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Abstract 
3D-culture systems have advanced cancer modeling by reflecting physiological 

characteristics of in-vivo tissues, but our understanding of functional intratumor 

heterogeneity including visual phenotypes and underlying gene expression is still 

limited. Transcriptional heterogeneity can be dissected by single-cell RNA-

sequencing, but these technologies suffer from low RNA-input and fail to directly 

correlate gene expression with contextual cellular phenotypes. Here we present 

‘pheno-seq’ for integrated high-throughput imaging and transcriptomic profiling of 

clonal tumor spheroids derived from 3D models of breast and colorectal cancer. 

Specifically, we identify characteristic expression signatures that are associated with 

heterogeneous invasive and proliferative behavior including a rare cell subtype. 

Furthermore, we identify functionally relevant transcriptional regulators missed by 

single-cell RNA-seq, link visual phenotypes defined by heterogenous expression to 

inhibitor response and infer single-cell regulatory states by deconvolution. We 

anticipate that directly linking molecular features with patho-phenotypes of cancer 

cells will improve the understanding of intratumor heterogeneity and consequently 

prove to be useful for translational research. 
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Introduction  

Three-dimensional (3D) cell culture systems provide a physiologically relevant 

context for in-vitro testing, manipulation and high-throughput screening applications1. 

Mimicking the 3D-tissue environment thus holds great promise for future diagnostics2 

and the analysis of functional differences between tumor cells in a single patient 

(intratumor heterogeneity)3, a phenomenon increasingly recognized as an essential 

driver of tumorigenic progression, treatment resistance and relapse4.  

While visual characteristics of 3D-cultures such as shape and size can be highly 

informative for classification of tumor subtypes and disease states, most studies have 

so far focused on inter-patient differences rather than heterogeneous behavior of 

cells derived from a single patient5. Single-cell 3D-culture combined with microscopy 

and molecular analyses appears as a key strategy for investigating cellular 

heterogeneity in-vitro as it enables analysis of clonal behavior in defined spatial and 

temporal conditions6,7. Ideally, the visual phenotype of the emerging multicellular 

complex (spheroids, organoids, etc.) reflects the characteristics of the primary tumor 

and consequently informs about the functional outcome of heterogeneous cancer cell 

states. Informative subpopulation-specific oncogenic phenotypes include long-term 

proliferative potential8, or more complex phenotypes such as deregulation of 

epithelial growth and invasiveness, a prerequisite for metastasis9. Likewise, 

identifying heterogeneous gene expression in functionally distinct tumor populations 

is of particular importance to infer drivers of cell state transitions and to uncover 

underlying signaling pathways10.  

Recent technological advances in microscopy enable high-throughput phenotyping to 

quantitatively characterize cellular heterogeneity11, but methods to directly associate 

observed cellular properties in 3D cultures with system-wide gene expression are still 

lacking. While laser capture microdissection (LCM)12 or multiplexed fluorescence in-

situ hybridization (FISH)13 techniques are principally suited to linking cellular 

phenotypes to gene expression, the required histological preparation, elaborated 

sample processing and pre-selection of transcript-specific probes limit the 

applicability and resolution of those methods. On the other hand, the variety of 

recently developed technologies for single-cell RNA-sequencing (scRNA-seq)14 

suffer from low-input material and do not provide a direct link to visual cellular 

phenotypes since the available protocols involve dissociation of cells and loss of their 

multicellular context.  

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 1, 2018. ; https://doi.org/10.1101/311472doi: bioRxiv preprint 

https://doi.org/10.1101/311472
http://creativecommons.org/licenses/by-nd/4.0/


Here, we present ‘pheno-seq’ to dissect heterogeneity in 3D cell culture systems by 

directly combining clonal cell culture, imaging and transcriptomic profiling. We 

developed an experimental and computational workflow for unbiased high-throughput 

pheno-seq, including i) automated dispensing and imaging of single spheroids in 

barcoded nanowells; ii) an automated image processing pipeline; and iii) 

‘PhenoSelect’ software for interactive analysis and selection of spheroids. We 

demonstrate the power of pheno-seq in dissecting both cellular and molecular 

heterogeneity for established and patient-derived 3D-models of breast and colon 

cancer, respectively.  

Results 
Pheno-seq enables direct phenotype correlation and complements the 
identification of heterogeneous gene expression in the 3D breast cancer model 
MCF10CA 
In breast cancer, normal epithelial cells undergo a stepwise transformation from local 

hyperplasia to premalignant carcinoma in-situ and invasive carcinoma15. Importantly, 

the switch from epithelial to invasive behavior requires gene expression programs 

that resemble those occurring during embryogenesis and wound healing, generally 

described as epithelial-to-mesenchymal transition (EMT)9.  

Single-cell-derived spheroids of the breast cancer cell line MCF10CA16 show 

remarkable morphological heterogeneity when cultured in 3D, with cellular 

phenotypes reflecting characteristics of both carcinoma in-situ (‘round’ phenotype) 

and invasive carcinoma (‘aberrant’) (Supplementary Fig. 1a and b). To enable 

independent analysis of cells derived from both phenotypes, we developed a 

workflow to isolate single spheroids from reconstituted basement membrane 

(Matrigel) without perturbing their phenotypic identity (Fig. 1a and b). To functionally 

assess the observed heterogeneity, we reseeded and cultured cells from both 

phenotype classes independently which validated efficient isolation and revealed a 

high cell state stability (Supplementary Fig. 1c).  

