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Abstract 
3D-culture systems have advanced cancer modeling by reflecting physiological 

characteristics of in-vivo tissues, but our understanding of functional intratumor 

heterogeneity including visual phenotypes and underlying gene expression is still 

limited. Single-cell RNA-sequencing is the method of choice to dissect transcriptional 

tumor cell heterogeneity in an unbiased way, but this approach is limited in 

correlating gene expression with contextual cellular phenotypes. 

To link morphological features and gene expression in 3D-culture systems, we 

present ‘pheno-seq’ for integrated high-throughput imaging and transcriptomic 

profiling of clonal tumor spheroids. Specifically, we identify characteristic EMT 

expression signatures that are associated with invasive growth behavior in a 3D 

breast cancer model. Additionally, pheno-seq determined transcriptional programs 

containing lineage-specific markers that can be linked to heterogeneous proliferative 

capacity in a patient-derived 3D model of colorectal cancer. Finally, we provide 

evidence that pheno-seq identifies morphology-specific genes that are missed by 

scRNA-seq and inferred single-cell regulatory states without acquiring additional 

single cell expression profiles. We anticipate that directly linking molecular features 

with patho-phenotypes of cancer cells will improve the understanding of intratumor 

heterogeneity and consequently be useful for translational research. 
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Introduction  

Three-dimensional (3D) cell culture systems provide a physiologically relevant 

context for in-vitro testing, manipulation and high-throughput screening applications1. 

Mimicking the 3D-tissue environment thus holds great promise for future diagnostics2 

and the analysis of functional differences between tumor cells in a single patient 

(intratumor heterogeneity)3, a phenomenon increasingly recognized as an essential 

driver of tumorigenic progression, treatment resistance and relapse4.  

Single-cell 3D-culture combined with microscopy and molecular analyses appears as 

a key strategy for investigating cellular heterogeneity in-vitro as it enables analysis of 

clonal behavior in defined spatial and temporal conditions5,6. Ideally, the visual 

phenotype of the self-organizing multicellular complex (spheroids, organoids, etc.) 

reflects the characteristics of the primary tumor and consequently informs about the 

functional outcome of heterogeneous cancer cell states. While visual characteristics 

of 3D-cultures such as shape and size can be highly informative for classification of 

tumor subtypes and disease states2,7, most studies have so far focused on inter-

patient differences rather than heterogeneous behavior of cells derived from a single 

patient8. 

In primary samples, histopathology and associated visual observation of contextual 

cellular phenotypes in situ has been a common strategy for tumor classification and 

the analysis of intratumor heterogeneity for over a century9. However, the number of 

simultaneous molecular measurements is highly restricted with imaging-based 

methods or they require elaborated sample processing and highly complex 

experimental setups10,11. Recently developed methods for single cell RNA-seq 

(scRNA-seq)12,13 have greatly improved the analysis of intratumor heterogeneity by 

enabling the unbiased detection of transcript abundances in individual cells14–16 but 

these approaches do not provide a direct link to visual cellular phenotypes since the 

available protocols involve dissociation of cells and loss of their multicellular context. 

Alternatively, laser capture microdissection (LCM) enables the isolation of cells from 

histological slices by laser cutting, which has already been combined with low input 

gene expression profiling in archived frozen tissue17 and 3D cell culture systems18. 

Although this strategy maintains the spatial information of isolated cells, key 

limitations of LCM are the low throughput and diminished RNA sample quality. To 

circumvent these limitations, recent studies have demonstrated the direct 

combination of histopathology and RNA-seq on primary samples to spatially and 
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morphologically resolve transcriptional intratumor heterogeneity at a cellular 

resolution of 10-30 cells (spatial transcriptomics)19,20.  

Here, we present ‘pheno-seq’ to dissect morphological heterogeneity in 3D cell 

culture systems by directly combining clonal cell culture, imaging and transcriptomic 

profiling without the necessity of histological preparation. We developed an 

experimental and computational workflow for unbiased high-throughput pheno-seq, 

including automated dispensing and imaging of single spheroids in barcoded 

nanowells as well as an automated image processing pipeline. We demonstrate the 

power of pheno-seq in dissecting both cellular and molecular heterogeneity for 

established and patient-derived 3D-models of breast and colon cancer, respectively.  

Results 
Pheno-seq directly links spheroid morphologies to gene expression 
In breast cancer, normal epithelial cells undergo a stepwise transformation from local 

hyperplasia to premalignant carcinoma in-situ and invasive carcinoma21. Importantly, 

the switch from epithelial to invasive behavior requires gene expression programs 

that resemble those occurring during embryogenesis and wound healing, generally 

described as epithelial-to-mesenchymal transition (EMT)22.  

Single-cell-derived spheroids of the breast cancer cell line MCF10CA23 show a 

remarkable morphological heterogeneity when cultured in 3D, with cellular 

phenotypes reflecting characteristics of both carcinoma in-situ (‘round’ phenotype) 

and invasive carcinoma (‘aberrant’) (Supplementary Fig. 1a and b). To enable 

independent analysis of cells derived from both phenotypes, we developed a 

workflow to isolate single spheroids from reconstituted basement membrane 

(Matrigel) without perturbing their phenotypic identity (Fig. 1a and b). To functionally 

assess the observed heterogeneity, we reseeded and cultured cells from both 

phenotype classes independently which validated efficient isolation and revealed a 

high cell state stability (Supplementary Fig. 1c).  

As a reference dataset, we first generated and deeply sequenced microfluidics-based 

full-length scRNA-seq libraries of cells derived from both spheroid phenotypes 

independently (166 cells in total, Fig. 1c, Supplementary Table 1). Notably, this 

strategy does not provide a direct link between spheroid morphologies and gene 

expression as multiple spheroids needed to be pooled to acquire a sufficiently high 

number of input cells. 
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Figure 1 | pheno-seq enables direct image correlation and complements the identification of 
morphology-specific gene expression  
 (a) Brightfield images of clonal spheroids (MCF10CA phenotype classes ‘round’ and ‘aberrant’) after 
isolation from Matrigel (scale bar 50 µm). (b) Workflow overview for the isolation of clonal spheroids 
for inference of morphology-specific gene expression. (c) Indirect phenotype – gene expression 
correlation by scRNA-seq using single cells isolated from multiple spheroids with annotated 
morphology phenotype. (d) 2D tSNE visualization24 of 166 scRNA-seq (*cell-cycle corrected) full-
length expression profiles of cells from manually isolated round and aberrant spheroids with coloring 
based on manual phenotype annotation. (e) Same 2D tSNE visualization as shown in (d) but coloring 
based on PC scores for **HALLMARK_EMT gene set derived from the Molecular Signature Database 
(MSigDB)25.  (f and g) 2D tSNE visualization of 8 full-length manual pheno-seq profiles based on 
manually isolated single spheroids. Same coloring as shown in (d) and (e). (h) Number of genes 
detected in downsampled scRNA-seq and pheno-seq libraries (sc: scRNA-seq; M: manual pheno-seq; 
HT-DSP: high-throughput pheno-seq with dithio-bis(succinimidyl) propionate fixation; HT-control: HT-
pheno-seq bottom control). Numbers of samples indicated on x-axis under respective method. (i and 
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j) Selected genes only identified by manual pheno-seq and not by scRNA-seq (Differential expression 
analysis26: Fold change > 1.3; adjusted P-value < 0.1) and validation of phenotype-specific expression 
for SNAI2 (aberrant) and KRT15 (round). RNA-FISH for SNAI2: Plotted values reflect the faction of 
pixels that exceed the background threshold per spheroid. KRT15 immunofluorescence: Plotted 
values reflect mean pixel intensity per classified spheroid. Box plot center-line: median; box limits: first 
and third quartile; whiskers: min/max values. Numbers of samples indicated on x-axis under 
respective phenotype class. Indicated are P-values from unpaired two-tailed Students t-test. (k) High-
throughput (HT) pheno-seq workflow based on automated dispensing and confocal imaging of 
recovered spheroids in barcoded nanowells. (l) 2D tSNE visualization of 210 HT-pheno-seq 3´-end 
profiles with coloring based on image feature ‘circularity’. For better visualization, all circularity values 
below 0.8 were set to minimum in the color code scheme. (m) Same 2D tSNE visualization as shown 
in (l) with coloring based on PC scores for **HALLMARK_EMT gene set as shown in (e) and (g). (n) 
Circularity plotted per cluster (k-means clustering, k=2) as shown in (l). Violin-plot center-line: median; 
box limits: first and third quartile; whiskers: ±1.5 IQR. Indicated P-value from unpaired two-tailed 
Students t-test.  
 

