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Abstract

Background:
Prioritization of variants in personal genomic data is a major challenge. Recently,
computational methods that rely on comparing phenotype similarity have shown
to be useful to identify causative variants. In these methods, pathogenicity
prediction is combined with a semantic similarity measure to prioritize not only
variants that are likely to be dysfunctional but those that are likely involved in
the pathogenesis of a patient’s phenotype.

Results:
We have developed DeepPVP, a variant prioritization method that combined
automated inference with deep neural networks to identify the likely causative
variants in whole exome or whole genome sequence data. We demonstrate that
DeepPVP performs significantly better than existing methods, including
phenotype-based methods that use similar features. DeepPVP is freely available
at https://github.com/bio-ontology-research-group/phenomenet-vp.

Conclusions:
DeepPVP further improves on existing variant prioritization methods both in
terms of speed as well as accuracy.
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Background
There is now a large number of methods available for prioritizing variants in whole

exome or whole genome datasets [1]. These methods commonly identify the variants

which are pathogenic, i.e., the variants that may alter normal functions of a protein,

either directly through a change in a protein’s amino acid sequence or indirectly

through a change of expression [2, 3, 4]. In coding and noncoding DNA sequences,

there are usually multiple variants that could possibly be pathogenic, but most of

them are sub-clinical or will not result in any detectable phenotypic manifestations

[5].

Recently, several methods have become available that utilize information about

phenotypes observed in a patient to identify potentially causative variants [6, 7, 8, 9].

Phenotypes are useful for identifying gene–disease associations because they implic-

itly reflect interactions occurring within an organism across multiple levels of organ-

isation [10, 11, 12]. Phenotype-based methods work by comparing the phenotypes
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of a patient with a knowledgebase of gene-to-phenotype associations. A measure of

phenotypic similarity is computed between a patient’s phenotypes and abnormal

phenotypes associated with gene variants or mutations. The phenotypic similarity

is then used either as a filter to remove pathogenic variants in genes that are not

associated with similar phenotypes to the ones observed in the patient [9] or as a

feature in machine learning approaches [6, 7].

The gene-to-phenotype associations used in phenotype-based prioritization strate-

gies come from clinical observations such as those reported in the Online Mendelian

Inheritance in Man (OMIM) database [13] or in the ClinVar database [14]. In some

cases, they may also come from model organisms. Comparing model organism phe-

notypes to human phenotypes (i.e., the phenotypes observed in a patient) requires

a framework that allows phenotypes of different species to be compared, such as

the Uberpheno [15] or PhenomeNET ontology [16].

We have previously developed the PhenomeNET Variant Predictor (PVP) [7] to

prioritize causative variants in personal genomic data. We have shown that PVP

outperforms other phenotype-based approaches such as the Exomiser or Genomiser

tools [17, 18], or Phevor [9]. PVP is based on a random forest classifier, similarly to

Exomiser and Genomiser, which also use a random forest. Features used to classify

a variant as causative or non-causative combine a phenotype similarity score (to

prioritize a gene as being associated with the phenotypes observed in the patient)

and a pathogenicity score, as well as other features such as the mode of inheritance

and genotype of the variant. As most variants are neutral, there is a very large

imbalance between positive and negatives, and the challenges for building a machine

learning model for finding causative variants is to account for this imbalance during

training and testing.

Recently, deep neural networks have shown to be successful in many domains

[19] and often result in better classification performance [4]. We have developed

DeepPVP, an extension of the PVP system which uses deep learning and achieves

significantly better performance in predicting disease-associated variants than the

previous PVP system, as well as competing algorithms that combine pathogenicity

and phenotype similarity. DeepPVP not only uses a deep artificial neural network

to classify variants into causative and non-causative but also corrects for a common

bias in variant prioritization methods [20, 21] in which gene-based features are

repeated and potentially lead to overfitting. DeepPVP is freely available at https:

//github.com/bio-ontology-research-group/phenomenet-vp.