To identify gene expression differences between round and aberrant spheroids, we 

first generated and deeply sequenced microfluidics-based full-length scRNA-seq 

libraries of both phenotypes independently (166 cells in total, Fig. 1c, Supplementary 

Table 1). Notably, this strategy does not enable a direct phenotypic correlation as 

cells from multiple spheroids needed to be pooled.  
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 Figure 1 | pheno-seq enables direct image correlation and complements the identification of 
morphology-specific gene expression  
 (a) Brightfield images of clonal spheroids (MCF10CA phenotype classes ‘round’ and ‘aberrant’) after 

isolation from Matrigel (scale bar 50 µm). (b) Workflow overview for the isolation of clonal spheroids 

for inference of morphology-specific gene expression. (c) Indirect phenotype – gene expression 
correlation by scRNA-seq using single cells isolated from multiple spheroids with annotated 

morphology phenotype. (d) 2D tSNE visualization17 of 166 scRNA-seq (*cell-cycle corrected) full-

length expression profiles of cells from manually isolated round and aberrant spheroids with coloring 

based on manual phenotype annotation. (e) Same 2D tSNE visualization as shown in (d) but coloring 

based on PC scores for **HALLMARK_EMT gene set derived from the Molecular Signature Database 

(MSigDB)18.  (f and g) 2D tSNE visualization of 8 full-length manual pheno-seq profiles based on 

manually isolated single spheroids. Same coloring as shown in (d) and (e). (h) Number of genes 
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detected in downsampled scRNA-seq and pheno-seq libraries (sc: scRNA-seq; M: manual pheno-seq; 

HT-DSP: high-throughput pheno-seq with dithio-bis(succinimidyl) propionate fixation; HT-control: HT-

pheno-seq bottom control). Numbers of samples indicated on x-axis under respective method. (i and 
j) Selected genes only identified by manual pheno-seq and not by scRNA-seq and validation of 

phenotype-specific expression for SNAI2 (aberrant) and KRT15 (round). RNA-FISH for SNAI2: Plotted 

values reflect the faction of pixels that exceed the background threshold per spheroid. KRT15 
immunofluorescence: Plotted values reflect mean pixel intensity per classified spheroid. Box plot 

center-line: median; box limits: first and third quartile; whiskers: min/max values. Numbers of samples 

indicated on x-axis under respective phenotype class. Indicated are P-values from unpaired two-tailed 

Students t-test. (k) High-throughput (HT) pheno-seq workflow based on automated dispensing and 

confocal imaging of recovered spheroids in barcoded nanowells. (l) 2D tSNE visualization of 210 HT-

pheno-seq 3´-end profiles with coloring based on image feature ‘circularity’. For better visualization, all 

circularity values below 0.8 were set to minimum in the color code scheme. (m) Same 2D tSNE 

visualization as shown in (l) with coloring based on PC scores for **HALLMARK_EMT gene set as 
shown in (e) and (g). (n) Circularity plotted per cluster (k-means clustering, k=2) as shown in (l). Violin-

plot center-line: median; box limits: first and third quartile; whiskers: ±1.5 IQR. Indicated P-value from 

unpaired two-tailed Students t-test.  

 

Combined transcriptomic analysis by testing annotated and de-novo identified gene 

sets for coordinated expression variability17 across cells revealed two distinct clusters 

and a tight association of cells to their original phenotype class (Fig. 1d), whereas 

differential expression analysis19 identified biologically relevant expression patterns. 

Cells derived from aberrant spheroids are characterized by the expression of EMT 

related genes (Fig. 1e), including vimentin (VIM), Beta-Actin (ACTB) and fibroblast 

activating protein (FAP). In contrast, cells isolated from round spheroids showed 

higher expression of genes involved in adherence and formation of tissue structures 

including desmoglein 3 (DSG3) and keratin 16 (KRT16) (Supplementary Fig. 2a and 

3a). In order to validate if we could accurately detect gene expression specific for 

invasive phenotypes, we used whole mount immunofluorescence (IF) of individual 

marker genes, in particular the EMT marker VIM and the cytoskeleton component 

ACTB (Supplementary Fig. 4a and b).  

Current scRNA-seq methods are affected by low RNA input14 and dissociation bias20. 

Accordingly, we next tested whether expression profiling of manually isolated whole 

spheroids (manual pheno-seq) might serve as a complementary approach to identify 

transcriptional differences between clonal spheroid phenotypes. Despite the loss of 

single-cell resolution, we reasoned that our approach should enhance accuracy by 

enabling the direct correlation of image phenotype to transcriptome, and at the same 
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time provide more RNA material for cDNA library preparation. Therefore, we started 

with low spheroid sample numbers in a tube-based setup to evaluate our ability to 

detect relevant heterogeneous gene expression that is missed by scRNA-seq.  

Profiling of only eight spheroids by manual pheno-seq yielded a similar phenotype-

specific distinction defined by high and low expression of EMT-related genes (Fig. 1f 

and g, Supplementary Fig. 2b). While the sample number was approximately 20 

times lower (166 single-cells vs. 8 single spheroids), the gene detection rate per 

sample was significantly higher compared to scRNA-seq (Fig. 1h), and differential 

expression analysis revealed over 50 phenotype-specific genes in each of the two 

classes that could not be detected by scRNA-seq (Fig. 1i and j, Supplementary Fig. 

3b). Although we detected more differentially expresses genes by scRNA-seq, most 

likely due to the much higher sample number, only pheno-seq identified the 

transcriptional EMT master regulator SNAI221 (aberrant) and keratin 15 (KRT15, 

round), a basal-myoepithelial marker in the mammary gland22 (Fig. 1i and j, 

Supplementary Fig. 3c).  