 

Combined transcriptomic analysis by testing annotated and de-novo identified gene 

sets for coordinated expression variability24 and t-SNE visualization revealed two 

distinct clusters and a tight association of cells to their original phenotype class 

(Fig. 1d), whereas differential expression analysis26 identified biologically relevant 

expression patterns. Cells derived from aberrant spheroids are characterized by the 

expression of EMT related genes (Fig. 1e), including vimentin (VIM), Beta-Actin 

(ACTB) and fibroblast activating protein (FAP). In contrast, cells isolated from round 

spheroids showed higher expression of genes involved in adherence and formation 

of tissue structures including desmoglein 3 (DSG3) and keratin 16 (KRT16) 

(Supplementary Fig. 2a and 3a). In order to validate if we could accurately detect 

gene expression specific for invasive phenotypes, we used whole mount 

immunofluorescence (IF) of individual marker genes, in particular the EMT marker 

VIM and the cytoskeleton component ACTB (Supplementary Fig. 4a and b).  

We next tested whether expression profiling of manually isolated whole spheroids 

(manual pheno-seq) might serve as a complementary approach to identify 

transcriptional differences between clonal spheroid phenotypes. Notably, this 

approach directly links observed heterogeneous morphologies to underlying gene 

expression and provides more RNA material for cDNA library preparation. Profiling of 

only eight spheroids by manual pheno-seq yielded a similar phenotype-specific 

clustering defined by high and low expression of EMT-related genes (Fig. 1f and g, 

Supplementary Fig. 2b). While the sample number was approximately 20 times lower 

(166 single-cells vs. 8 single spheroids), the gene detection rate per sample was 

significantly higher compared to scRNA-seq (Fig. 1h), and differential expression 
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analysis revealed over 100 morphology-specific genes that could not be detected by 

scRNA-seq (Fig. 1i and j, Supplementary Fig. 3b). Although we detected more 

differentially expresses genes by scRNA-seq, most likely due to the much higher 

sample number, only pheno-seq identified the transcriptional EMT master regulator 

SNAI227 (aberrant) and keratin 15 (KRT15, round), a basal-myoepithelial marker in 

the mammary gland28 (Fig. 1i and j, Supplementary Fig. 3c).  

Phenotype-specific expression of SNAI2 and KRT15 was validated by RNA-FISH 

and immunofluorescence (IF), respectively (Fig.1i and j, Supplementary Fig. 4c and 

d). We reasoned that SNAI2 could not be identified by scRNA-seq due to its low 

expression (Supplementary Fig. 3c), a frequent phenomenon for transcriptional 

regulators29. Although KRT15 is one of the top markers for round spheroids detected 

by pheno-seq, the existence of residual KRT15+ cells in aberrant spheroids 

(Supplementary Fig. 4c) seemed to mask the identification of KRT15 as phenotype-

specific when single-cell profiles were analyzed. Remarkably, differential expression 

of KRT15 and SNAI2 could not be robustly restored from scRNA-seq data by 

generating synthetic pheno-seq profiles from averaged single-cell expression 

(Supplementary Fig. 2c and Supplementary Fig. 2d), indicating for the additional 

influence of dissociation bias30 on KRT15 mRNA abundance.  

In summary, pheno-seq provides the direct link between spheroid morphologies and 

underlying transcriptomes and complements scRNA-seq methods in identifying 

expression differences between heterogeneous spheroid phenotypes already with 

low sample numbers. 

 

High-throughput pheno-seq in barcoded nanowells enables combined 
quantitative analysis of image features and gene expression 
A major limitation of both scRNA-seq and manual pheno-seq is the non-quantitative 

and biased selection of spheroid phenotypes based on visual inspection by eye. In 

addition, increasing the number of spheroids per pheno-seq experiment is necessary 

to comprehensively understand associations between visual phenotypes and gene 

expression in a particular 3D-culture model. Therefore, we developed high-

throughput (HT) pheno-seq by repurposing the nanowell-based iCELL8 scRNA-seq 

system31, a platform for integrated imaging and gene expression profiling of single 

cells, for the processing of spheroid samples of up to 150 µm in size. Key 

modifications included cellular fixation32, altered chip setup, higher-resolution 
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microscopy, an automated image-processing pipeline and the ‘PhenoSelect’ software 

for interactive analysis and selection of spheroids for sequencing (Fig. 1k, 

Supplementary Fig. 5, 6 and 7). These substantial technical adaptions had only 

minor influences on the gene detection rate, which fell in between scRNA-seq and 

manual pheno-seq (Fig 1h, Supplementary Table 1). MCF10CA HT-pheno-seq 

yielded very similar results as described, with two distinct clusters driven by 

expression of genes involved in EMT (VIM+) as well as tissue formation (KRT15+) but 

at higher throughput per experiment (n = 210) compared to manual pheno-seq (Fig 1l 

and m, Supplementary Fig. 8a). Both pheno-seq methods show good concordance in 

identifying differentially expressed genes between spheroid phenotypes 

(Supplementary Fig. 8b), despite unbiased capture of spheroids by HT-pheno-seq as 

well as differences in sample size and library structure (3´-end vs. full-length, 

Supplementary Table 1). 

In contrast to scRNA-seq, HT-pheno-seq allows measurements of RNA abundance 

and image features from the same spheroid, which enabled straightforward 

association of genetic programs and complex visual phenotypes based on the 

fluorescence signal derived from a cytoplasmic dye (CellTracker Red). These 

included the morphology-related feature ‘circularity’, informing about (de)regulation of 

lobular development (Fig. 1l and n), and spheroid size, demonstrating a higher 

proliferative activity of epithelial-like cells (Supplementary Fig. 8c). In addition, pheno-

seq linked negatively skewed pixel intensity distributions to round phenotypes 

(Supplementary Fig. 8d), indicative of increased cell density in round 3D phenotypes 

that leads to an increased proportion of high pixel intensity values derived from the 

cytoplasmic signal. Hence, HT-pheno-seq represents a new method that directly and 

quantitatively links heterogeneous spheroid phenotypes to underlying gene 

expression in a single experiment.  
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HT-pheno-seq of a patient-derived colorectal 3D model links proliferative 
capacity to cell type-specific expression signatures 
We next set out to assess the functional correlation between visual phenotypes and 

gene expression in a physiologically relevant and patient-derived 3D model originally 

isolated from a liver metastasis of a colorectal cancer (CRC) patient. Similar to the 

phenotypic heterogeneity in the MCF10CA spheroids described above, functionally 

distinct subpopulations in 3D-cultures of CRC patients have previously been 

identified33. The reported heterogeneity in proliferative potential seems to be largely 

independent of mutational subclone diversity34, thereby supporting the presence of a 

differentiation-like hierarchy in CRC35. As reseeding of cells from different classes of 

spheroid sizes (20-40 µm and >70 µm) revealed significant differences in spheroid 

forming capacity (Supplementary Fig. 9a and b), we hypothesized that specific stem- 

and differentiation-related transcriptional signatures should underlie these 

heterogenous proliferative phenotypes. To investigate this hypothesis, we performed 

HT-pheno-seq based on clonal CRC spheroids cultured in an inverse pyramidal-

shaped microwell setup (Fig. 2a; Supplementary Fig. 9c).  

Analysis of relative gene expression differences between 95 HT-pheno-seq profiles 

and t-SNE visualization confirmed two transcriptionally distinct clusters (Fig. 2b). 

Image analysis of the respective spheroids revealed a strong difference in spheroid 

size composition between both clusters (Fig. 2c) that does not influence library 

complexity (Supplementary Fig. 10b). Differential expression analysis showed that 

the first cluster (‘small’ phenotype) is enriched for genes involved in ribosomal activity 

(GO_RIBOSOME, FDR q-value 2.41x10-45) as well as intestinal secretory lineage 

markers, including Trefoil Factor 3 (TFF3), KRT18 and SPINK436 (Fig. 2d). In 

contrast, the second cluster (‘big’ phenotype) is characterized by the expression of 

genes previously described to be involved in (i) stem cell maintenance (including 

CD44, MYC, NOTCH1, APP, MSI1 and ITGA6)36,37, (ii) the formation of cell-cell 

junctions (including EPCAM, CLDN4, CDH1) and (iii) WNT signaling (ZNRF3, LGR4, 

JUN) (Fig. 2d). The pattern of this signature showed a high overlap with genes 

correlated with the major intestinal stem cell marker LGR5, including CD44, APP and 

SMOC2 (Fig. 2f, Supplementary Fig. 10a). We validated sphere size-dependent 

expression for selected lineage-specific markers by quantitative RNA-FISH (Fig. 2e, 

Supplementary Fig. 11a-c). 
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Figure 2 | pheno-seq of a 3D model of colorectal cancer links heterogeneous proliferative 
phenotypes to expression signatures enriched for cell type-specific markers 

