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Abstract

Motivation: In the past years, several methods have been developed to incorporate information about
phenotypes into computational disease gene prioritization methods. These methods commonly compute
the similarity between a disease’s (or patient’s) phenotypes and a database of gene-to-phenotype
associations to find the phenotypically most similar match. A key limitation of these methods is their
reliance on knowledge about phenotypes associated with particular genes which is highly incomplete in
humans as well as in many model organisms such as the mouse.
Results: We developed SmuDGE, a method that uses feature learning to generate vector-based
representations of phenotypes associated with an entity. SmuDGE can be used as a trainable semantic
similarity measure to compare two sets of phenotypes (such as between a disease and gene, or a disease
and patient). More importantly, SmuDGE can generate phenotype representations for entities that are
only indirectly associated with phenotypes through an interaction network; for this purpose, SmuDGE
exploits background knowledge in interaction networks comprising of multiple types of interactions. We
demonstrate that SmuDGE can match or outperform semantic similarity in phenotype-based disease gene
prioritization, and furthermore significantly extends the coverage of phenotype-based methods to all genes
in a connected interaction network.
Availability: https://github.com/bio-ontology-research-group/SmuDGE
Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction
There is now a large number of available methods for the prioritization
or prediction of gene–disease associations (Wang et al., 2011; Zhou and
Skolnick, 2016; Natarajan and Dhillon, 2014). Computational methods
that predict gene–disease associations use a large number of different
features and approaches.

Several approaches to the computational prediction of gene–disease
associations are based on the guilt-by-association principle (Gillis and
Pavlidis, 2012). Using the guilt-by-association approach relies on prior
knowledge of a set of genes associated with a disease D and a relatedness
measure that compares genes with the set of genes associated with D;
if a gene is strongly related with respect to the relatedness measure

it is suggested as a novel candidate gene. Several measures are used
to determine relatedness between genes, with the most prominent ones
relying on network associations (Aerts et al., 2006; Lee et al., 2011;
Köhler et al., 2008) or some form of functional or phenotypic similarity
(Schlicker and Albrecht, 2009). However, as guilt-by-association relies on
prior knowledge of disease-associated genes, they can not easily be applied
to monogenic diseases, and their applications are, in general, limited to
few diseases.

Phenotype-based approaches have been particularly successful in
finding candidate genes for Mendelian diseases (Hoehndorf et al., 2011).
Phenotype-based approaches compare disease phenotypes to a database of
genotype–phenotype associations and suggest candidate genes based on
measures of phenotype similarity (Köhler et al., 2009; Hoehndorf et al.,
2011; Eilbeck et al., 2017).
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The main limitation of phenotype-based approaches, however, is the
limited amount of phenotype annotations that are associated with particular
genotypes in public databases. In the past, one approach to address this
limitation is the use of phenotype associations resulting from animal model
experiments and the use of ontologies that can combine phenotypes across
species so that animal model and human phenotypes can be compared
(Hoehndorf et al., 2011; Chen et al., 2012). While the use of model
organisms significantly extends the scope of phenotype-based disease-
gene prioritization methods, there is nevertheless only a limited amount
of phenotype associations available. In particular, genes for which there
are no orthologs in other organisms cannot benefit from cross-species
phenotype-based approaches. One possible way in which this challenge
could be overcome is to predict phenotypes associated with genes that
have no such associations in databases, for example through the use of
background knowledge in the form of interaction networks.

We developed SmuDGE, a method that combines phenotype
similarity and network similarity to predict gene–disease associations,
generates features encoding for phenotype-associations for any gene
connected in an interaction network. To achieve this goal, SmuDGE
combines phenotype similarity with network-based representation
learning and propagates information about phenotype-associations
through interaction network connections. We demonstrate that SmuDGE
can be used to identify candidate genes of disease through the use
of phenotype similarity even if no phenotypes are associated with a
gene. SmuDGE is freely available from https://github.com/

bio-ontology-research-group/SMUDGE.

2 Methods

2.1 Data sources and versions

We use the PhenomeNET ontology (Rodriguez-Garcia et al., 2017),
downloaded on 10 Jan 2017 from the AberOWL repository (Hoehndorf
et al., 2015), as our phenotype ontology because it integrates human and
model organism phenotypes and allows them to be compared. We use a
dataset of diseases with their phenotypes from the HPO database (Köhler
et al., 2014), downloaded on 15 Jan 2017.