Phenotype-specific expression of SNAI2 and KRT15 was validated by RNA-FISH 

and immunofluorescence (IF), respectively (Fig.1i and j, Supplementary Fig. 4c and 

d). We reasoned that SNAI2 could not be identified by scRNA-seq due to its low 

expression (Supplementary Fig. 3c), a frequent phenomenon for transcriptional 

regulators23. Although KRT15 is one of the top markers for round spheroids detected 

by pheno-seq, the existence of residual KRT15+ cells in aberrant spheroids 

(Supplementary Fig. 4c) seemed to mask the identification of KRT15 as phenotype-

specific when single-cell profiles were analyzed. Remarkably, differential expression 

of KRT15 and SNAI2 could not be restored from scRNA-seq data by generating 

pseudo pheno-seq profiles from averaged single-cell expression (Supplementary 

Fig. 2c), indicating for the additional influence of dissociation bias20 on KRT15 mRNA 

abundance. In summary, pheno-seq enables the direct correlation of clonal spheroid 

phenotypes and transcriptomes and complements scRNA-seq methods to identify 

expression differences between 3D phenotypes already with low sample numbers. 

 

High-throughput pheno-seq in barcoded nanowells enables combined 
quantitative analysis of image features and gene expression 
A major limitation of both scRNA-seq and manual pheno-seq is the non-quantitative 

and biased selection of spheroid phenotypes based on visual inspection by eye. In 
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addition, increasing the number of spheroids per pheno-seq experiment is necessary 

to comprehensively understand associations between visual phenotypes and gene 

expression in a particular 3D-culture model. Therefore, we developed high-

throughput (HT) pheno-seq by repurposing the nanowell-based iCELL8 scRNA-seq 

system24, a platform for integrated imaging and gene expression profiling of single 

cells, for the processing of spheroid samples of up to 100 µm in size. Key 

modifications included cellular fixation25, altered chip setup, higher-resolution 

microscopy, an automated image-processing pipeline and the ‘PhenoSelect’ software 

for interactive analysis and selection of spheroids for sequencing (Fig. 1k, 

Supplementary Fig. 5, 6 and 7). These substantial technical adaptions had only 

minor influences on the gene detection rate, which fell in between scRNA-seq and 

manual pheno-seq (Fig 1h, Supplementary Table 1). MCF10CA HT-pheno-seq 

yielded very similar results as described, with two distinct clusters driven by 

expression of genes involved in EMT (VIM+) as well as tissue formation (KRT15+) but 

at higher throughput per experiment (n = 210) compared to manual pheno-seq (Fig 1l 

and m, Supplementary Fig. 8a). Both pheno-seq methods show good concordance in 

identifying differentially expressed genes between spheroid phenotypes 

(Supplementary Fig. 8b), despite unbiased capture of spheroids by HT-pheno-seq as 

well as differences in sample size, read depth and library structure (3´-end vs. full-

length, Supplementary Table 1). 

In contrast to scRNA-seq, HT-pheno-seq allows measurements of RNA abundance 

and image features from the same spheroid, which enabled straightforward 

association of genetic programs and complex visual phenotypes based on the 

fluorescence signal derived from a cytoplasmic dye (CellTracker Red). These 

included the morphology-related feature ‘circularity’, informing about (de)regulation of 

lobular development (Fig. 1l and n), and spheroid size, demonstrating a higher 

proliferative activity of epithelial cells (Supplementary Fig. 8c). In addition, pheno-seq 

linked negatively skewed pixel intensity distributions to round phenotypes 

(Supplementary Fig. 8d), indicative of increased cell density in round 3D phenotypes 

that leads to an increased proportion of high pixel intensity values derived from the 

cytoplasmic signal. Hence, HT-pheno-seq represents a new method that, unlike 

scRNA-seq, directly and quantitatively links heterogeneous visual phenotypes to 

underlying gene expression in a single experiment.  
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HT-pheno-seq of a patient-derived colorectal 3D model links proliferative 
capacity to cell type-specific expression signatures 
We next set out to assess the functional correlation between visual phenotypes and 

gene expression in a physiologically relevant and patient-derived 3D model originally 

isolated from a liver metastasis of a colorectal cancer (CRC) patient. Similar to the 

phenotypic heterogeneity in the MCF10CA spheroids described above, functionally 

distinct subpopulations in 3D-cultures of CRC patients have previously been 

identified8. The reported heterogeneity in proliferative potential seems to be largely 

independent of mutational subclone diversity26, thereby supporting the presence of a 

differentiation-like hierarchy in CRC27. As reseeding of cells from different classes of 

spheroid sizes (20-40 µm and >70 µm) revealed significant differences in spheroid 

forming capacity (Supplementary Fig. 9a), we hypothesized that specific stem- and 

differentiation-related transcriptional signatures should underlie these heterogenous 

proliferative phenotypes. To investigate this hypothesis, we performed HT-pheno-seq 

based on clonal CRC spheroids cultured in an inverse pyramidal-shaped microwell 

setup (Fig. 2a; Supplementary Fig. 9b).  

Analysis of 95 HT-pheno-seq gene expression profiles confirmed two transcriptionally 

distinct clusters (Fig. 2b). Image analysis of the respective spheroids revealed a 

strong difference in spheroid size composition between both clusters (Fig. 2c) that 

does not influence library complexity (Supplementary Fig. 10b). Differential 

expression analysis showed that the first cluster (‘small’ phenotype) is enriched for 

genes involved in ribosomal activity (GO_RIBOSOME, FDR q-value 2.41x10-45) as 

well as intestinal secretory lineage markers, including Trefoil Factor 3 (TFF3), KRT18 

and SPINK428 (Fig. 2d). In contrast, the second cluster (‘big’ phenotype) is 

characterized by the expression of genes previously described to be involved in (i) 

stem cell maintenance (including CD44, MYC, NOTCH1, APP, MSI1 and ITGA6)28,29, 

(ii) the formation of cell-cell junctions (including EPCAM, CLDN4, CDH1) and (iii) 