Implementation
Training and testing data

We downloaded the ClinVar database 7th Feb, 2017, and extracted GRCh37 ge-

nomic variants annotated with at least one disease from OMIM, characterized as

Pathogenic in their clinical significance, and not annotated with conflicting inter-

pretation in their review status. We obtained 31,156 pathogenic variants associates

with 3,938 diseases in total and the set of these variants constitutes candidate posi-

tive instances in our training dataset. We also extracted GRCh37 genomic variants

that are characterized as Benign in clinical significance, and not annotated with

conflicting interpretation in their review status. We obtained 23,808 such benign
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genomic variants from ClinVar which form the candidate negative instances in our

training dataset. We excluded any variant records mapped to more than one gene

and variant records with missing information on the reference or alternate alleles.

For pathogenic variant records, we defined variant–disease pairs for each pathogenic

variant and its associated OMIM disease. In our dataset, some pathogenic vari-

ants are annotated with multiple OMIM diseases. For each of these variants and

the n OMIM diseases they may cause, we created n variant-disease pairs. For ex-

ample, variant rs201108965 in TMEM216 is annotated with two diseases; Jou-

bert syndrome 2 (OMIM:608091) and Meckel syndrome type 2 (OMIM:603194). We

define two variant-disease pairs ( rs201108965, OMIM:608091) and (rs201108965,

OMIM:603194). After this step, we have 30,770 pathogenic variant-disease pairs and

20,174 benign variants.

In DeepPVP, we use the zygosity of a variant as one of the training features. The

zygosity information is not provided in ClinVar. In a given Variant Call Format

(VCF) [22] file, zygosity is represented in the genotype field. For instance, a het-

erozygous variant will have a genotype value 0/1, while a homozygous variant will

have a genotype value 1/1 in the VCF file. We assigned the genotype information

to our pathogenic variant-disease pairs based on the mode of inheritance associated

with the disease caused by the variant. We extracted the mode of inheritance of

the associated OMIM disease using the information provided by the HPO annota-

tions of OMIM diseases [23]. If the disease’s mode of inheritance is recessive, we

assigned the zygosity of the variant as homozygote (denoted with genotype 1/1).

In this case, we created a variant-disease-zygosity triple representing this informa-

tion. If the OMIM disease’s mode of inheritance is not recessive (i.e., any other

mode of inheritance, including dominant, unknown, X-linked, etc.), we generated

two variant-disease-zygosity triples and and characterize one of them as homozygote

(denoted with genotype 1/1) and another as heterozygote (denoted with genotype

0/1). For example, pathogenic variant rs397704705 in AP5Z1 is associated with

Spastic paraplegia 48 (OMIM:613647). This OMIM disease is recessive and, hence, we

characterize variant rs397704705 with genotype 1/1, generating a variant-disease-

zygosity triple consisting of variant rs397704705, disease OMIM:613647, and geno-

type 1/1. Another example is the pathogenic variant rs387907031 in ARHGAP31

associated with Adams-Oliver syndrome 1 (OMIM:100300). This disease is dominant

and, hence, we generated two variant-disease-zygosity triples: variant rs387907031,

disease OMIM:100300, and the genotype 0/1, and variant rs387907031, disease

OMIM:100300, and genotype 1/1. Since benign variants are not associated with

a disease or mode of inheritance, we treat each of them as both a homozygote and

heterozygote, generating two variant-zygosity pairs for each benign variant. After

this step, we obtained 61,540 triples consisting of pathogenic variant, disease, and

zygosity, and 40,348 pairs of benign variant and zygosity.

The triples consisting of variant, disease, and zygosity constitute positive samples.

For each positive instance (V,D,Z) consisting of a variant, disease, and zygosity,

we randomly select, with equal probability, one of two possible negative instances: a

randomly selected benign variant in the same gene as V , or a triple (V,D′, Z) where

D′ 6= D. To map intergenic variants to genes, we link variants to their nearest gene.