Furthermore, we use gene-to-phenotype associations observed in
mutant mouse models, downloaded from the Mouse Genome Informatics
(MGI) database (Blake et al., 2014) on 12 Jan 2017, and gene-to-phenotype
associations derived from gene–disease associations and provided by
the HPO database, downloaded on 7 Nov 2017. We further used the
interactions provided by STRING (Szklarczyk et al., 2011) version 10.
STRING contains both direct and indirect interactions.

Our dataset consists of 7,064 diseases with 78,599 associations to 6,597
distinct phenotypes; 3,526 human genes with 153,575 associations to 6,058
distinct phenotypes;and 11,696 mouse genes with 200,170 associations to
8,603 distinct phenotypes.

We use human–mouse orthology obtained from MGI on 12 Jan 2017 to
identify the human orthologs of mouse genes, and associate mouse gene’s
phenotypes with their human orthologs, resulting in 144,360 associations
between 9,131 human genes and 8,534 distinct phenotypes.

Furthermore, we map all proteins in the STRING interaction network
to their gene identifiers using the mappings provided by STRING.
The resulting interaction network between genes consists of 493,041
interactions between 14,753 genes.

2.2 Construction of the heterogeneous graphs

We have built two kinds of heterogeneous knowledge graphs to study gene–
disease associations. The first knowledge graph utilizes the cross-species
PhenomeNET ontology (Rodriguez-Garcia et al., 2017) and characterizes

phenotypes of human diseases and mouse models. We associate the human
orthologs of the mouse genes with mouse phenotypes, resulting in 144,360
associations between human genes and mouse phenotypes. Furthermore,
we construct a second version of that graph in which we use human proteins
and assign them with their phenotypes obtained from the HPO database.

The second graph aims to exploit a protein-protein interaction network
to generate vector representations for genes which don’t have phenotypes.
It consists of the same information as the first type of graph plus the
STRING interaction network (Szklarczyk et al., 2011).

2.3 Similarity computation and evaluation

We use cosine similarity between two vectors v1 and v2 to determine the
similarity of embeddings:

sim(v1, v2) =
v1 · v2
‖v1‖‖v2‖

We use cosine similarity to compute the similarity between disease and
gene embeddings. We use their similarity as predictor for genes’ having
an association with a disease.

As baseline for comparison, we use a semantic similarity measure
which exploits the background knowledge in an ontology. We use Resnik’s
semantic similarity measure (Resnik et al., 1999) with the Best Match
Average (BMA) strategy for combining similarities between individual
classes. Resnik’s semantic similarity measure is defined as:

Sim(c1, c2) = max
c∈S(c1,c2)

[− log p(c)] (1)

where c1 and c2 are the two classes between which similarity is computed,
and S(c1, c2) is the set of superclasses of both c1 and c2 in the ontology
hierarchy.

To evaluate the performance of the similarity-based predictions, we
compute a similarity matrix which contains the pairwise similarities of
genes and diseases. For each disease, we rank genes in descending order
of the similarity score. We then evaluate at which rank we identify a gene–
disease association in our evaluation dataset. As this method results in
a ranking classifier (as genes are ranked for each disease), we quantify
the performance of the predictions through the area under the receiver
operating characteristic (ROC) curve (Fawcett, 2006). A ROC curve is a
plot of the true positive rate (TPR) as a function of the false positive rate
(FPR). The

TPR at a particular rank is defined as a rate of correctly predicted
gene–disease associations at this rank, and the FPR is the rate of predicted
associations that are not gene–disease associations. As we do not have
true negative gene–disease associations, we treat unknown gene–disease
associations as negatives.

2.4 Supervised prediction and evaluation

SmuDGE is an unsupervised method to generate feature vectors for
genes and diseases based on their phenotypes. Using these features in
a supervised manner can improve the prediction of associations between
two vectors. For this reason, we use an artificial neural network (ANN)
to train pairs of gene-disease associations. In this experiment, we use the
known disease-gene association as the positive set, and randomly select
an equal number of the non-associated disease-gene pairs as the negative
set.