WNT signaling (ZNRF3, LGR4, JUN) (Fig. 2d). This signature showed a very high 

overlap with genes correlated with the major intestinal stem cell marker LGR5, 

including CD44, NOTCH1 and SMOC2 (Supplementary Fig. 10a). We validated 

sphere size-dependent expression for selected markers by quantitative RNA-FISH 

(Fig. 2e, Supplementary Fig. 11a-c). 
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Figure 2 | pheno-seq of a 3D model of colorectal cancer links heterogeneous proliferative 
phenotypes to expression signatures enriched for cell type-specific markers 

(a) Clonal 3D-culture in inverse pyramidal shaped microwells and recovery strategy for HT-pheno-seq 

of patient-derived CRC spheroids isolated from a liver metastasis. Yellow and purple indicate 

heterogeneous subpopulations with functional differences in proliferative potential8. (b) 2D tSNE 

visualization of 95 HT-pheno-seq expression profiles. Coloring by sphere size (pixel). (c) Spheroid 
size plotted per cluster. Violin-plot center-line: median; box limits: first and third quartile; whiskers: ±1.5 
IQR). (d) Heatmap reflecting differential expression analysis of identified clusters in (b). Selected 

genes are listed beside the heatmap; Fold change > 1.5; adjusted P-value < 0.05; *P < 0.05, **P < 

0.01, ***P < 0.001; ‘small’ cluster1: 313 differentially expressed genes; ‘big’ cluster: 130 differentially 

expressed genes. (e) Validation of pheno-seq by quantitative RNA-FISH for size-dependent 

differentiation marker TFF3 and stem cell markers CD44/MYC, and for size-independent DCS-cell 

marker DEFA5. Plotted values reflect the pixel fraction that exceeds the background threshold per 
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spheroid (Box plot center-line: median; box limits: first and third quartile; whiskers: min/max values; P-

values from unpaired Students t-test, ns: non-significant. Numbers of samples n indicated on x-axis 

under respective class). (f) Influence of g-secretase inhibitor on spheroid growth. Plotted values 

represent average spheroid sizes after 10 days in culture in the presence of different concentrations of 
the γ-secretase inhibitor PF-03084014 (Three replicates; scatter dot plot center line: mean; whiskers: 

standard deviation; P-values from paired two-tailed Students t-test). (g) Example images (Z-

projections) for RNA-FISH staining of DEFA5 corresponding to data shown in (e). DNA (Hoechst) 

counterstain visualization (Hoechst: cyan; RNA: yellow; scale bar 50 µm). 

 

 

In the cluster enriched for big spheres, we identified several genes related to the γ-

secretase machinery (Fig. 2d), a key component of the NOTCH pathway and target 

of new therapies aiming to disrupt cancer stem cell signaling30. Importantly, selective 

targeting of the γ-secretase by a small molecule inhibitor in concentration ranges that 

have been shown to force colonic stem cells into differentiation31 showed a inhibitory 

effect on spheroid growth (Fig. 2f, Supplementary Fig. 11d). This finding suggests a 

similar signaling dependency of the normal and transformed intestinal stem cell niche 

and shows the potential of pheno-seq to identify relevant signaling components 

required for proliferative capacity. 

Moreover, we determined an expression signature primarily driven by the expression 

of deep crypt secretory (DCS) cell markers DEFA5 and DEFA6 that is independent of 

the size-related clusters shown above (Supplementary Fig. 10a). DCS cells represent 

a post-mitotic secretory subpopulation at the bottom of intestinal crypts that serves as 

niche for LGR5+ stem cells31. In line with pheno-seq results, we validated high-

expressing DEFA5+ cells as rare subpopulation with spheroid size-independent 

relative expression by RNA-FISH (Fig. 2e and g, Supplementary Fig. 10c). For a 

cellular subtype with limited proliferative potential within the putative CRC 

differentiation hierarchy, we would have expected a similar association of relative 

expression and size as observed for the TFF3+ secretory signature above. Therefore, 

we suggest that DCS-like cells exhibit a heterogeneous growth phenotype (high- and 

low-cycling) that might relate to the delayed-contributing subpopulation in CRC 

previously described8. Thus, pheno-seq is able to directly assign heterogeneous 

proliferative phenotypes to expression signatures enriched for specific intestinal cell-

type markers, results that are not directly obtainable from scRNA-seq data.  
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Single-cell deconvolution by combining image analysis and maximum 
likelihood inference 
The pheno-seq method enables the direct association of spheroid 3D phenotypes 

and gene expression at a depth that cannot be reached by current single-cell 

methods alone. However, this accuracy comes at the cost of lower cellular resolution. 

The gene expression signatures identified from CRC spheroids inform about general 

phenotype-specific expression and trends in subtype composition but might derive 

from multiple cellular subtypes present within the same spheroids. While these 

results are highly valuable for understanding growth behavior in clonal cell culture 

systems (Fig. 2, Supplementary Fig. 10 and 11), obtaining ‘real’ single-cell 

information from pheno-seq data would be of high relevance to distinguish between 

genes that are generally associated with spheroid phenotypes and those who are 

robustly expressed in a single-cell subpopulation. Therefore, we aimed to 

computationally infer single-cell regulatory states by deconvolution of gene 

expression data using both image analysis and a maximum likelihood inference 

approach.  