(a) Clonal 3D-culture in inverse pyramidal shaped microwells and recovery strategy for HT-pheno-seq 
of patient-derived CRC spheroids isolated from a liver metastasis. Yellow and purple indicate 
heterogeneous subpopulations with functional differences in proliferative potential33. (b) 2D tSNE 
visualization of 95 HT-pheno-seq expression profiles. Coloring by sphere size (pixel). (c) Spheroid 
size plotted per cluster. Violin-plot center-line: median; box limits: first and third quartile; whiskers: ±1.5 
IQR). Indicated P-value calculated from unpaired two-tailed Students t-test. (d) Heatmap reflecting 
differential expression analysis of identified clusters in (b). Selected genes are listed beside the 
heatmap; Fold change > 1.5; adjusted P-value < 0.05; *P < 0.05, **P < 0.01, ***P < 0.001; ‘small’ 
cluster1: 313 differentially expressed genes; ‘big’ cluster: 130 differentially expressed genes. (e) 
Validation of pheno-seq by quantitative RNA-FISH for size-dependent differentiation marker TFF3 and 
stem cell markers CD44/MYC, and for size-independent Paneth-cell marker DEFA5. Plotted values 
reflect the pixel fraction that exceeds the background threshold per spheroid (Box plot center-line: 
median; box limits: first and third quartile; whiskers: min/max values; P-values from unpaired Students 
t-test, ns: non-significant. Numbers of samples n indicated on x-axis under respective class). 
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(f) PAGODA RNA-seq analysis of CRC spheroid HT-pheno-seq data. Dendrogram indicates overall 
clustering and the rows below represent top four significant aspects of heterogeneity based on 
HALLMARK/GO gene sets derived from the MSigDB and on de-novo identified gene sets. High aspect 
scores (PC Scores) correspond to high expression of associated gene sets. Expression patterns 
below reflect top 10 loading genes for selected gene sets that are associated with respective aspects. 
Bottom: Expression pattern of top genes most highly correlated with stem cell marker LGR5 and 
Paneth marker DEFA5 (Pearson’s correlation) (g) Example images (Z-projections) for RNA-FISH 
staining of Paneth-cell marker DEFA5 corresponding to data shown in (e). DNA (Hoechst) 
counterstain visualization (Hoechst: cyan; RNA: yellow; scale bar 50 µm). 
 

 

 

In the cluster enriched for big spheres, we identified several genes related to the γ-

secretase machinery (Fig. 2d), a key component of the NOTCH pathway and target 

of new therapies aiming to disrupt cancer stem cell signaling38. Importantly, selective 

targeting of the γ-secretase by a small molecule inhibitor in concentration ranges that 

have been shown to force colonic stem cells into differentiation39 showed a inhibitory 

effect on spheroid growth (Supplementary Fig. 11d). This finding suggests a similar 

signaling dependency of the normal and transformed intestinal stem cell niche and 

shows the potential of pheno-seq to identify relevant signaling components required 

for cellular proliferation. 

Moreover, we determined an expression signature primarily driven by the expression 

of Paneth cell markers DEFA5 and DEFA6 that is independent of the size-related 

clusters shown above (Fig. 2f, Supplementary Fig. 10a). Paneth cells represent a 

post-mitotic secretory subpopulation at the bottom of intestinal crypts that serves as 

niche for LGR5+ stem cells39,40. In line with pheno-seq results, we validated high-

expressing DEFA5+ cells as rare subpopulation with spheroid size-independent 

relative expression by RNA-FISH (Fig. 2e and g, Supplementary Fig. 10c). It has 

been shown previously that the percentage of functionally different subpopulations 

remains stable over several rounds of replating, suggesting that the composition of 

cells in continuously growing spheroids remains stable33. Consequently, for a cellular 

subtype with limited proliferative potential within the putative CRC differentiation 

hierarchy, we would have expected a similar association of relative expression and 

size for DEFA5+ cells as observed for the TFF3+ secretory signature above. 

However, as we could detect several big spheres with very high numbers of DEFA5+ 

cells, we suggest that Paneth-like cells exhibit a heterogeneous proliferative 

phenotype (high- and low-cycling) that might relate to the delayed-contributing 

subpopulation in CRC previously described33. Thus, pheno-seq is able to directly 
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assign heterogeneous proliferative phenotypes to expression signatures enriched for 

specific intestinal cell-type markers. 
 

Single-cell deconvolution by combining image analysis and maximum 
likelihood inference 
The pheno-seq method enables the direct association of spheroid morphologies and 

gene expression. However, this ability comes at the cost of lower cellular resolution. 

The gene expression signatures identified from CRC spheroids inform about general 

phenotype-specific expression and trends in subtype composition but might derive 

from multiple cellular subtypes present within the same spheroids. While these 

results are highly valuable for understanding growth behavior in clonal cell culture 

systems, obtaining ‘real’ single-cell information from pheno-seq data would be of high 

relevance to distinguish between genes that are generally associated with spheroid 

phenotypes and those who are robustly expressed in a single-cell subpopulation. 

Therefore, we aimed to computationally infer single-cell regulatory states by 

deconvolution of gene expression data using both image analysis and a maximum 

likelihood inference approach.  

First, we generated a 3D high-resolution imaging reference dataset by light-sheet 

microscopy from spheroids of different sizes, which we used to determine the 

relationship of spheroid size and nuclei counts to estimate cell numbers from CRC 

spheroid pheno-seq imaging data (Supplementary Fig. 12a). As the original pheno-

seq data exhibited a low correlation between library complexity and estimated cell 

numbers, we downsampled the data to achieve a constant number of mRNA counts 

per estimated single cell content (Supplementary Fig. 12b). As expected, this 

transformation introduces a positive overall shift of correlations between gene 

expression and cell numbers (Supplementary Fig. 12c), which can be mainly 

explained by housekeeping genes with a constant number of mRNA molecules per 

cell (Supplementary Fig. 13a). However, heterogeneously expressed genes such as 

the differentiation markers TFF3 and DEFA5 do not exhibit any correlation with cell 

numbers (Supplementary Fig. 13b and c), validating our normalization approach. 
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Figure 3 | Single-cell deconvolution of CRC spheroid pheno-seq data by maximum likelihood 
inference identifies PROX1 as potential CRC stem cell marker. 
(a) Concept of adapted maximum likelihood approach41 based on estimated cell numbers and 
transformed pheno-seq data (n = 95): 1) Acquired and transformed pheno-seq data based on 
estimated cell numbers build a distribution of measurements for inference by the model. Coloring of 
cells in spheroids: red = stem-like; cyan = differentiated. 2) Assumptions on single cell distributions: 
Model of heterogeneous gene regulation in which single cells are supposed to exhibit gene expression 
at low (Pop I) or high (Pop II) levels with a common coefficient of variation. The four parameters of the 
model are the log-mean expression for each subpopulation (𝜇1 and 𝜇2), the proportion of cells in the 
high subpopulation (𝐹), and the common log-SD of expression (σ). 3) Based on the model in step 2, a 
likelihood function is derived that takes different numbers of cells per spheroid into account. The 
likelihood function is then maximized by searching through the four parameters of the model to identify 
those that are most likely given the experimental observations. 4) These four parameters define the 
inferred single cell distributions of the low and high-level populations. (b) 1,012 genes show an 
improved two-population fit compared to a one population fit (BIC: Bayesian information criterion). 
Densities of the means of the first (Pop I: low regulatory state) and second population (Pop II: high 
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regulatory state) for all identified 1,012 genes. (c) Frequency distribution of cells with high regulatory 
state (Pop II) of identified 1,012 genes. (d) Gene set enrichment analysis for two-population genes 
based on Hallmark gene sets derived from the MSigDB. Bar plot showing top enriched gene sets 
ranked by FDR q-values. (e) Venn-diagram showing overlap between identified two-population genes 
and murine small intestinal stem cell signature from scRNA-seq study36. Selected genes are listed 
below ordered by mean for high-state population Pop II (Mean2). (f) Scatter plots for PROX1 
expression plotted against estimated cell numbers (upper) and against expression of major intestinal 
stem cell marker LGR5 (lower) as well as associated Pearson’s correlation coefficients (r). (g) RNA-
FISH co-staining of CRC spheroids for PROX1 (Atto550) and DEFA5 (Alexa488) and Hoechst 
counterstaining for visualization of DNA. Merged images: DNA: cyan; DEFA5 yellow; PROX1: red. 
Images represent Z-projections (scale bar 30 µm and 10 µm for magnified merged image).   
 