For the the training and testing, we perform 5-fold cross validation.
We generate folds by sampling diseases, not gene–disease pairs. 80% of
the diseases are used for training the ANN and we use the 20% of disease
feature vectors for testing. As positive pairs, we then combine the diseases
in each fold with the genes associated with the diseases. The aim of this
sampling strategy is to guarantee that the ANN does not learn to recognize
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gene–disease associations for a disease D based on genes known to be
associated with D, and therefore determine how well our method predicts
genes associated with diseases if no prior knowledge is available.

We used 10% of training set as a validation set to guide and stop the
training if the loss increases in the validation set; alternatively, training
will stop after 100 epochs. We use a Rectified Linear Unit as an activation
function for the hidden layers (Nair and Hinton, 2010) and a sigmoid
function as the activation function for the output layer; we use cross entropy
as loss function in training, and Rmsprop (Root Mean Square Propagation)
(Hinton et al., 2012) to optimize the neural networks parameters in training.

For the evaluation of the ROCAUC, we create an embedding matrix
for each disease in which we fix the first part of the matrix to represent
a particular disease embeddings and the second part represents the all
gene embeddings. We then apply the learned model on the matrix and
rank the genes based on the probability scores. The TPR and FPR at each
rank are used to identify the proportion of correctly and falsely predicted
associations at each rank respectively.

3 Results

3.1 Heterogeneous representation of genes, diseases, and
phenotypes

In our method we use a knowledge graph as data structure in which
we represent genes, diseases, and the phenotypes with which they are
associated. Genes, diseases, and phenotypes are represented as nodes
in the graph. Edges between phenotypes represent axioms in the Web
Ontology Language (OWL) (Grau et al., 2008; Rodriguez-Garcia and
Hoehndorf, 2018). We represent diseases using their identifiers from the
Online Mendelian Inheritance in Men (OMIM) (Amberger et al., 2011))
database, human genes using their Entrez gene identifier, and phenotypes
using the cross-species phenotype ontology PhenomeNET (Rodriguez-
Garcia et al., 2017). We connect diseases and genes to the phenotypes
they are associated with using the has phenotype relation. Additionally,
we represent interactions between genes and their products using an
interacts with relation. We consider all interacts with edges as symmetric
(i.e., it x interacts-with y then y interacts-with x) and all other edges as
non-symmetric.

We associate all OMIM diseases with their phenotypes from the Human
Phenotype Ontology (HPO) database (Köhler et al., 2017), and obtain
information about interactions between human genes from the STRING
database (Szklarczyk et al., 2011).

We build two knowledge graphs which differ in the associations
between genes and their phenotypes. In the first case, we use the
phenotypes associated with human genes in the HPO database; these
phenotypes are indirectly derived from gene–disease associations and the
disease phenotypes, i.e., if a gene G is associated with a disease D and
the disease has a set of phenotypes P , then all phenotypes in P are
assigned to G. Because this assignment of phenotypes to human genes can
indirectly encode for gene–disease associations, we also use mouse model
phenotypes as an independent dataset of phenotypes. For this purpose,
we identify the phenotypes of non-conditional loss of function mutations
(i.e., knockouts) of gene G in the Mouse Genome Informatics (MGI)
database (Blake et al., 2014); if we can identify a human ortholog of G,
we assign all phenotypes ofG to the human ortholog. Phenotypes of mouse
models are encoded using the Mammalian Phenotype Ontology (MP)
(Smith et al., 2004); through the use of the cross-species PhenomeNET
ontology (Rodriguez-Garcia et al., 2017), the phenotypes encoded using
MP (in the mouse) and HPO (in human disease) can be compared directly.

Our graphs consist of 7,066 nodes for diseases, 15,391 nodes for human
genes, and 9,293 nodes for mouse models phenotypes, 7,833 nodes for
human phenotypes. It has 78,599 disease–phenotype associations. Using
phenotypes from HPO, we include 153,575 gene–phenotype associations;

using mouse phenotypes from MGI, we include 144,360 gene–phenotype
associations. We also include 493,041 interactions between genes, all of
which we consider as symmetric. Figure 1 illustrates the knowledge graph
we generate.

Fig. 1. Our knowledge graph consists of gene–phenotype associations (encoded using
either HPO or MP, disease–phenotype associations (encoded using the HPO), and the
PhenomeNET ontology.

3.2 Joint representation learning from PPI network
structure and phenotype annotations

We designed an algorithm to encode features based on the phenotypes that
are associated with entities in the knowledge, either diseases or genes and
gene products, in the form of a dense vector; the vector representation of
the genes can then be used in unsupervised or supervised machine learning
approaches or other predictive models.