First, we generated a 3D high-resolution imaging reference dataset by light-sheet 

microscopy from spheroids of different sizes, which we used to determine the 

relationship of spheroid size and nuclei counts to estimate cell numbers from CRC 

spheroid pheno-seq imaging data (Supplementary Fig. 12a). As the original pheno-

seq data exhibited a low correlation between library complexity and estimated cell 

numbers, we downsampled the data to achieve a constant number of mRNA counts 

per estimated single cell content (Supplementary Fig. 12b). As expected, this 

transformation introduces a positive overall shift of correlations between gene 

expression and cell numbers (Supplementary Fig. 12c), which can be mainly 

explained by housekeeping genes with a constant number of mRNA molecules per 

cell (Supplementary Fig. 13a). However, heterogeneously expressed genes such as 

the differentiation markers TFF3 and DEFA5 do not exhibit any correlation with cell 

numbers (Supplementary Fig. 13b and c), validating our normalization approach.  
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Figure 3 | Single-cell deconvolution of CRC spheroid pheno-seq data by maximum likelihood 
inference identifies PROX1 as potential CRC stem cell marker. 
(a) Concept of adapted maximum likelihood approach32 based on estimated cell numbers and 

transformed pheno-seq data: 1) Acquired and transformed pheno-seq data based on estimated cell 

numbers build a distribution of measurements for inference by the model. Coloring of cells in 

spheroids: red = stem-like; cyan = differentiated. 2) Assumptions on single cell distributions: Model of 
heterogeneous gene regulation in which single cells are supposed to exhibit gene expression at low 

(Pop I) or high (Pop II) levels with a common coefficient of variation. The four parameters of the model 

are the log-mean expression for each subpopulation (𝜇1 and 𝜇2), the proportion of cells in the high 

subpopulation (𝐹), and the common log-SD of expression (σ). 3) Based on the model in step 2, a 

likelihood function is derived that takes different numbers of cells per spheroid into account. The 

likelihood function is then maximized by searching through the four parameters of the model to identify 
those that are most likely given the experimental observations. 4) These four parameters define the 
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inferred single cell distributions of the low and high-level populations. (b) 1,012 genes show an 

improved two-population fit compared to a one population fit (BIC: Bayesian information criterion). 

Densities of the means of the first (Pop I: low regulatory state) and second population (Pop II: high 

regulatory state) for all identified 1,012 genes. (c) Frequency distribution of cells with high regulatory 

state (Pop II) of identified 1,012 genes. (d) Gene set enrichment analysis for two-population genes 

based on Hallmark gene sets derived from the MSigDB. Bar plot showing top enriched gene sets 
ranked by FDR q-values. (e) Venn-diagram showing overlap between identified two-population genes 

and murine small intestinal stem cell signature from scRNA-seq study28. Selected genes are listed 

below ordered by mean for high-state population Pop II (Mean2). (f) Scatter plots for PROX1 

expression plotted against estimated cell numbers (upper) and against expression of major intestinal 

stem cell marker LGR5 (lower) as well as associated Pearson’s correlation coefficients (r). (g) RNA-

FISH co-staining of CRC spheroids for PROX1 and DEFA5 and Hoechst counterstaining for 

visualization of DNA. Merged images: DNA: cyan; DEFA5 yellow; PROX1: red. Images represent Z-

projections (scale bar 30 µm and 10 µm for magnified merged image).   
 

 

To identify genes whose expression was likely to be informative for heterogeneous 

single-cell regulatory states, we used a maximum likelihood inference approach 

initially developed to deconvolve cell-to-cell heterogeneities from random 10-cell 

samples32 (Fig. 3a). The adapted algorithm uses the estimated cell numbers per 

spheroid to fit two log-normal distributions (LN-LN model) to given ‘mixed-n’ datasets 

in order to identify genes with bimodal expression pattern at the single-cell level 

(Stochastic Profiling, see Methods). Importantly, this approach unbiasedly pinpoints 

genes that show a heterogeneous and robust expression within spheroids at the 

single-cell level, instead of comparing gene expression between spheroids.  

Whilst the deconvolution technique assumes that cellular subtypes are identically 

distributed across samples, pheno-seq is based on clonal spheroids whose cell 

number, subtype composition and expression profile is dependent on the state of the 

founding cell. Based on the cancer stem cell model and the CRC differentiation 

hierarchy confirmed above, we assume that continuously growing spheroids (‘big’ 

phenotype) harbor all cellular subtypes present in this system, including stem-like 

cells, whereas small spheroids with limited proliferative capacity and low cell 

numbers are more homogeneous and contain only differentiated subtypes. Thus, 

inferred regulatory states should be enriched for genes specific for the stem-like 

compartment, as these represent the major source of heterogeneity across all 

spheroids at the single-cell level.  
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Deconvolution of the entire CRC pheno-seq dataset revealed 1,012 genes that show 

an improved two-population fit compared to a one-population fit, assessed by the 

Bayesian information criterion (BIC) to calculate the quality of the fit relative to the 

number of inferred parameters (Fig. 3b). Most of the fits resulted in a highly- 

expressing cellular fraction of 5 – 15% (Fig. 3c) thereby matching the proportion of 

cells with spheroid forming capacity in this model8. Interestingly, the positive shift of 

correlations between gene expression and cell numbers (before and after 

downsampling) is much more pronounced in the set of two-population genes 

compared to the set of non-two-population genes (Supplementary Fig. 13d), 

suggesting that many of the inferred two-population genes are involved in 

proliferative potential. Indeed, gene set enrichment analysis reveals a high proportion 

of MYC targets as well as genes involved in the regulation of cell growth and 

proliferation (Fig. 3d). In addition, high enrichment of genes involved in oxidative 

phosphorylation indicates for heterogeneous mitochondrial activity at the single-cell 

level, a phenomenon recently described for intestinal stem cells and niche-forming 

Paneth cells in the small intestine33. Strikingly, a high number of identified genes are 

overlapping with a recently identified stem cell signature of the small intestine 

revealed by massively parallel scRNA-seq28, including SMOC2, APP, PRMT1, 

RGMB, MAPK1 and CTNND1, respectively (Fig 3e).  