 

 

To identify genes whose expression was likely to be informative for heterogeneous 

single-cell regulatory states, we used a maximum likelihood inference approach 

initially developed to deconvolve cell-to-cell heterogeneities from random 10-cell 

samples41 (Fig. 3a). The adapted algorithm uses the estimated cell numbers per 

spheroid to fit two log-normal distributions (LN-LN model) to given ‘mixed-n’ datasets 

in order to identify genes with bimodal expression pattern at the single-cell level 

(Stochastic Profiling, see Methods). Importantly, this approach unbiasedly pinpoints 

genes that show a heterogeneous and robust expression within spheroids at the 

single-cell level, instead of comparing gene expression between spheroids.  

Whilst the deconvolution technique assumes that cellular subtypes are identically 

distributed across samples, pheno-seq is based on clonal spheroids whose cell 

number, subtype composition and expression profile is dependent on the state of the 

founding cell. Based on the cancer stem cell model and the CRC differentiation 

hierarchy confirmed above, we assume that continuously growing spheroids (‘big’ 

phenotype) harbor all cellular subtypes present in this system, including stem-like 

cells, whereas small spheroids with limited proliferative capacity and low cell 

numbers are more homogeneous and contain only differentiated subtypes. Thus, 

inferred regulatory states should be enriched for genes specific for the stem-like 

compartment, as these represent a major source of heterogeneity across all 

spheroids at the single-cell level.  

Deconvolution of the entire CRC pheno-seq dataset revealed 1,012 genes that show 

an improved two-population fit compared to a one-population fit, assessed by the 

Bayesian information criterion (BIC) to calculate the quality of the fit relative to the 

number of inferred parameters (Fig. 3b). Most of the fits resulted in a highly- 

expressing cellular fraction of 5 – 15% (Fig. 3c) thereby matching the proportion of 
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cells with spheroid forming capacity in this model33. Interestingly, the positive shift of 

correlations between gene expression and cell numbers (before and after 

downsampling) is much more pronounced in the set of two-population genes 

compared to the set of non-two-population genes (Supplementary Fig. 13d), 

suggesting that many of the inferred two-population genes are involved in 

proliferative potential. Indeed, gene set enrichment analysis reveals a high proportion 

of MYC targets as well as genes involved in the regulation of cell growth and 

proliferation (Fig. 3d). In addition, high enrichment of genes involved in oxidative 

phosphorylation indicates for heterogeneous mitochondrial activity at the single-cell 

level, a phenomenon recently described for intestinal stem cells and niche-forming 

Paneth cells in the small intestine42. Strikingly, a high number of identified genes are 

overlapping with a recently identified stem cell signature of the small intestine 

revealed by massively parallel scRNA-seq36, including SMOC2, APP, PRMT1, 

RGMB, MAPK1 and CTNND1, respectively (Fig 3e).  

Here, we identified the transcriptional regulator PROX1 as gene with a high 

population (Pop II) mean (Fig. 3e) that is strongly correlated with cell numbers and 

with expression of the major stem cell marker LGR5 (Fig. 3f). In addition, PROX1 top 

correlated genes exhibit a strong overlap with the signature defining big spheres 

when relative gene expression differences between spheroids were analyzed 

(Supplementary Fig. 10a). In the normal intestinal epithelium, PROX1 is expressed in 

the enteroendocrine lineage43. However, two studies based on mouse tumor models 

suggest a role for PROX1 in cancer stem cell maintenance and metastatic 

outgrowth44,45. In line with these observations, we validated PROX1+ cells by RNA-

FISH as a rare subpopulation in a patient-derived human tumor model (Fig. 3g). 

Furthermore, PROX1+ cells are framed by DEFA5+-positive Paneth-like cells, 

suggesting a similar niche dependency for normal stem cells and CRC stem-like cells 

at distant sites of neoplasia. Taken together, gene expression deconvolution of 

pheno-seq data provides information about gene expression patterns at the single 

cell level even without acquiring additional single cell expression profiles. 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2018. ; https://doi.org/10.1101/311472doi: bioRxiv preprint 

https://doi.org/10.1101/311472
http://creativecommons.org/licenses/by-nd/4.0/


 16 

Discussion 
As applications of 3D-cultures are emerging even into clinical settings2, there is 

increasing need to directly combine unbiased gene expression profiling with in situ 

imaging to understand heterogeneous oncogenic phenotypes, similar to spatial 

transcriptomics in primary tumor samples19,20. 

In this study, we present pheno-seq as new and complementary approach that 

directly combines high-throughput imaging and next generation sequencing to 

explain heterogeneous morphologies of clonal tumor spheroids. At the same time, 

pheno-seq bridges the gap between single-cell and bulk expression profiling and 

complements scRNA-seq in identifying heterogeneous gene expression. In principle, 

pheno-seq can be applied to any 3D-culture system given that the phenotypic identity 

is maintained upon spheroid isolation. For example, morphologies of organoids 

derived from patients with pancreatic ductal adenocarcinoma can be linked to the 

state of malignant transformation and prognosis46. We expect that this combination of 

functional single cell growth assay with combined image and gene expression 

profiling will be widely applied in cancer biology, ranging from primary to circulating 

tumor cells (CTCs47).  

Importantly, we show that pheno-seq is able to link cell type-specific genes to 

heterogeneous growth phenotypes even in highly complex cell culture systems. In 

addition, we show that deconvolution by maximum likelihood inference provides an 

additional layer of information by revealing single-cell regulatory states that are likely 

to be associated with a distinct stem-like population, thereby further supporting a 

differentiation-like hierarchy in CRC. Based on our results, future studies should shed 

light on additional functional characteristics and dependencies of the stem-like 

compartment, the implication of the heterogeneous growth phenotype of Paneth-like 

cells, potential cancer cell plasticity and the impact of subtype-specific metabolic 

preferences. Similar to a recent study integrating scRNA-seq and spatial 

transcriptomics48, complementary single-cell-derived information might be added to 

further deconvolve cell type compositions in pheno-seq expression profiles. 

We envision pheno-seq to become even more powerful with increasing resolution 

and content of imaging, employing enhanced 3D-image acquisition, integrated 

staining by IF or live-dyes, and time-lapse microscopy, respectively. Pheno-seq can 

also be easily extended to other low-input, next-generation sequencing modalities 

such as chromatin accessibility sequencing49. Furthermore, pheno-seq might be 
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applied to pooled-screening approaches50 or to resolve transcriptional changes that 

are associated with morphological transitions in non-synchronized developmental 

processes. Thus, pheno-seq will widely impact the way how we study functional 

heterogeneity in a variety of biological and clinical applications.  
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Methods  
Breast cancer model MCF10CA 

Cell culture 
For 2D cell culture, the cell line MCF10CA1d clone 1 (acquired from The Barbara 

Ann Karmanos Cancer Institute), a transformed derivative of the MCF10A 3D-culture 

model for acinar morphogenesis of the mammary gland, was routinely passaged in 

25 cm2 culture flasks (greiner bio-one). Cells were cultured in growth medium 

consisting of DMEM/F12 medium supplemented with 5% horse serum, 10 µg/ml 

Insulin (Life Technologies), 20 ng/ml EGF, 0.5 mg/ml hydrocortisone and 100 ng/ml 

Cholera toxin (Sigma). Cells were passaged at approximately 80% confluency with 

0.05% Trypsin (Life Technologies). The cell line was authenticated using a Multiplex 

human Cell line Authentication test (http://www.multiplexion.de/). 

For 3D ‘on top’ assays, cells were cultured in assay medium (growth medium with 

only 2% horse serum and 5 ng/ml EGF) in 24-well cell culture plates (greiner bio-

one). As a basement membrane surrogate, a bed of laminin-rich hydrogel (Matrigel®, 

Corning) was generated by adding 70 µm cold Matrigel into the center of pre-wetted 

wells. The Matrigel bed was then dried for 20 min at 37oC. For single-cell seeding, 

2D cultures were dissociated into single-cell suspensions, washed once in assay 

medium, passed through a 35 µm strainer and counted by a LUNATM automated cell 

counter (Logos Biosystems). Subsequently, 4000 cells were seeded per well in 

400 µl assay medium with 5% Matrigel by adding cell suspensions in a 45o angle to 

the wall of the well, which resulted in uniform distribution of single-cells throughout 

the well. Medium was replaced every 3 days and cells cultured for up to 12 days. All 

scRNA-seq and pheno-seq experiments were carried out after 5 days in 3D-culture.  