For example, a positive instance in our training data is a pathogenic variant

rs267606829 in FOXRED1, associated with Mitochondrial complex I deficiency
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(OMIM:252010), as a homozygote. A negative instance according to the first strategy

could be a benign variant, such as rs1786702, in FOXRED1, as a heterozygote. A

negative instance according to the second strategy is the same pathogenic variant,

rs267606829 in FOXRED1, as a homozygote, but associated with another OMIM

disease such as Tooth Agenesis (OMIM:604625).

As an independent and unseen evaluation dataset, we downloaded all variants

from ClinVar released between Feb 8th 2017 and Jan 27th 2018. In this dataset,

we processed all GRCh37 variants in the same manner as for our training dataset

to construct triples of pathogenic variants, disease, and zygosity. However, if the

OMIM disease’s mode of inheritance of the variant is not recessive (i.e., any other

mode of inheritance, including dominant, unknown, X-linked, etc.), we assigned

the zygosity randomly either as homozygote (denoted with genotype 1/1), or het-

erozygote (denoted with genotype 0/1). We obtained a total of 5,686 such triples

associated with 1,370 diseases for validation.

Generation of synthetic patients

In our evaluation, we generated a set of synthetic patients as a realistic evaluation

case, similarly to previous work [18, 7]. We randomly selected a whole exome from

the 1,000 Genomes project [24] and inserted a pathogenic variant V , assign the

disease associated with V in ClinVar to the exome, and present V as a homo- or

heterozygote based on the mode of inheritance associated with the disease. Each of

these exomes together with the disease’s phenotypes and mode of inheritance form

a synthetic patient in which we aim to recover the inserted variant.

Annotating variants

Annotating variants with pathogenicy scores from CADD, DANN, and GWAVA

is a time-consuming process in PVP [7] and other phenotype-based variant prior-

itization tools [18], especially when analyzing WGS data comprised of millions of

variants. PVP 1.0 uses tabix [25] for indexing and retrieval of the pathogenicty

scores per chromosome and genomic position. To optimize the annotation phase

of DeepPVP, we extracted 31,491,995 variants from samples of the 1000 Genomes

Project [24] and annotated them with pathogenicity scores from CADD, DANN,

and GWAVA. DeepPVP keeps this set of pre-annotated variants in memory to

provide fast retrieval of annotations for common variants. DeepPVP utilizes tabix

only when the variant annotated is not available in the pre-annotated library, and

therefore minimizes disk access.

Model and availability

We implemented our DeepPVP deep neural network in Python 2.7. We used Keras

[26] with a TensorFlow backend [27]. We used one hot encoding to represent our cat-

egorical feature of the inheritance mode of the disease. We handled missing values

for CADD, GWAVA, DANN, and semantic similarity scores by mean imputation.

We also added additional flags for missing values as features. We retrieved gene-

phenotype association data from human and model organisms (mouse and zebrafish)

on Feb 7th, 2017 and used them to generate the ontology and high level phenotypes

and semantic similarity score features. We used the scikit-learn [28] library for tun-

ing the hyperparameters of the neural network using grid search. We designed a
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sequential model with an input layer, three hidden layers of 67, 134, 67 neurons

respectively with Rectified Linear Units (ReLU) [29] activation function, and an

output layer with a sigmoid activation function. We trained the model using the

Adam optimization algorithm [30] which has been widely adopted for deep learn-

ing as a computationally efficient, fast convergent, extension to stochastic gradient

descent. We used dropout [31] between the hidden layers and the output layer to

prevent overfitting. We trained our DeepPVP model for 300 epochs, 20,000 batch

size, and a learning rate of 0.001. In training, we specified a 20% random valida-

tion, and monitored the validation loss with each epoch. We kept the rest of the

parameters in their default values.

