative trait loci) in any tissue 552 

(eGenes), and the number of tissues where the variant is annotated as a cis eQTL for any gene 553 

(eTissues). We divided variants into bins by number of eGenes (below 10, between 10 and 15, 554 

between 15 and 20, and over 20) and eTissues (below 30, between 30 and 35, between 35 and 555 

40, and above 40). The reference set used for these analyses were variants that are not 556 

annotated as eQTLs in any gene or tissue.  557 

Finally, we used model organism phenotypes measured by the International Mouse 558 

Phenotyping Consortium (IMPC) (68) and the Saccharomyces Cerevisiae Morphological 559 

Database (SCMD) (69). To map ortholog genes from IMPC and SCMD to human variants, we 560 

used orthology annotations of gene orthologs, and eQTLs from GTEx. Thus, variants annotated 561 

as associated with a mouse or yeast phenotype are those that are annotated as cis eQTLs in 562 

any tissue for a gene whose ortholog in mouse or yeast is associated with that phenotype. The 563 

reference set for this analysis was variants annotated as cis eQTLs for genes that are not 564 

associated with mouse or yeast phenotypes. 565 

Genome-wide significant pleiotropy loci 566 

To detect loci with a genome-wide significant pleiotropy, we used the LD-corrected two-567 

component pleiotropy score (��
��and ��

��) computed on the dataset of 372 heritable traits from 568 

UK Biobank described above. We used LD clumping as implemented in PLINK to cluster linked 569 

variants, with an �� threshold of 0.1, a distance threshold of 100 kb, and P-value thresholds of 5 570 

x 10-8 for genome-wide significance and 0.05 for nominal significance. The resulting loci were 571 

assigned to genes using 1) localization of variants within a gene, as annotated by Ensembl 572 

Variant Effect predictor, and 2) annotation as a cis eQTL in any tissue, as annotated by GTEx. 573 

We submitted the resulting list of genome-wide significant genes to DAVID for enrichment 574 

analysis (70–72). 575 
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Permutation-based null model for replication analysis 576 

In general, we should expect only 5% of loci to replicate by chance in each replication dataset; 577 

however, it is possible that this number might increase because of polygenicity in the underlying 578 

GWAS statistics and the resulting inflation in our pleiotropy score, which may cause 579 

substantially more than 5% of the genome to be assigned P < 0.05. To correct for this, we 580 

performed random permutations of the whitened Z-scores independently for each trait and used 581 

these permuted Z-scores to compute our LD-corrected pleiotropy score components (��
��and 582 

��
��). This generates a null expectation that preserves the polygenicity and inflation within each 583 

dataset. For both datasets, our null model expected that 5% of loci for ��
�� loci and 6% of loci for 584 

��
�� should replicate. The fraction that replicated in the actual data was substantially higher 585 

(Figure 7). 586 

 587 

Ethics approval and consent to participate 588 

Not applicable. 589 

Consent for publication 590 

Not applicable. 591 

Availability of data and material 592 

An R package implementing this pleiotropy score method is available on GitHub at 593 

https://github.com/rondolab/PleiotropyScore. The dataset of summary statistics for the 372 594 

medical traits from the UK Biobank and the pleiotropy scores computed from these summary 595 

statistics are also available in the same GitHub project at 596 

https://github.com/rondolab/PleiotropyScore/tree/master/data. The summary statistics for 430 597 

blood metabolites are available from the original publication where this dataset was reported 598 
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(61), and the summary statistics for 73 human traits and diseases are available from the original 599 

publications where they were reported, as cited in Supplementary Table 3. 600 
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Figure Titles and Legends 824 