 

Spheroid recovery from hydrogel  
After MCF10CA cells were cultured in 3D for 5 days, medium was removed from 

wells and 500 µl filtered and pre-warmed Dispase (Sigma) was added. The hydrogel-

matrix was detached from wells by scratching over the well bottom with a 1000 µl 

pipette tip and the whole Dispase-Matrigel suspension was carefully resuspended 

five times. Afterwards, spheroids were incubated at 37oC for 7 min. Spheroids were 

then transferred to a 15 ml falcon and 5 ml assay medium was added and 

resuspended slowly with a 5 ml pipette. Subsequently, spheroids were spun down 
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(300 g, 3 min) and resuspended in DMEM (Life Technologies). We do not 

recommend using PBS due to perturbation of spheroid morphology. In general, this 

procedure resulted in approximately 2000 isolated spheroids per well.  

 

Spheroid isolation and dissociation to single-cell suspensions 
In order to isolate and classify individual MCF10CA spheroids prior to dissociation, 

suspensions were diluted to 100 spheroids per ml in assay medium and distributed 

into GravityTRAPTM ultra-low attachment 96-well plates (PerkinElmer, 10 µl per well). 

Plates were centrifuged for 2 min at 250 g. The V-shaped wells with 1 mm diameter 

flat-bottom for efficient classification (round vs. aberrant) of spheroids with 10x or 20x 

objectives of an inverted brightfield microscope. After 30-40 spheroids had been 

isolated and identified for each class, 50 µl Accumax (Sigma) was added to each well 

followed by an incubation of 10 min at 37oC. To stimulate dissociation, shear forces 

were applied by resuspending wells of one class with a 200 µl pipette without 

changing the tip. After a second incubation of 5 min at 37oC, wells of one class were 

pooled in 1.5 ml microcentrifuge tubes, spun down at 300 g for 3 min and 

resuspended in either assay medium or DMEM/F12.   

 

Reseeding assay 
For independent reseeding of round and aberrant 3D phenotypes, 30-40 spheroids 

were isolated, dissociated and pooled as described above. A 10 µl Matrigel bed was 

prepared during dissociation in 15µ angiogenesis slides (Ibidi). After centrifugation, 

cells were resuspended in 50 µl assay medium (+ 5% Matrigel) and added to pre-

treated angiogenesis slides. Medium was replaced every 3 days and cells were 

cultured for up to 6 days. 

 

Single-cell capture, mRNA library preparation and sequencing 
For single-cell RNA sequencing experiments, spheroids were dissociated as 

described above and resuspended in DMEM/F12 medium. Capture, full-length cDNA 

synthesis and amplification was performed on the C1 Single-Cell Auto Prep IFC 

(Fluidigm). Cells at a concentration of 350 cells/µl were mixed with C1 Cell 

Suspension Reagent (Fluidigm) at a ratio of 4:1 immediately before loading on the 

IFC. Single-cell capture was assessed with an inverted brightfield microscope. 

Workflow and reagents for single-cell RNA extraction, reverse transcription (RT) and 
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mRNA amplification (18 cycles) were used as described in the SMARTer Ultra Low 

RNA Kit (for Fluidigm C1). Sequencing libraries were generated with the Nextera XT 

kit (Illumina) according to an adapted Fluidigm protocol. Concentration and quality of 

cDNA and sequencing libraries was assessed by a fluorometer (Qubit) and by 

electrophoresis (Agilent Bioanalyzer high sensitivity DNA chips). Libraries of up to 24 

cells were pooled and sequenced as 1 × 50-bp reads on an Illumina HiSeq 2000 

machine.  

 

Manual pheno-seq workflow, library preparation and sequencing 
For manual pheno-seq, suspensions were diluted to 500 spheroids per ml in DMEM 

and 2 µl was carefully dispensed to the wall of the well of GravityTRAPTM 96-well 

plates followed by vertical tapping of the plate. Wells with single spheroids were then 

microscopically classified. For RNA extraction with the Arcturus PicoPure kit 

(ThermoFisher), 50 µl extraction buffer was directly added to 96-wells, incubated for 

2 min at RT and then transferred to 1.5 ml LoBind microcentrifuge tubes (Eppendorf). 

RNA was isolated as described in the PicoPure Kit (Appendix B and Section 4B.2) 

including on-column DNase digestion (Appendix A, RNase-Free DNAse Set, 

Qiagen). RNA was eluted in Nuclease-free water (~10 µl) and used as input for full-

length cDNA synthesis and amplification (16 cycles) by the SMART-Seq® v4 Ultra 

Low Input RNA Kit for sequencing (TakaraBio). Sequencing libraries were generated 

with the Nextera XT kit (Illumina) as described in the SMART-Seq® v4 protocol. 

Concentration and quality of cDNA and sequencing libraries was assessed by a 

fluorometer (Qubit) and by electrophoresis (Agilent Bioanalyzer high sensitivity DNA 

chips). Ten libraries were pooled and sequenced as 1 × 50-bp reads on an Illumina 

HiSeq 2000 machine.  

 

High-throughput pheno-seq workflow, library preparation and sequencing 
For high-throughput (HT-)pheno-seq, we adapted and improved the nanowell-based 

Wafergen iCELL8 scRNA-seq system, that integrates imaging and gene expression 

profiling of big samples of up to 100 µm51. First, spheroids were stained 3 hours with 

10 µM CellTrackerTM Red CMTPX dye and 1 µg/ml Hoechst 33258 (ThermoFisher). 

Afterwards, spheroids of six wells were recovered as described above and washed 

once with 7 ml DMEM (Life Technologies). Only three wells were pooled per 15 ml 

falcon tube for centrifugation. The reversible cross-linker dithio-bis(succinimidyl 
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propionate) (DSP) was prepared for cellular fixation as previously described32 and 

directly filtered through a 10 µm strainer (PluriSelect). Spheroids were resuspended 

in 400 µl DSP and incubated for 30 min at room temperature. After fixation, spheroids 

were washed two times with cold PBS (centrifugation at 650 g and 500 g, 3 min, 4oC) 

and then resuspended in 650 µl cold PBS with 1x second diluent (for iCELL8 TM) and 

0.4 U/µl recombinant RNase Inhibitor (TakaraBio). Spheroids were dispensed into a 

barcoded 5184-nanowell chip with the iCELL8 Single-Cell System (TakaraBio) as 

described in the Rapid Development Protocol (in-chip RT-PCR amplification). As a 

control, we first dispensed, imaged and processed one chip without cellular fixation 

using the default settings, the standard microscope and provided CellSelectTM 

software.  

For improved HT-pheno-seq we applied the following modifications: Between the 

three dispensing intervals, wells in the 384-well source plate were stirred with a 

200 µl pipette tip just before intake of suspensions with the dispensing heads in order 

to minimize settling of spheroids and to enable even distribution in nanowells. Similar 

to the standard single-cell protocol, the iCELL8 chip was tightly sealed with a strongly 

adhesive imaging foil (TakaraBio). Instead of spinning cells to the bottom, spheroids 

were centrifuged upside-down to the foil (700 g, 5 min, 4oC) in order to reduce the 

working distance and to avoid light reflections deep inside the well during imaging. To 

further enhance imaging resolution, we used an inverted confocal laser-scanning 

microscope (Leica SP8) with a 10x objective (2x2 wells per field of view) instead of 

the standard and system-integrated fluorescence wide-field microscope with 4x 

objective (6x6 wells per field of view). Afterwards, spheroids were centrifuged to the 

bottom (700 g, 5 min, 4oC) and chips were frozen at -80oC. The PhenoSelect 

software pipeline was used for image processing as well as spheroid detection and 

interactive selection (for more detailed description of microscopy, image pre-

processing and PhenoSelect see below). A ´filter file´ generated by PhenoSelect was 

used to dispense reagents only in selected nanowells as described in the Rapid 

Development Protocol (TakaraBio), with the exception that we adjusted the amount 

of Triton-X100 to a final well concentration of 1% for spheroids lysis. The timing of 

spheroid recovery and consequently the maximum spheroid size (that correlates with 

the number of cells per spheroid/well) should not exceed 100 µm as this might 

negatively influence RT efficiency. In addition, lysis reagents, concentration and 

duration might have to be adjusted for different culture models.  
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After in-chip reverse transcription and cDNA amplification (18 cycles), barcoded 

cDNA was pooled and processed to 3´-end sequencing libraries by the Nextera XT 

kit (Illumina) with specific adaptions described in the Rapid Development Protocol. 

Concentration and quality of cDNA and sequencing libraries was assessed by a 

fluorometer (Qubit) and by electrophoresis (Agilent Bioanalyzer high sensitivity DNA 

chips). Improved HT-pheno-seq paired-end iCELL8 libraries (21 + 70) were 

sequenced on an Illumina NextSeq 500 machine in high-output mode. The ‘bottom 

control’ chip without improved imaging was sequenced on a HiSeq 2000 machine 

with similar settings. However, this control was only used to assess library quality 

and not for further downstream analysis.  