Our algorithm, Semantic Disease Gene Embeddings (SmuDGE),
comes in two forms. First, it encodes for the phenotypes that are directly
associated with an entity (i.e., a disease or gene/gene product); for this
purpose, it generates a dense representation of an entities ontology-
based annotations and its superclasses. This algorithm is applicable
to all diseases and genes that are directly associated with phenotypes.
However, while diseases are commonly associated with (or even defined
by) a set of phenotypes, the majority of genes are not associated with
phenotypes, neither in humans, where phenotypes are generally derived
from gene–disease associations (Köhler et al., 2014), nor in the mouse
where phenotypes are the result of phenotyping experiments (de Angelis
et al., 2015). Therefore, we use a second form of our algorithm which is
applicable to genes without any phenotype associations and in which a
phenotype-based representation is assigned indirectly using the network
environment in which a gene product is embedded.

For the first version of our algorithm, we ignore all interactions between
genes and their products and focus only on encoding an entity’s phenotype
annotations and the ontology structure (i.e., subclass relations). Given an
entity (disease or gene) E that has has phenotype edges to the phenotypes
P1, ..., Pn, we generate n sentences starting with E. We generate n

sentences where each sentence starts with E followed by Pi and all of
the superclasses of Pi, for all Pi that are directly associated with E.

We then apply a Word2Vec skipgram model (Mikolov et al., 2013)
to learn vector representations for each token occurring in a generated
sentence, in particular for all entities and phenotype classes. The vectors
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Fig. 2. On the left side we show the graphs of disease-phenotype associations, gene-phenotype associations and the PhenomeNET ontology (top), and the graph used to generate E-Vecs at
the bottom. We then use a skipgram model to generate vectors for genes and gene products in the graph. These vectors can then be used as input to a similarity measure, or a neural network,
to predict interactions or other types of biological relations.

generated for entities through this approach encode for directly associated
phenotypes and all their superclasses, and we call the vectors P-Vecs (for
Phenotype Vectors).

We can only generate P-Vecs for genes and gene products with directly
associated phenotypes. For all other genes, however, we can use their
interaction network environment to assign phenotypes that are over-
represented in the neighboring nodes. For a gene G, we use a random
walk, starting at G, over the network of interactions between genes
and gene products to randomly sample G’s network neighborhood. We
terminate the walk once we found a node G′ with has phenotype edges,
or after a pre-determined step limit, whichever occurs first. If the step
limit has been reached, we restart the walk at G. If the walk found a
G′ with an outgoing has phenotype edge, and the phenotypes associated
with G′ are P1, ..., Pm, then we randomly sample one phenotype P of
P1, ..., Pm and generate a sentence starting with G followed by P and
all superclasses of P ; after adding the sentence to our corpus, we restart
at G. The aim of this approach is to sample the network environment in
which G is located for phenotypes. Through inclusion of the ontology
hierarchy in the generated sentences, the approach is intended to be more
robust to differences in specific phenotypes. Similarly to generating P-
Vecs, we apply a Word2Vec skipgram model on the generated sentences to
produce vector representations of all entities and phenotypes in the corpus.
Because these representations are generated from a gene node’s network
environment, we call the vectors E-Vecs (for Environment Vectors). Figure
2 provides a high-level overview over our method.

We generate both P-Vecs and E-Vecs for our two graphs (using human
and mouse gene–phenotype associations separately). We generate P-Vecs
for all human diseases, and we further generate P-Vecs both for human and
mouse genes that have phenotypes associated. We generate E-Vecs both for
nodes which do not have phenotypes associated and for nodes which have
phenotypes associated; if a gene node has directly associated phenotypes,
we mask them during the generation of sentences (i.e., random walks)
for the E-Vec approach so that only the network environment is sampled
for phenotypes. Furthermore, we generate vector representations for all
phenotype classes from HPO and MP which are either used to directly
annotate a gene or diseases, or are a superclass of a direct annotation.

In total, we generate 9,293 vectors for phenotype classes from MP,
7,833 for phenotype classes from HPO, 7,064 for diseases from OMIM,
9,131 P-Vecs for genes using mouse phenotypes (i.e., assigning phenotypes
of mouse genes to their human orthologs), and 3,526 P-Vecs for genes using
human phenotype data (i.e., genes-phenotypes associations provided by
the HPO database). We generate E-Vecs for 14,753 genes, i.e., for all genes
in our interaction network that are connected to a gene with phenotype
associations.