The DeepPVP system, the synthetic genome sequences and our analysis re-

sults can be found at https://github.com/bio-ontology-research-group/

phenomenet-vp.

Results
DeepPVP: phenotype-based prediction using a deep artificial neural networks

We developed the Deep PhenomeNET Variant Predictor (DeepPVP) as a system

to identify causative variants for patients based on personal genomic data as well

as phenotypes observed in the patient. We consider a variant to be causative for a

disease D if the variant is both pathogenic and affects a structure or function that

leads to D. This distinction is motivated by the observation that healthy individuals

can have multiple highly pathogenic variants resulting in a complete loss of function;

it is therefore not usually sufficient to identify pathogenic variants alone as there

may be many.

DeepPVP is a command-line tool which takes a Variant Call Format (VCF) [22]

file as an input together with a set of phenotypes coded either through the Human

Phenotype Ontology (HPO) [32] or the Mammalian Phenotype Ontology (MP) [33].

It outputs a prediction score for each variant in the VCF file; the prediction score

measures the likelihood that a variant is causative for the phenotypes specified as

input to the method.

To predict whether a variant is causative or not, DeepPVP uses similar features

as the PVP system [7] and combines multiple pathogenicity prediction scores, a

phenotype similarity computed by the PhenomeNET system, and a high-level phe-

notypic characterization of a patient. The full list of features used by DeepPVP

is listed in Supplementary Table 1. All features can be generated from a patient’s

VCF file and a set of phenotypes coded either with HPO or MP.

In DeepPVP, we use a deep neural network to classify variants as causative or non-

causative. Specifically, DeepPVP uses a feed forward neural network with five layers

(see Figure 1). The input layer in our architecture consists of 67 neurons (for the

67 features) and an output layer consisting of a single output neuron which outputs

the prediction score of DeepPVP. DeepPVP uses three hidden layers with 67, 134,

and 67 neurons, respectively. Each hidden layer uses a Rectified Linear Unit (ReLU)

[29] activation function, and the output layer uses a sigmoid activation function.

DeepPVP is trained similarly as PVP to improve performance of identifying

causative variants in real genomic sequences (in contrast to performance on a test-

ing set). When training DeepPVP, we use as positive instances all causative variants
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Figure 1: Overview over the DeepPVP neural network model.

from our training set together with the phenotypes of the disease for which they are

causative. We discriminate these from two kinds of negatives: benign variants (i.e.,

variants that do not alter protein function) and pathogenic but non-causative vari-

ants. We consider pathogenic non-causative variants as pathogenic variants (in our

training set) which are not associated with phenotypes of the disease they cause, but

rather with a different disease. The aim of this selection strategy is to discriminate

causative variants from all other variants.

We train the DeepPVP model using back-propagation, evaluate the model’s re-

sults on predicting causative variants, and compare against several competing meth-

ods. While the different evaluation scenarios omit some parts of the information

about variants and the diseases they are associated with in order to not bias the

evaluation results, we finally retrain a model using all available information and

make it available as the final DeepPVP prediction model.

Evaluating DeepPVP’s ability to find causative variants

We evaluate the performance of DeepPVP during training using both the accuracy

and the binary cross entropy loss observed on the training and the validation set.

The validation set consists of a randomly selected 20% set of variants from the

training set. Figure 2 illustrates the results of this evaluation. We observe that

both the training loss and validation loss decrease with the number of epochs; both

training and validation loss as well as accuracy stabilize after over 100 epochs and

are stable before we end the training after 300 epochs.

We evaluate the ability of DeepPVP to predict causative variants using several

approaches. First, we test the predictive performance of DeepPVP on a validation

set consisting of a randomly selected 20% set of variants from the training set.

Under this condition, the training and validation set will contain distinct variants,

but the variants in training and test may be associated with the same disease. Figure

3 illustrates the receiver operating characteristic (ROC) curve [34] and precision-

recall curve for this evaluation. We find that DeepPVP achieves an overall ROCAUC

of 0.979, and AUPR of 0.977.