 

Colon TICs spheroids 

Cell culture 
Primary patient-derived colon tumor spheroid cultures were established as described 

previously33. Primary human colon cancer samples were obtained from Heidelberg 

University Hospital in accordance with the declaration of Helsinki. Informed consent 

on tissue collection was received from each patient, as approved by the University 

Ethics Review Board. The culture used in this study was derived from a liver 

metastasis.  Cells were cultured in 75 cm2 ultra-low attachment flasks in advanced D-

MEM/F-12 medium supplemented with Glucose (0.6%), 2 mM L-glutamine (Life 

Technologies), 4 μg/ml heparin, 5 mM HEPES, 4 mg/ml BSA (Sigma), 10 ng/ml FGF 

basic and 20 ng/ml EGF (R&D Systems). Growth factors were added every 4 days 

and medium was exchanged every 4-8 days. For dissociation to single-cell 

suspensions, spheroid cultures were centrifuged for 5 min at 900 rpm and 

resuspended in 2-4 ml 0.25% Trypsin (Life Technologies). To stimulate dissociation, 

shear forces were applied with a 1000 µl pipette every 5 min for 20 min in total. 

Subsequently, 4-8 ml stop solution (PBS with 20% heat inactivated and sterile filtered 

fetal bovine serum, Life Technologies) was added and cells were centrifuged for 

5 min at 900 rpm. For passaging, cells were then resuspended in medium, passed 

through a 40 µm strainer and counted. 

 

Reseeding assay 
To isolate, dissociate and reseed cells from big (70-100 µm) and small (20-40µm) 

spheroids independently, we cultured colon spheroids for 10 days and performed a 
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stepwise size exclusion by (reverse-) filtering with standard 100 µm, 70 µm, 40 µm 

and 20 µm cell strainers, respectively. Spheroids were dissociated to single-cell 

suspension as described above but passed through a 15 µm cell strainer and 

counted. Afterwards, 50,000 cells were seeded in 60 mm Ultra Low Attachment 

Culture Dishes (Corning). Growth factors were added every 4 days and cells cultured 

for 10 days. Culture dishes were shaken every day to avoid clustering of spheroids.  

 

Inhibitor assay 
The g-secretase inhibitor PF-03084014 (Sigma) was dissolved in sterile and distilled 

water to a stock concentration of 1 mM. To assess the influence of the inhibitor on 

spheroid growth, cells were dissociated as described above and 20,000 cells were 

seeded in 24-well ultra-low attachment plates (Corning) in the presence of the 

inhibitor at final concentrations of 5, 10 or 20 µM. In addition, we included a solvent 

control for the maximum amount of added water (20 µl). Growth factors were added 

every 4 days and cells cultured for 10 days.  

 

Single-cell culture and HT-pheno-seq of colon tumor spheroids 
For single-cell cultures of colon tumor cells, spheroids were dissociated to single-cell 

suspensions, passed through a 15 µm cell strainer and counted. Cells were cultured 

in AggrewellTM400 6-Well plates (StemCell Technologies) in which each well contains 

a standardized array of around 7000 inverse pyramidal shaped microwells with a size 

of 400 µm. For seeding, wells were pre-treated according to the manufacturer´s 

instructions, washed once with PBS and once with medium. Subsequently, 3500 

cells in 3 ml medium were added in a 45o angle to the wall of the well, which resulted 

in uniform distribution of single-cells in microwells after settling. Growth factors were 

added every 4 days and cells were cultured for 10 days, resulting in 300-400 

spheroids (>20 µm) per 6-well. Spheroids from 4-6 plates (24-36 wells, 168,000-

252,000 microwells) were harvested, pooled and washed once with FluoroBrite 

DMEM (Life Technologies, 900 rpm for 5 min).  

HT-pheno-seq was performed as described for MCF10CA spheroids above, but with 

following modifications: In contrast to MCF10CA spheroids, colon spheroids did not 

require DSP fixation because spheroid recovery does not involve contact loss from 

reconstituted basement membrane (Matrigel). To minimize disassembly of spheroids 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2018. ; https://doi.org/10.1101/311472doi: bioRxiv preprint 

https://doi.org/10.1101/311472
http://creativecommons.org/licenses/by-nd/4.0/


 6 

during processing, cells were resuspended and dispensed in FluoroBrite DMEM 

instead of PBS.  

 

Microscopy and image analysis 

Image processing and analysis 
Generally, acquired microscopy images were processed and analyzed using KNIME 

Image Processing (https://www.knime.com/community/image-processing, Version 

3.2.1), ImageJ (https://imagej.nih.gov/ij/), R (Version 3.3.1)/R studio 

(https://www.rstudio.com/) and/or Graph Pad Prism 7 (https://www.graphpad.com 

/scientific-software/prism/). Generally, the ggplot2 package implemented in R and 

Graph Pad Prism 7 were used for data visualization and the PhenoSelect webtool 

design is based on the shiny package (https://shiny.rstudio.com). More detailed 

information on image analysis can be found in the supplementary information file and 

in associated KNIME workflows deposited in the pheno-seq github repository 

(https://github.com/eilslabs/pheno-seq). 
 

Assessing single-cell seeding efficiency 
Wells with Hoechst 33258 (1 µg/ml) and CellTracker Red CMPTX (10 µM)-stained 

single-cells wells were imaged with a 10x/0.30 air objective (Leica HC PL FLUOTAR) 

of a confocal laser-scanning microscope (Leica SP8) one hour after seeding. 

MCF10CA (24-well) and colon tumor cell (6-well AggreWell400) images (three 

independent wells) were analyzed with custom made KNIME image analysis 

workflows to count seeded cell singlet and doublets.  

 

Reseeding assay 
For both MCF10CA and CRC 3D cultures, images were acquired on a Zeiss LSM780 

Axio Observer confocal microscope equipped with a 10x/0.3 air objective (Zeiss EC 

PLAN-NEOFLUAR) in brightfield. 

For quantification of ‘round’ and ‘aberrant’ phenotypes in MCF10CA 3D-cultures we 

used the random-forest based machine learning software ilastik52. A training dataset 

for the ‘Pixel classification’ option was first generated on randomly seeded and 

cultured spheroids, whereas classification was based on images derived from 

independently reseeded cells from round and aberrant 3D phenotypes. Classification 
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was performed in a custom KNIME workflow by applying the trained model to each 

image. 

For reseeded colon tumor cells derived from defined size classes ´big´ (70-100 µm) 

and ´small´ (20-40 µm), 8x8 images per well of the grown spheroids were 

automatically acquired in 6-well plates (Greiner) using a custom Zeiss VBA macro. 

All images were analyzed using a custom KNIME workflow to measure spheroid 

counts per condition.  

 

g-secretase inhibitor assay 
Treated and cultured (10 days) spheroids were stained with CellTracker Red CMPTX 

(10 µM) for 3 hours prior to imaging with a Leica SP8 confocal laser-scanning 

microscope equipped with a 10x/0.30 air objective (Leica HC PL FLUOTAR). 5x5 

images per well (10 Z-stacks per position) were acquired automatically using the 

TileScan option that directly stitches acquired images to one final composite image 

specifically for each well. Stiched CellTracker Red images were analyzed using a 

custom KNIME workflow to quantify the average spheroid size per condition.  

 

HT-pheno-Seq microscopy, image processing and PhenoSelect 
For inverted imaging, 5184-nanowell chips were fixed on a metallic Chip Spinner 

(TakaraBio) with adhesive tape and placed into a standard plate holder. All wells 

were imaged upside-down automatically using an inverted Leica SP8 confocal 

microscope system. We used a 10x/0.30 air objective (Leica HC PL FLUOTAR) but 

images were acquired with 0.9x digital zoom to span 4 wells per field of view. 

Excitation was set to 405 and 552 nm and emission filter were set to receive signals 

between 415 – 485 nm (Hoechst) and 555 – 625 nm (CellTracker Red), respectively. 

Laser intensity and gain were adapted for every experiment, but the pinhole was set 

to 5.0 Airy Units permanently. The ´predictive focus´ option was used to extrapolate 

the correct focus position for each well. One image contained 512x512 pixels, with 

2.53 μm pixel size. A pre-defined HCS A template of the LAS X microscope software 

(Leica) was used for the grid design matching the chip dimensions. Scanning of one 

chip with these settings took approximately 30 minutes, resulting in 2 x 1296 images. 

The first part of the PhenoSelect image analysis workflow (KNIME/ImageJ) was used 

for assigning images to their correct well positions, image cropping, spheroid 

detection and segmentation as well as feature extraction and quantification.  
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The second part (PhenoSelect, Supplementary Figure 4 and 10) was used for 

interactive analysis and final selection of wells with a web-based shiny app: The 

saved .csv file containing spheroid statistics was automatically handled by a custom 

R script and embedded together with the images in an interactive R/shiny application 

(PhenoSelect). This allows manual browsing through the acquired images and 

visualization of spheroids together with their respective image feature statistics. 