3.3 Similarity-based prediction of disease-associated
genes

We use the generated vectors representing genes and diseases to predict
gene–disease associations based on phenotype similarity. The SmuDGE
vectors encode phenotype annotations connectivity patterns along with the
ontology super classes associated with each phenotype annotation. Similar
phenotypes for both genes and diseases indicate similar features vectors
and therefore we can infer disease-gene associations by comparing feature
vectors.

To determine similarity, we use the cosine similarity measure, and
we compute the pairwise similarity between all diseases and genes
(using either their P-Vec or E-Vec representation). We then rank the
most similar genes for each disease and determine how well we recover
known gene–disease associations from OMIM using a receiver operating
characteristic (ROC) curve (Fawcett, 2006); we quantify the performance
of the similarity-based prediction using the area under the ROC curve
(ROCAUC) which is equivalent to the probability that a randomly chosen
positive sample is ranked higher than a randomly chosen negative sample.
We limit our evaluation of P-Vec similarity to the genes for which we can
generate the representations, i.e., 3,526 genes using human phenotypes and
9,131 genes using mouse phenotypes. For comparison, we use a semantic
similarity measure to compare disease and gene phenotype annotations.
For the evaluation of E-Vec similarity, since we generate representations
for all of the genes in the interactions network, we evaluate the disease
vectors against the set of 14,753 genes vectors. Figure 3 shows the results
using P-Vec similarity for human and mouse phenotypes, and Table 1
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shows the results using E-Vec similarity based on human and mouse
phenotypes.
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Fig. 3. ROCAUC for gene–disease association using cosine similarity (P-Vec)

Evaluations P-Vec E-Vec
Human phenotype (cosine) 0.96 0.77
Mouse phenotype (cosine) 0.75 0.69
Human phenotype (ANN) 0.97 0.77
Mouse phenotypes (ANN) 0.84 0.81

Table 1. ROCAUC results for E-Vecs and P-Vecs using cosine similarity and
ANN.

We find that P-Vec similarity using human phenotypes results in almost
perfect prediction (ROCAUC 0.96), which is the consequence of how
the phenotypes have been assigned to genes in the HPO database (i.e.,
the phenotypes are identical to the phenotypes of the disease with which
the gene is associated, and using them for prediction is therefore almost
circular); these similarities are therefore not truly predictive but mainly
reproduce our evaluation dataset. However, using mouse phenotypes, we
obtain a ROCAUC of 0.75 when comparing P-Vecs to the disease vectors.
Using E-Vecs, we obtain a ROCAUC of 0.77 when using human gene–
phenotype associations and a ROCAUC of 0.69 using gene–phenotype
associations from the mouse. Notably, because we mask all direct gene–
phenotype associations when generating E-Vecs, our use of human gene–
phenotype associations does not encode for gene–disease associations, and
the performance of this similarity-based evaluation is therefore indicative
of predicting disease-associated genes in the absence of gene–phenotype
associations.

3.4 Supervised prediction of disease-associated genes

Cosine similarity can only be applied to vectors of the same dimension, and
furthermore cannot easily account for dataset-specific features. Therefore,
we also apply supervised machine learning to “learn” a function (akin to
a similarity measure) that takes two phenotype representation vectors as
input and is predictive of gene–disease associations. We use an artificial
neural network (ANNs) to learn these functions in a supervised manner;
the ANN layout we use is shown in Figure 4.

Several approaches to computational prediction of gene-disease
associations utilize the principle known as “guilt-by association” (Gillis

and Pavlidis, 2012) which infers the associations of a gene to a disease
based on the similarity to other genes associated with the disease. As a
result, it fails to predict genes for diseases with no prior knowledge of any
associated genes. Supervised training to predict gene-disease associations
is similar to the guilt-by-association approach if some genes associated
with a disease have been used in training and the model is evaluated on
the remaining genes, because knowledge about disease-associated genes
is used to predict more associations. To estimate the performance of our
method for predicting gene-associations for diseases without associated
genes, we first split the training and testing based on the diseases, not on
gene-disease pairs. In particular, we select 80% of the diseases and all their
associated genes for training, and apply the model to predict all the genes
for the remaining 20% of the diseases.