Figure 1: Schematic of different types of pleiotropy. 825 

Previous studies distinguish between vertical pleiotropy, where effects on one trait are mediated 826 

through effects on another trait, and horizontal pleiotropy, where effects on multiple traits are 827 

independent.  828 

Figure 2: Contributions of linkage disequilibrium (LD) and polygenicity to horizontal 829 

pleiotropy. 830 

In addition to the normal sense of horizontal pleiotropy, both linkage disequilibrium (LD) and 831 

polygenicity are expected to contribute to horizontal pleiotropy. In the case of LD-induced 832 

horizontal pleiotropy, two linked SNVs have independent effects on different traits which appear 833 

pleiotropic because of the linkage between the SNVs. In the case of polygenicity-induced 834 

horizontal pleiotropy, two highly polygenic traits have an overlap in their polygenic footprint.  835 

Figure 3: Two component pleiotropy score method. 836 

We (i) collect association statistics from the UK Biobank, (ii) process them using Mahalanobis 837 

whitening, (iii) compute the two components of our pleiotropy score (�� and ��) based on the 838 

whitened association statistics, (iv) use LD scores to correct for LD-induced pleiotropy (��
��and 839 

��
��), and (v) use permutation-based P-values to correct for polygenic architecture (��

�  and ��
�). 840 

Figure 4: Simulation study showing false positive rate (a,b,c,d) and power (e,f,g,h) of two-841 

component pleiotropy score. 842 

Top row shows performance on non-pleiotropic simulated variants (black line shows 5% false 843 

positive rate); bottom row shows performance on pleiotropic variants (black line shows 80% 844 

power). Simulations were run for both ��
�	 (left) and �


�	 (right), and both without correction for 845 
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polygenicity (a,c,e,g) and with the correction (b,f,d,h), with per-variant heritability ranging from 846 

0.0002 to 0.2, proportion of non-pleiotropic causal loci ranging from 0 to 1%, and proportion of 847 

pleiotropic causal loci ranging from 0.1% to 1%. Our method has good power to detect 848 

pleiotropy for highly heritable traits, though its power is reduced by extreme polygenicity. 849 

Extreme polygenicity also increases the false positive rate, though this effect is corrected by our 850 

polygenicity correction. 851 

Figure 5: Quantile-quantile (Q-Q) plots showing the inflation of the pleiotropy score as a 852 

function of polygenicity. 853 

Variants are stratified into 4 batches of about 80 traits each by heritability, and then subdivided 854 

into 5 batches of about 20 traits each by polygenicity, as measured by corrected genomic 855 

inflation factor 
��
� . Darker shades represent low polygenicity and lighter shades represent high 856 

polygenicity. All panels show -log10 transformed P-values. The black lines show the expected 857 

value under the null hypothesis. 858 

Figure 6: Distribution of the pleiotropy score among variants (a), genes (b), and traits (c). 859 

Panel a shows the global distribution of ��
�� (left) and ��

�� (right) for the 767,057 tested variants. 860 

The expected distribution under the null hypothesis of no pleiotropy is shown in red and the 861 

observed distribution is shown in blue. The vertical line represents the value of the pleiotropy 862 

score corresponding to genome-wide significance (P < 5 × 10-8). 1,769 (��
��) and 643 (��

��) 863 

variants are not represented for the sake of clarity, because they have extreme values for the 864 

pleiotropy score. Panel b shows the distribution of the average pleiotropy score for coding 865 

variants in each gene for ��
�� (left) and ��

�� (right). The top ten genes are represented on the 866 

right side of the plots, whereas genes with a pleiotropy score of 0 are represented on the left 867 

side of the plots. Panel c shows the contribution of pleiotropic variants to 82 complex traits and 868 

diseases. Contribution of pleiotropic variants is calculated as the correlation coefficient between 869 
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the absolute value of Z-scores and the pleiotropy score among variants that are genome-wide 870 

significant for the pleiotropy score (P < 5 × 10-8 for ��
�� and ��

�� respectively).  871 

Figure 7: Replication analysis for the genome-wide pleiotropy study.  872 

We used 372 UK Biobank heritable medical traits as our discovery dataset, and independent 873 

datasets of 73 complex traits and diseases and 430 blood metabolites as replication datasets. In 874 

each case, expected fraction of replication was empirically determined using a permutation 875 

analysis.876 
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Tables 877 

Table 1: Functional enrichment analysis of pleiotropy score. 878 

��
�� ��

�� 

Variant effect 
predictor 

 UTR +0.24 (±0.01); P = 1.72x10
-234

 +0.69 (±0.02); P = 2.16x10
-236

 

 coding synonymous +0.24 (±0.01); P = 2.49x10
-99

 +0.61 (±0.03); P = 1.92x10
-76

 

 non synonymous +0.19 (±0.01); P = 3.82x10
-82

 +0.48 (±0.03); P = 3.62x10
-62

 