Moreover, the application allowed for visual inspection of the given image features 

over the whole population, allowing the identification of specific subtypes, e.g. by a 

particular shape or size. To characterize absolute spheroid sizes, the respective 

major axis length value (in pixels) was multiplied with the physical length of a pixel in 

the segmented object. Subtypes of spheroids can be selected by applying different 

sets of thresholds (e.g. size, circularity) and individual wells can be discarded if 

necessary (e.g. due to imaging artefacts). The list of selected wells can be saved at 

any time and also reloaded to proceed with selection at a later time-point. 

Furthermore, comments can be added to individual wells. Control wells can be 

selected individually. Once the desired number of wells to be sequenced had been 

selected, the application generated the ‘filter file’, which is then used to program the 

iCELL8 dispenser software. In addition, a ´well-list file´ was generated that contained 

well-barcode assignments for demultiplexing as well as calculated image features for 

selected spheroids. Finally, we implemented plotting of image features on pre-

computed t-SNE maps based on gene expression generated by PAGODA (see 

below). After sequencing of selected spheroids, this tab enabled integrative analysis 

for direct association of functional visual phenotypes to transcriptomic heterogeneity.  

 

Leakage test 
Due to the additional centrifugation step to the foil, we assessed potential leakage by 

dispensing a highly fluorescent solution of PBS + 1 µg/ml fluorescein sodium salt 

(Sigma) into one half of the nanowells and dispensed only PBS into the other half 

and into control wells. A dispensing pattern was chosen to generate a maximum 

number of borders between nanowells filled with fluorescein and those only filled with 

PBS. Subsequently, the chip was processed and imaged as described above but 

with laser and filter sets matching the fluorescent properties of fluorescein (λex 460 

nm; λem 515 nm).  
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The acquired images were processed for well assignment, segmentation and 

cropping by the HT-pheno-seq pre-processing workflow and average fluorescence 

intensity was measured for every well independently. Average fluorescence intensity 

values ranging from 0 to 255 (8 bit) were color coded and plotted onto a 72x72 grid 

resembling the iCELL8 chip layout using a custom R script.  

 

Antibody staining for immunofluorescence 
MCF10CA cells cultured in 3D were prepared for immunofluorescence staining as 

described previously53. Briefly, cells were fixed in 24-wells with 2% Formaldehyde 

solution (Methanol-free, ThermoFisher) for 20 min at RT and washed twice with PBS. 

Cells were permeabilized with PBS + 0.5% TritonX-100 (Sigma) for 10 min and 

washed three times with PBS + 75 mg/ml Glycine (pH=7.4, Sigma). Unspecific 

binding sites were blocked for 1 hour at RT with 10% goat serum in IF-wash solution 

(PBS + 5 mg/ml NaN3, 10 mg/ml bovine serum albumin, 2% TritonX-100 and 0.4% 

Tween20, pH=7.4, Sigma). Afterwards, primary antibodies in blocking solution were 

added and incubated at 4oC overnight. The next day, cells were washed 3x with IF-

wash and then incubated with fluorescently labeled secondary antibodies in blocking 

solution for 1 hour at RT if primary antibodies were unlabeled. Subsequently, cells 

were washed 3x with IF-wash and 2x with PBS and then incubated in PBS + 1 µg/ml 

Hoechst for 20 min at RT. Cells were again washed with PBS, removed from the 

surface and transferred into 8-well Nunc™ Lab-Tek™ Chamber Slides 

(ThermoFisher) for improved fluorescence detection. The following antibodies were 

used in this study: Rabbit anti-Vimentin antibody Alexa Fluor® 594 (1:100, EPR3776, 

abcam), mouse anti-b-Actin antibody (1:200, 8H10D10, Cell Signaling), Mouse anti-

Cytokeratin 15 antibody (1:50, LHK15, ThermoFisher), Goat anti-mouse Alexa Fluor® 

594 (1:200, Cell Signaling).  

3x3 images per well (20 Z-stacks per position) were acquired automatically on a 

Zeiss LSM780 Axio Observer confocal microscope equipped with a 10x/0.3 air 

objective (Zeiss EC PLAN-NEOFLUAR) using a custom Zeiss VBA macro. Beside 

brightfield images, lasers and filters were set to measure fluorescence emitted from 

Hoechst (DNA) and from Alexa Fluor® 594-labeled antibodies. Images were analyzed 

using a custom KNIME workflow in which protein abundances per classified spheroid 

were defined as mean pixel intensity of the fluorescence signal emitted from labeled 

antibodies.  
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RNA FISH 
For histological preparation, MCF10CA spheroids were cultured and isolated as 

described above, fixed in 2% Formaldehyde solution for 20 min at RT and washed 

twice with PBS. Afterwards, spheroids were incubated in PBS + 15% sucrose 

(Sigma) and PBS + 30% sucrose (both 15 min at RT), embedded in Richard-Allan 

Scientific™ Neg-50™ Frozen Section Medium (ThermoFisher) and frozen in the 

gaseous phase of liquid nitrogen. 

For the same purpose, ´big´ (70-100 µm) and ´small´ (70-100 µm) colon tumor 

spheroids derived from single-cells were isolated with (reverse-) filtering as described 

above. This step was added for histological preparation in order to distinguish 

between small spheroids and big spheroids that were sliced in peripheral regions. 

Spheroids were then fixed with 4% Formaldehyde solution for 20 min at 4oC, washed 

twice with PBS and incubated in 30% sucrose at 4oC overnight. The next day, 

spheroids were embedded in Neg-50™ and frozen in the gaseous phase of liquid 

nitrogen.  

For both cultures, sectioning was performed at −20°C on a cryostat (Leica) and 

10 µm slices were mounted on Superfrost Plus slides (ThermoFisher). Embedded 

specimens and cryosections were stored at -80°C until further use. 

For highly sensitive RNA fluorescence in-situ hybridization (RNA-FISH), we 

employed the RNAscope® Fluorescent Multiplex Assay 2.0 (ACDbio). Cryosections 

were processed as described in the ‘Sample Preparation Technical Note for Fixed 

Frozen Tissue’ and the ‘Fluorescent Multiplex Kit User Manual PART 2’. Briefly, 

cryosections were pretreated with Protease IV (ACDbio) for 15 min at RT. 

Afterwards, transcript-specific probes were hybridized at 40°C for 90 min followed by 

stepwise hybridization of probes for signal amplification and fluorescent detection 

(Amp-1-FL – Amp-4-FL). Up to three transcripts were labeled by Alexa488, Atto550 

and Atto647 fluorescent dyes. Following mRNA targeting probes were used: SNAI2 

(Alexa488, #554581), DEFA5 (Alexa488, #423981), MYC (Atto550, #311761-C2), 

CD44 (Atto647, #311271-C3), TFF3 (Alexa488, #403101), PROX1 (Atto550, 

#530241-C2). Finally, cryosections were counterstained with DAPI, mounted in 

SlowFadeTM Gold Antifade solution (ThermoFisher) and stored at 4°C until further 

use.  

RNA-FISH images were acquired on a Leica SP8 confocal laser-scanning 

microscope equipped with a 40x/1.30 oil objective (Leica HC APO CS2). Images of 
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individual spheroids at 1024x1024 pixel resolution were generated semi-

automatically using the ‘Mark and Find’ option in the Leica SP8 acquisition software. 

To cover the whole 10 µm cryosection height, a Z-range of 20 µm was acquired by 

15 stacks (1.43 µm distance between frames). Lasers and filters were set to match 

fluorescent properties of DAPI and abovementioned dyes. MCF10CA spheroids were 

already classified as ‘aberrant’ or ‘round’ manually during imaging, whereas colon 

tumor spheroid classes were already separated during sample preparation. For 

analysis of RNA-FISH imaging data we used a custom KNIME workflow in which we 

defined the relative transcript expression per spheroid as quantified pixel percentage 

that exceeds a calculated background threshold per spheroid.  

 

Cell count determination by light sheet imaging and 3D segmentation 
To estimate the cell number in spheroids in HT-pheno-seq experiments based on 

acquired images, we generated a high-resolution 3D reference dataset to determine 

the linear relationship of size (area) and cell count. CRC spheroids were stained with 

1 µg/ml Hoechst and CellTracker Red CMPTX (10 µM) for 3 hours and isolated and 

fixed as described above. Subsequently, spheroids were mounted in 2% low-melting 

agarose (Sigma) and 3D images were acquired using a Dual-View Inverted Selective 

Plane Illumination Microscope (ASI di-SPIM) using Nikon 40x/0.80W NA NIR-Apo 

water dipping objectives. Dual view raw data was processed to generate isotropic 

images at a resolution of 0.325px/µm (400 images per Z-stack, 0.325 µm distance). 