Here, we identified the transcriptional regulator PROX1 as gene with a high 

population (Pop II) mean (Fig. 3e) that is strongly correlated with cell numbers and 

with expression of the major stem cell marker LGR5 (Fig. 3f). In the normal intestinal 

epithelium, PROX1 is expressed in the enteroendocrine lineage34. However, two 

studies based on mouse tumor models suggest a role for PROX1 in cancer stem cell 

maintenance and metastatic outgrowth35,36. In line with these observations, we 

validated PROX1+ cells by RNA-FISH as a rare subpopulation in a patient-derived 

human tumor model (Fig. 3g). Furthermore, PROX1+ cells are framed by DEFA5+-

positive DCS-like cells, suggesting a similar niche dependency for normal stem cells 

and CRC stem-like cells at distant sites of neoplasia. Taken together, deconvolution 

of pheno-seq data provides information about gene expression patterns at the single 

cell level.  
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Discussion 
As applications of 3D-cultures are emerging even into clinical settings2, there is 

increasing need to directly link oncogenic visual phenotypes to underlying system-

wide gene expression, which cannot be achieved by imaging or scRNA-seq alone. In 

this study, we present pheno-seq as new and complementary approach that directly 

combines high-throughput imaging and next generation sequencing to functionally 

explain heterogeneous visual phenotypes in 3D-culture systems. At the same time, 

pheno-seq bridges the gap between single-cell and bulk expression profiling. In 

principle, pheno-seq can be applied to any 3D-culture system given that the 

phenotypic identity is maintained upon spheroid isolation. We expect that this 

combination of functional single cell growth assay with combined image and gene 

expression profiling will be widely applied in cancer biology, ranging from primary to 

circulating tumor cells (CTCs37).  

Importantly, we show that pheno-seq is able to link cell type-specific genes to 

heterogeneous growth phenotypes even in highly complex cell culture systems. In 

addition, we show that deconvolution by maximum likelihood inference provides an 

additional layer of information by revealing single-cell regulatory states that are likely 

to be associated with a distinct stem-like population, thereby further supporting a 

differentiation-like hierarchy in CRC. Based on our results, future studies should shed 

light on additional functional characteristics and dependencies of the stem-like 

compartment, the implication of the heterogeneous growth phenotype of DCS-like 

cells, potential cancer cell plasticity and the impact of subtype-specific metabolic 

preferences. Complementary single-cell-derived information might be added to 

further deconvolve pheno-seq expression profiles to fully understand cell type 

composition and differentiation trajectories.  

We envision pheno-seq to become even more powerful with increasing resolution 

and content of imaging, employing enhanced 3D-image acquisition, integrated 

staining by IF or live-dyes, and time-lapse microscopy, respectively. Pheno-seq can 

also be easily extended to other low-input, next-generation sequencing modalities 

such as chromatin accessibility sequencing. Furthermore, pheno-seq might be 

applied to pooled-screening approaches38 or to resolve transcriptional changes that 

are associated with morphological transitions in non-synchronized developmental 

processes. Thus, pheno-seq will widely impact the way how we study functional 

heterogeneity in a variety of biological and clinical applications.  
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Supplementary tables and figures 

3D-culture model MCF10CA MCF10CA MCF10CA MCF10CA MCF10CA CRC spheroid 

Method scRNA-seq 
Pseudo-

pheno-seq 

Manual 

pheno-seq 

HT-pheno-seq 

(control) 

HT-pheno-seq 

(DSP) 
HT-pheno-seq 

Library structure 
Full-length 

C1 

Full-length 

C1 

Full-length 

Tube-based 

3`-end 

iCELL8 

3`-end 

iCELL8 

3`-end 

iCELL8 

Number of 

samples after 

library QC 

166 8 8 64 210 95 

Mean total read 

count per sample 
3,820,057 3,685,536 9,965,986 485,975 803,669 1,304,480 

Mean detected 

genes (> 0) per 

sample (all reads)  

8,844 15,783 12,360 8,458 8,221 9,891 

Mean detected 

genes (> 0) 

per sample 

(down-sampled to 

100k reads) 

5,554 13,374 8,411 7,051 6,377 7,412 

 
Supplementary table 1 | Dataset overview and QC metrics 

(HT-pheno-seq: high-throughput pheno-seq; control: bottom control with default chip and imaging 

settings; DSP: Fixation with dithio-bis(succinimidyl propionate crosslinker; C1: Fluidigm C1) 
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Supplementary figure 1 | Heterogeneous 3D breast cancer model MCF10CA  
(a) Assessing single-cell seeding efficiency by image analysis. Upper: Example image of CellTacker 

Red stained and seeded cells (scale bar: 100 µm). Lower right: Magnified image that corresponds to 

dashed box in upper image. Lower left: Quantified cell singlets and doublets after seeding (289 objects 

in total). (b) Brightfield microscopy images of heterogeneous MCF10CA spheroids after 0, 5 and 12 
days of culture in Matrigel, thereby reflecting histological characteristics of steps during malignant 

progression of breast cancer (Brightfield, scale bar 50 µm). Red box: ‘round’ phenotype; Blue box: 

‘aberrant’ phenotype.  