Roadmap 
Epigenomics 

 H327ac +0.20 (±0.01); P < 10
-308

 +0.54 (±0.01); P < 10
-308

 

 H3K27me3 +0.02 (±0.01); P = 1.40x10
-18

 +0.01 (±0.01); P = 0.4 

 Active TSS +0.20 (±0.02); P = 1.42x10
-36

 +0.54 (±0.04); P = 8.56x10
-34

 

Promoter 

Promoter Upstream 
TSS 

+0.16 (±0.01); P = 4.44x10
-130

 +0.43 (±0.02); P = 4.33x10
-103

 

Promoter 
Downstream TSS 1 

+0.35 (±0.01); P = 1.87x10
-220

 +0.92 (±0.03); P = 3.59x10
-197

 

Promoter 
Downstream TSS 2 

+0.30 (±0.01); P = 2.70x10
-203

 +0.86 (±0.03); P = 3.44x10
-210

 

Transcription 

Transcribed - 5' 
preferential +0.29 (±0.01); P < 10

-308
 +0.88 (±0.01); P < 10

-308
 

Strong transcription +0.38 (±0.01); P < 10
-308

 +1.10 (±0.01); P < 10
-308

 

Transcribed - 3' 
preferential +0.29 (±0.01); P < 10

-308
 +0.82 (±0.01); P < 10

-308
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Weak transcription +0.21 (±0.01); P < 10
-308

 +0.60 (±0.01); P < 10
-308

 

Transcription & 
regulation 

Transcribed & 
regulatory (Prom/Enh) +0.36 (±0.01); P < 10

-308
 +1.00 (±0.02); P < 10

-308
 

Transcribed 5' 
preferential and Enh 

+0.35 (±0.01); P < 10
-308

 +1.00 (±0.01); P < 10
-308

 

Transcribed 3' 
preferential and Enh 

+0.33 (±0.01); P < 10
-308

 +0.92 (±0.02); P < 10
-308

 

Transcribed and 
Weak Enhancer 

+0.32 (±0.01); P < 10
-308

 +0.97 (±0.01); P < 10
-308

 

Active 
enhancer 

Active Enhancer 1 +0.13 (±0.01); P = 4.54x10
-295

 +0.32 (±0.01); P = 5.1x10
-216

 

Active Enhancer 2 +0.11 (±0.01); P = 2.64x10
-294

 +0.28 (±0.01); P = 5.63x10
-238

 

Active Enhancer 
Flank +0.11 (±0.01); P < 10

-308
 +0.29 (±0.01); P = 6.06x10

-270
 

Weak 
enhancer 

Weak Enhancer 1 +0.07 (±0.01); P = 2.79x10
-89

 +0.16 (±0.01); P = 6.89x10
-60

 

Weak Enhancer 2 +0.08 (±0.01); P < 10
-308

 +0.23 (±0.01); P = 6.52x10
-291

 

Primary H3K27ac 
possible Enhancer 

+0.09 (±0.01); P = 2.72x10
-259

 +0.24 (±0.01); P = 1.53x10
-187

 

 Primary DNase +0.03 (±0.01); P = 3.83x10
-21

 +0.05 (±0.01); P = 1.11x10
-7

 

 ZNF genes & repeats +0.08 (±0.01); P = 1.29x10
-7

 +0.20 (±0.04); P = 6.9x10
-7

 