Pre-processing and 3D segmentation were performed with a custom KNIME 

workflow. Cell counts and corresponding 2D spheroid dimensions were exported 

from KNIME and further analyzed and plotted using a custom R script. Briefly, we 

first converted the respective pixel numbers for minor and major axis of all 2D 

spheroid masks to metric distances. Facing the challenge of variable spheroid 

morphologies, we further approximated the spheroid size as the product of its biggest 

and smallest diameter (i.e. the minor and major axis). Subsequently, we plotted the 

approximated size of every spheroid against its respective cell count determined by 

3D segmentation in KNIME. A linear model was fitted through the points and the 

obtained slope was used to calculate cell number estimations for HT-pheno-seq 

experiments. 
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Sequencing data analysis 

Pre-processing of RNA-seq data and library quality control 
An automated in-house workflow was established for single-cell and spheroid RNA-

seq data pre-processing. Briefly, short read quality was evaluated using FastQC. For 

iCELL8 libraries, barcodes from the first 21 bp read were assigned to the well of 

origin with the Je demultiplexing suite. Cutadapt was used to trim remaining primer 

sequences, Poly-A/T tails and low-quality ends (<25). In addition, since NextSeq 

(Illumina) encodes undetected base as incorrect ‘G’ with high quality, Cutadapt’s ‘—

nextseq-trim’ option was used for correct quality trimming. Trimmed reads were 

mapped to the reference genome hs37d5 (1000 genomes project) using STAR 

aligner. Mapped BAM files were quantified using featureCounts with gencode v19 as 

reference annotation.  

RNA-seq libraries that did not match the following criteria were filtered out: 

MCF10CA scRNA-seq: (i) > 300,000 reads, (ii) > 3000 detected genes (i.e. >0 read 

count), (iii) < 10% mitochondrial reads; MCF10CA pheno-seq: (i) > 100,000 reads, (ii) 

> 2000 detected genes, (iii) < 15% mitochondrial reads; Colon spheroid pheno-seq: 

(i) > 200,000 reads, (ii) > 3000 detected genes, (iii) < 15% mitochondrial reads.   

In order to compare the performance of scRNA-seq and pheno-seq methods in 

detecting genes, MCF10CA sequencing libraries were downsampled to 100,000 

reads by a custom R script.  

Wells/Spheroids with imaging artifacts (e.g. segmentation errors) were removed if 

detected during combined downstream analysis.   

 

RNA-seq subpopulation and differential expression analysis 
To identify expression signatures that separate distinct cellular subpopulations, we 

analyzed transcriptional heterogeneity by pathway and gene set overdispersion 

analysis (PAGODA/SCDE-package24). First, genes with less than 10 mapped reads 

in the whole dataset were not considered for further analysis. Next, PAGODA 

constructs error models for individual cells using a binominal/Poisson mixture model, 

thereby controlling for technical aspects of variability, like effective sequencing depth, 

drop-out rate and amplification noise. For K-nearest neighbor error modelling, k was 

set to 30 (except for the manual pheno-Seq dataset: k=3), and the minimum number 

of reads required to be considered non-failed was set to 2. Afterwards, PAGODA 

performs weighted principal component analysis (wPCA) on annotated and de-novo 
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identified gene sets in order to identify those that exhibit statistically significant 

variability. Generally, the scores for the first principal component are presented if not 

stated otherwise. Annotated hallmark (H) and gene ontology (GO_C5) gene sets 

were derived from the Molecular Signature Database (MSigDB). De-novo gene sets 

were identified by hierarchical clustering (Ward method; dendrogram was cut into 

150 clusters). Pathway overdispersion was calculated as Z-score relative to the 

genome-wide model and corrected Z-scores (cZ) were computed using multiple 

hypothesis testing using the Holm procedure. Hierarchical clustering is then 

performed on the top significant aspects of heterogeneity and redundant aspects of 

heterogeneity were grouped with a similarity threshold of 0.7. Up to 10 top significant 

aspects were used for visualization. In addition, 2D t-SNE maps54 were generated 

based on PAGODA's weighted Pearson correlation distances. Finally, the following 

confounding expression signatures (e.g. technical aspect or cell cycle influence) were 

removed using the ‘pagoda.substract.aspect’ function: 

1.) For all datasets we corrected for the influence of gene coverage (estimated as a 

number of genes with non-zero magnitude per cell)  

2.) MCF10CA scRNA-seq: GO_REGULATION_OF_CELL_CYCLE and HALLMARK 

_G2M_CHECKPOINT;  

3.) MCF10CA HT-pheno-seq: GO_ NUCLEOSIDE_MONOPHOSPHATE_ 

METABOLIC _PROCESS, GO_MITOCHONDRIAL_ENVELOPE, 

GO_STRUCTURAL _MOLECULE _ACTIVITY, GO_ HOMEOSTATIC_PROCESS 

and associated de-novo identified gene sets.  

Differentially expressed genes (MCF10CA: fold change > 1.3; adjusted p-value < 0.1; 

CRC: fold change > 1.5; adjusted p-value < 0.05) between detected subpopulations 

that refer to observed visual phenotypes (k-means clustering, k=2 ) were identified by 

the SCDE-package26.  

 

In-silico reconstruction of synthetic pheno-seq expression profiles from single-
cell data 
Synthetic spheroid expression profiles were reconstructed from scRNA-seq data by 

randomly dividing cells either derived from round and aberrant phenotypes in four 

groups each in four independent randomizations. Read counts for each gene were 

then averaged over each group, resulting in eight synthetic spheroid profiles (4 round 
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and 4 aberrant) that were then analyzed by PAGODA similar to the manual pheno-

seq dataset.  

 

Deconvolution of the CRC spheroid dataset by maximum likelihood inference 
In order to infer heterogeneous regulatory states informative for single cell 

expression by deconvolution, we adapted a maximum likelihood inference approach 

initially developed to identify cell-to-cell heterogeneities from random 10-cell 

samples41 (Stochastic Profiling, Fig. 3a). Here, we allowed each sample to consist of 

different numbers of cells (implemented in the R package stochprofML version 2.0:  

https://github.com/fuchslab/stochprofML) 

The algorithm assumes that the expression of a spheroid linearly scales with its cell 

number. We approximated absolute counts per spheroid by using estimated cell 

numbers derived from light sheet microscopy and image analysis: First, counts per 

spheroid were divided by the respective estimated cell number, and the minimal 

average mRNA count per cell was determined (2374.644). Afterwards we 

downsampled the whole dataset to 2300 counts per cell resulting in a perfect 

correlation of mRNA counts and cell numbers. (Supplementary Figure 9b). The 

downsampled dataset was filtered by removing genes with less than one count per 

well on average over the original CRC spheroid dataset and genes with less than 5 

counts in at least two wells, leaving 13,868 genes that are taken into account during 

the profiling procedure. To avoid problems with zeros and log-normal distributions, all 

zeros were transformed to 0.1. 

 

Statistical analysis and visualization  
Statistical analysis and visualization of sequencing data was done in R 

(Version 3.3.1) or R studio (https://www.rstudio.com/) using PAGODA/SCDE, 

ggplot2, ComplexHeatmaps55, the stats package (R version 3.3.1), stochprofML (R 

version 3.4.1) and in Graph Pad Prism 7 (https://www.graphpad.com/scientific-

software/prism/). Gene set enrichment analysis was done by computing overlaps 

between identified class-specific signatures and gene sets derived from the 

Molecular Signature Database25 (MSigDB, https://software.broadinstitute.org/gsea/ 

msigdb).  
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Data and code availability 
Raw sequencing data for MCF10CA are accessible at the European Nucleotide 

Archive (https://www.ebi.ac.uk/ena) under Accession Number PRJEB26737.  

CRC HT-pheno-seq raw sequencing data have been deposited at the European 

Genome‐Phenome Archive (http://www.ebi.ac.uk/ega/) under Accession Number 

EGAS00001002999. 

All KNIME image analysis workflows, R code for PhenoSelect and PAGODA/SCDE 

RNA-seq analysis as well as a download link for MCF10CA HT-pheno-seq image 

data with all necessary components to run the pre-processing workflow and/or the 

PhenoSelect web app can be found in the pheno-seq github repository 

(https://github.com/eilslabs/pheno-seq). Information on the automated in-house RNA-

seq workflow is available upon request. The newest version of stochProfML 3.4.1 can 

be found under: https://github.com/fuchslab/stochprofML.  

 

Supplementary files and data 
Supplementary text and figures as well as a step-by-step HT-pheno-seq protocol are 

provided as single supplementary PDF file.  
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