We evaluate each type of vector representation individually using our
ANN classifier approach (see Materials & Methods). As in the similarity-
based prediction of disease-associated genes, we use pairs of P-Vecs or
E-Vecs as input to the ANN and use the ANN to compute the “similarity”
between them as a predictor of a gene–disease associations. The ROC
curves for using mouse vectors, as well as the comparison to a semantic
similarity measure, are shown in Figure 5 and Table 1. We find that using
the ANN significantly improves the results compared to the unsupervised,
similarity-based approach, increasing the ROCAUC from 0.75 to 0.84 for
mouse phenotypes and P-Vecs as well as using E-Vecs from 0.69 to 0.81
ROCAUC.

As another use case, we also evaluated how well SmuDGE can predict
gene-disease associations for diseases with only a single association
compared to diseases with multiple associated genes. Although our dataset
is stratified by disease and known associations are therefore not used
during training of the neural network, we intend to test the performance
of our approach on rare diseases for which no or only little information is
available. Figure 6 and Figure 7 show the result. We find that for diseases
which have more gene associations and are likely better studied, SmuDGE
can predict associated genes better than for diseases with only a single
associated gene, using both the P-Vec and E-Vec approach.

4 Discussion
SmuDGE is an algorithm that exploits ontologies and knowledge graphs
to learn representations of genes, gene products, and diseases, based on
the phenotypes they are associated with. While we demonstrate in our
evaluation that the performance of SmuDGE in predicting gene-disease
associations matches, and sometimes outperforms, traditional phenotypes-
based gene prioritization methods such as PhenomeNET (Hoehndorf et al.,
2011) or the MouseFinder (Chen et al., 2012), we see our main contribution
in extending the phenotype- and similarity-based approaches for gene-
disease prioritization to all genes represented in an interaction network (or
knowledge graph).

The prediction of disease genes using phenotype-similarity has been
highly successful (Köhler et al., 2009; Hoehndorf et al., 2011; Chen et al.,
2012) and a major limitation has been the availability of phenotypes for
many genes. The use of non-human model organisms such as the mouse
(Meehan et al., 2017) can generate phenotype representations of human
genes even in the absence of clinically determined phenotypes associated
with a gene; however, even using model organism phenotypes, phenotype
similarity can still not be applied to a large portion of human genes due to
missing data or lack of a non-human ortholog.

SmuDGE’s E-Vecs don’t use directly associated phenotypes but
encode for phenotypes of a gene based on knowledge of interactions
– both direct and indirect – of a gene with other genes with which
phenotypes are associated. The disease vector representations we generate
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Fig. 4. The ANN model we built, the input is the pair of disease-gene feature vector of size x, the first hidden layer consists of 4x hidden units, and the second hidden layer consist of 2x
hidden units, we use a dropout of 0.5 to mitigate the effects of overfitting. We optimize the number of hidden layers and units, the dropout ratio, the input embeddings dimensions. For
clarity in the figure, some ANN connections are omitted.
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Fig. 5. Comparision of ROCAUC for gene–disease association using a neural network,
cosine similarity and Resnik’s semantic similarity measure using mouse phenotypes and
SmuDGE’s P-Vec approach for generating feature vectors.
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Fig. 6. ROCAUC for predicting gene–disease associations for genes with a single or
multiple associated genes using SmuDGE’s P-Vec approach.
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Fig. 7. ROCAUC for predicting gene–disease associations for genes with a single or
multiple associated genes using SmuDGE’s E-Vec approach.

always encode for phenotypes, and the success in identifying gene-
disease associations when comparing both demonstrates that E-Vecs and
disease phenotype vectors have similar (and possibly complementary)
information, sufficient for their comparison to be predictive of disease
mechanisms (i.e., disease-associated genes).

The E-Vecs we construct in our work further encode, although
indirectly, for phenotypic network modules, since they are generated
through random walks on an interaction network and will encode for
phenotypes overrepresented within a network region. In future work,
we plan to evaluate whether our approach can identify interacting genes
that may be jointly associated with a disease, such as in digenic and
other oligogenic diseases (Gazzo et al., 2016). We may also explore the
possibility to combine SmuDGE with variant prioritization tools to provide
additional information that can be used to determine whether a variant is
associated with a phenotype or not (Boudellioua et al., 2017).
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