 Heterochromatin -0. 20 (±0.01); P < 10
-308

 -0.61 (±0.01); P < 10
-308

 

 Poised Promoter +0.05 (±0.01); P = 1.03x10
-35

 +0.09 (±0.01); P = 2.27x10
-16

 

 Bivalent Promoter +0.17 (±0.01); P = 1.28x10
-93

 +0.51 (±0.03); P = 6.29x10
-88
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 Repressed Polycomb +0.04 (±0.01); P = 5.77x10
-42

 +0.06 (±0.01); P = 1.48x10
-11

 

 Quiescent/Low -0.41 (±0.01); P < 10
-308

 -1.20 (±0.01); P < 10
-308

 

GTEx - number 
of genes the 
variant is an 

eQTL for 

 eGenes<10 +0.11 (±0.01); P = 6.78x10
-186

 +0.28 (±0.01); P = 1.04x10
-140

 

 eGenes>10 & <15 +0.19 (±0.01); P = 4.72x10
-114

 +0.52 (±0.02); P = 6.84x10
-99

 

 eGenes>15 & <20 +0.31 (±0.02); P = 7.98x10
-52

 +0.88 (±0.06); P = 5.38x10
-47

 

 eGenes>20 +0.66 (±0.06); P = 3.40x10
-27

 +2.07 (±0.18); P = 1.35x10
-30

 

GTEx - number 
of tissues the 
variant is an 

eQTL for 

 eTissue<30 +0.10 (±0.01); P = 1.84x10
-151

 +0.26 (±0.01); P = 1.26x10
-114

 

 eTissue>30 & <35 +0.21 (±0.01); P = 3.70x10
-187

 +0.54 (±0.02); P = 6.80x10
-147

 

 eTissue>35 & <40 +0.36 (±0.02); P = 1.11x10
-82

 +1.13 (±0.06); P = 4.24x10
-92

 

 eTissue>40 +0.35 (±0.05); P = 2,42x10
-13

 +0.97 (±0.14); P = 7.08x10
-12

 

International 
Mouse 

Phenotyping 
Consortium 

 Phenotypes > 1 +0.06 (±0.01); P = 1.91x10
-6

 +0.19 (±0.04); P = 2.70x10
-7

 

Saccharomyces 
cerevisiae 

Morphological 
Database 

 Phenotypes > 1 +0.09 (±0.01); P = 4.48x10
-17

 +0.26 (±0.03); P = 1.53x10
-18

 

 879 

We grouped variants by (i) molecular function as annotated by Ensembl, (ii) predicted chromatin state as annotated by the NIH 880 

Roadmap Epigenomics Project, (iii) transcriptional effects as annotated by the NIH Genotype-Tissue Expression (GTex) Project, and 881 

(iv) effects on model organism phenotypes as annotated by the International Mouse Phenotyping Consortium (IMPC) and 882 
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Saccharomyces Cerevisiae Morphological Database (SCMD). For each grouping, we computed the mean LD-corrected pleiotropy 883 

score and used a two-sample Student’s t-test to determine whether the mean was significantly different from the baseline. We found 884 

(i) that coding regions have higher pleiotropy scores than noncoding regions, (ii) that active promoters and enhancers have the 885 

highest pleiotropy scores and quiescent and heterochromatin have the lowest, (iii) that variants that control expression of more genes 886 

in more tissues have higher pleiotropy scores, and (iv) that genes associated with more than one model organism phenotype have 887 

higher pleiotropy scores. 888 
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Additional Files 889 

Additional File 1. Functional enrichment analysis of pleiotropy score after applying 890 
polygenicity correction. 891 

Excel spreadsheet (.xlsx) showing the equivalent of Table 1 using the LD/polygenicity-corrected 892 

scores (��
�  and ��

�) instead of the LD-corrected scores (��
�� and ��

��) 893 

Additional File 2. DAVID enrichment analysis of high-pleiotropy genes. 894 

Excel spreadsheet (.xlsx) showing the results of the DAVID enrichment analysis described in 895 
the text. 896 
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