(c) Independent reseeding of isolated ‘round’ and ‘aberrant’ spheroid phenotypes and quantification 

after regrowth by ‘ilastic’ machine learning based on pixel classification. Left: Spheroid classification 

confusion matrix. Heatmap reflecting classified pixels as aberrant or round after reseeding (four 

replicates, indicated are relative pixel numbers and standard error of the mean below). Right: Example 
images of reseeded MCF10CA ‘round’ and ‘aberrant’ spheroids 5 days after reseeding (scale bar: 50 

µm) 
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Supplementary figure 2 | Comparison of scRNA-seq and manual pheno-seq by tSNE 
visualizations 
(a, b, c) PAGODA 2D tSNE embedding of MCF10CA scRNA-seq (a), manual pheno-seq (b) and 
Pseudo pheno-seq (c, based on averaged single cell data) datasets colored by PC scores for 

Hallmark_EMT gene sets (incl. associated cZ scores as measure of gene set overdispersion) and by 

expression magnitude of phenotype markers VIM, SNAI2 and KRT15.  
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Supplementary figure 3 | pheno-seq identifies highly relevant gene expression that is missed 
by scRNA-seq 
(a) Gene set enrichment analysis based on differentially expressed genes identified by scRNA-seq 

and manual pheno-seq. Listed are FDR q-values for enrichments of biologically relevant 

HALLMARK_EMT and GO_TISSUE_DEVELOPMENT gene sets (derived from MSigDB).  

(b) Venn-Diagrams reflecting overlaps of identified phenotype-specific genes between scRNA-seq and 

manual pheno-seq based on differential expression analysis (fold change > 1.3; adjusted p-value < 

0.1).  
(c) Violin plots showing expression of individual genes (VIM, SNAI2, KRT15) per identified phenotype-

specific clusters for scRNA-seq and manual pheno-seq. Expression magnitude is plotted as 

Fragments per Million (FPM, log10). Violin-plot center-line: median; box limits: first and third quartile; 

whiskers: ±1.5 IQR. 
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Supplementary figure 4 | Validation of RNA-seq data by quantitative fluorescence microscopy.  
(a, b, c) Immunofluorescence staining with primary antibodies targeting VIM (a), ACTB (b) and KRT15 
(c). Images represent Z-projections of whole mount spheroid immunofluorescence. Plotted values 

reflect the mean pixel intensity per classified spheroid of the respective class. Dashed boxes in 

overview images (scale bar 100 µm) correspond to magnified images beside (scale bar 30 µm).  

(d) RNA-FISH with probe targeting SNAI2 mRNA (scale bar 100 µm). Images represent Z-projections 

and plotted values reflect the pixel percentage that exceeds the threshold per spheroid of the 

respective class after background correction.  

(a-e) All samples are counterstained with Hoechst dye to visualize nuclei (Hoechst: cyan; Labelled 
antibodies for round specific markers: yellow; labelled antibodies and RNA-FISH probe for aberrant 

specific markers: red). (Box plot center-line: median; box limits: first and third quartile; whiskers: 

min/max values; Indicated P-values from unpaired two-tailed Students t-test; Numbers of samples 

indicated on x-axis under respective class). 
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Supplementary figure 5 | Detailed HT-pheno-seq workflow.  
(a) After staining and recovery (optional: DSP fixation), spheroids are distributed into a nanowell chip 

by a Microsolenoid-valve dispenser (50 nl per well). To improve imaging quality, spheroids are 

centrifuged upside-down to the foil and automatically imaged by an inverted confocal microscope. The 

chip is then frozen at -80oC.  
(b) Images are processed using a custom-made image processing pipeline in KNIME/ImageJ. A 

Shiny-based web-app (PhenoSelect) enables interactive analysis and selection based on quantified 

image features.  

(c) A filter-file generated by PhenoSelect is used to dispense RT/Amp reagents only in selected wells. 

cDNA generation and amplification are performed in the chip. After pooling of barcoded cDNA, 3´-

library generation and next generation sequencing, resulting raw data can be de-multiplexed using 

internal barcodes listed in the welllist/feature-file generated with PhenoSelect.  
(d) Combined image analysis enables combined analysis of gene expression and image features.  
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Supplementary figure 6 | Technical adaptions and controls for high-throughput pheno-seq.  
(a) Comparison of images acquired by the default microscope with 4x objective, capturing 6x6 wells 

per image (spheroid nuclei are stained with Hoechst dye), and higher resolution microscopy (Confocal 

Leica SP8) with 10x objective, capturing 2x2 wells per image (spheroids are stained with Hoechst dye 

and CellTracker Red CMTPX).  

(b) Leakage analysis by patterned Fluorescein dispensing. Average fluorescence intensity is plotted 

onto 72x72 well grid that corresponds to nanowell chip architecture (left). For better visualization, all 

average intensity values exceeding 77 were set to maximum in the color code scheme. Top right: 
Example image showing the border between wells that have been filled with PBS or PBS with 

Fluorescein. Lower right: Macroscopic image of nanowell surface with droplets, showing rare 

dispensing errors that are also reflected by absence of Fluorescein signal at the respective position.  

(c) High percentage of reads that only map to selected well barcodes excludes severe leakage of 

barcoded Poly-T primers upon centrifugation of spheroids to the foil.  

(d) cDNA and Nextera XT library Bioanalyzer traces show compatibility of HT-pheno-seq with 

nanowell based system. 
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Supplementary figure 7 | PhenoSelect software for interactive analysis and selection of 
spheroids for high-throughput pheno-seq.  
(a) Primary selection of single spheroids based on individual thresholds as well as analysis and 

curation of selected spheroids. Filter- and welllist/feature-file are generated at this point and can be 

reloaded or adapted at any time.  
(b) PhenoSelect enables import of externally generated tSNE maps (PAGODA) for combined analysis 

of image features and gene expression.  
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Supplementary figure 8 | High-throughput pheno-seq enables combined quantitative analysis 
of gene expression and image features of clonal spheroids 

(a) PAGODA 2D tSNE embedding of MCF10CA HT-pheno-seq dataset colored by PC scores for 

Hallmark_EMT gene sets (incl. associated cZ scores as measure of gene set overdispersion) and by 

expression magnitude of major phenotype markers VIM and KRT15. 

(b) Venn-Diagrams reflecting overlaps of identified phenotype-specific genes between manual pheno-

seq and HT-pheno-seq based on differential expression analysis (fold change > 1.3; adjusted p-value 

< 0.1). 

(c and d) Same t-SNE map as shown in (a) but colored based on combined image analysis for image 
features ‘size’ (c) and ‘skewness’ (d). Right: Violin plots show image feature quantification per cluster 

(k-means clustering: k=2; violin center-line: median; box limits: first and third quartile; whiskers: ±1.5 

IQR; Indicated P-values from unpaired two-tailed Students t-test). Image feature associations can be 

interpreted according to the biological background (e.g. proliferation and cell density) 
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Supplementary figure 9 | Experimental basis for HT-pheno-seq of 3D model for colorectal 
cancer 
(a) Functional reseeding assay with cells isolated from different spheroid size classes reveals 

association of spheroid size and the long-term proliferative capacity of associated cells (20-40 µm and 

>70-100 µm). Plotted are spheroid counts 10 days after reseeding (three replicates, center-line: mean; 

indicated P-value of paired two-tailed Students t-test).  
(b) Assessing single-cell seeding efficiency by image analysis. Left: Example image of CellTacker Red 

stained cells seeded in microwells (scale bar: 100 µm). Lower right: Magnified image that corresponds 

to dashed box in upper image. Lower left: Quantified cell singlets and doublets after seeding (three 

wells, four images per well, 70 objects in total). 
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Supplementary figure 10 | LGR5 correlated genes overlap with expression signature of big 
spheroids and indication for heterogeneous growth phenotype of DCS-like subpopulation 
(a) RNA-seq analysis of CRC spheroid HT-pheno-seq data. Dendogram shows overall clustering (left: 

‘small’, right: ‘big’) and the rows below represent top four significant aspects of heterogeneity detected 

by PAGODA based on Hallmark and GO gene sets derived from the MSigDB as well as on de-novo 

identified gene sets. High aspect scores (PC Scores) correspond to high expression of associated 

gene sets. Associated top gene sets are listed next to rows (including cZ scores as measure of gene 
set overdispersion). Expression patterns below reflect top loading genes for selected gene sets that 

are associated with respective aspects. One exception is the expression pattern of genes exhibiting 

the highest correlation to the major intestinal stem cell marker LGR5 (Pearson’s correlation, top 40). 

Bottom: Signature that is dominated by the DCS cell markers DEFA5 and DEFA6 is independent of 

the major (size-associated) clustering.   

(b) Detected genes plotted per cluster shown in Fig. 2b. Violin-plot center-line: median; box limits: first 

and third quartile; whiskers: ±1.5 IQR. 
(c) Example images (Z-projections) for RNA-FISH staining for DEFA5 of big (>70 µm) and small (20-

40 µm) spheroids with (top) and without (lower) Hoechst counterstain visualization (Hoechst: cyan; 

RNA: yellow). Dashed line in images without Hoechst visualization represents spheroid border (scale 

bar 50 µm). 
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Supplementary figure 11 | Validation of CRC pheno-seq data by RNA-FISH and g-secretase 
inhibition  
(a, b, c) RNA-FISH example images of different spheroid size classes for differentiation marker TFF3 

(a) and cancer stem cell markers CD44 (b) and MYC (c) (plotted data also shown in Fig. 2e). Z-

projections for RNA-FISH staining of big (>70 µm) and small (20-40 µm) spheroids with (left) and 
without (right) Hoechst counterstain visualization (Hoechst: cyan; RNA: yellow). Dashed line in images 

without Hoechst visualization represents spheroid border (scale bar 50 µm). 

(d) Example images of CellTracker Red stained spheroids after 10 days in culture under different γ-

secretase inhibitor (PF-03084014) treatment conditions (scale bar 200 µm).  
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Supplementary figure 12 | Estimation of cell numbers from pheno-seq data using a high-
resolution reference dataset and data transformation 
(a) A two color (Hoechst and CellTracker Red) high-resolution 3D image reference dataset (10 

spheroids) is generated by using dual-view inverted selective plane microscopy (di-SPIM). 3D 

Segmentation and image analysis enables counting of nuclei and the calculated cell number – 

spheroid size relationship is used to estimate cell numbers from pheno-seq data.  

(b) Correcting for lost correlation of cell numbers and library complexity by approximating total mRNA 

abundances in spheroids of different sizes. Raw mRNA counts are divided by estimated cell numbers 

and the calculated minimal average mRNA count is used to transform the data by downsampling 

counts to 2300 counts per cell in the whole CRC phenoSeq dataset. This strategy results in a perfect 
correlation of cell numbers and mRNA counts (estimated cell number plotted against transformed 

mRNA counts).  

(c) Pearson’s correlation coefficients (r) distributions of gene expression and cell numbers for all 

13,868 genes before and after data transformation.  
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Supplementary figure 13 | Gene-specific and global correlation analysis of gene expression 
and estimated cell numbers after data transformation 
(a) Scatter plots of estimated cell numbers plotted against downsampled mRNA counts (see 

Supplementary Fig. 9 for data transformation) and associated Pearson’s correlation coefficients (r) for 

housekeeping gene ACTB and differentiation markers TFF3 and DEFA5. 

(b) Distribution of Pearson’s correlation coefficients (r) distributions of gene expression and cell 

numbers for all genes before and after data transformation subdivided into non-2 population genes 

(left) and 2-population genes (right) as identified by maximum likelihood inference (see Fig. 3).  
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