Second, we test how well DeepPVP is able to find variants for diseases which

have not been used in the training of DeepPVP at all. We use this strategy to

determine DeepPVP’s performance on orphan diseases without any prior knowledge
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of associated genes. For this evaluation, we split our variant–disease pairs into a

training and testing set. We stratified the two sets by disease so that we train on 75%

of instances in our ClinVar-derived dataset (comprising 62% of diseases) and test

on the remaining 25% of instances (and their diseases). Stratification by disease, in

contrast to stratification by disease–variant pair, ensures that no disease-associated

information (i.e., the phenotype scores between a disease and a gene, which would

be identical for multiple disease-causing variants in the same gene) was seen during

training and therefore unfairly bias the evaluation results. Figure 4 shows the ROC

curve and the precision-recall curve in this evaluation. The area under the ROC

curve (ROCAUC) is 0.943 and the area under the precision-recall curve is 0.921.

The drop in predictive performance when stratifying training and testing data by

disease compared to random split illustrates the performance that is to be expected

for variants in diseases without prior knowledge about disease-associated genes.

As our third evaluation, we evaluate the performance of DeepPVP using causative

variants added to the ClinVar database on or after Feb 7th, 2017, while limiting

our training data to all variants that have been added to ClinVar before this date.

Between Feb 7th, 2017 and Feb 6th, 2018, there were 5,686 causative variants added

to ClinVar, covering 1,370 diseases. 297 of these diseases were not present in our

training data. This kind of evaluation allows us to estimate under more realistic

conditions how well DeepPVP is able to prioritize novel variants. To evaluate Deep-

PVP’s performance under even more realistic conditions, we generate synthetic

patient exomes by inserting a causative variant from the validation set in a ran-

domly selected exome from the 1000 Genomes Project [24]. We remove all variants

with minor allele frequency greater than 1% (using the frequencies provided by the

1000 Genomes across all populations). For each exome, we insert a causative vari-

ant from our validation set so that each exome has exactly one pathogenic variant

inserted. We then assign the phenotypes associated with the causative variant in

ClinVar, as well as the mode of inheritance of the disease, to the synthetic exome

and consider this combination a synthetic patient. We then use DeepPVP to prior-

itize variants given the synthetic patient’s filtered VCF file, phenotypes, and mode

of inheritance, and determine the rank at which the causative (inserted) variant is

found. For comparison, we use the Exomiser version 7.2.1 released on Feb 6th, 2017

for benchmarking purposes, as well as PVP v1.1 which uses a random forest classi-

fier trained on the same variant and phenotype data as DeepPVP. Furthermore, we

compare the performance against CADD [3], DANN [35], and GWAVA [36]. Table 1

shows the results. We find that DeepPVP has a significantly improved performance

compared to the original PVP, and that DeepPVP and PVP outperform Exomiser,

CADD, DANN, and GWAVA.

Of the 5,686 “new” variants in our ClinVar evaluation set, 5,489 are in 934 genes

which are associated with phenotypes. These 5,489 variants are associated with

1,289 diseases. Only 197 variants are in 74 novel genes and are associated with 89

diseases. We test the performance of DeepPVP separately on these 197 variants.

DeepPVP identifies 53 of the 197 variants (27%) at rank one, and 90 variants

(46%) in the first ten ranks. In comparison, Exomiser and CADD identified 26 and

13 variants at the first, and 61 and 51 variants in the top ten ranks, respectively.

This evaluation demonstrates that DeepPVP can not only identify variants in known
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(a)

(b)

Figure 2: Performance of DeepPVP on convergence on training data and validation

data (20% split)

disease-associated genes but also in novel genes. While the predictive performance of

DeepPVP in this evaluation is lower than in the other types of evaluation, DeepPVP

still improves over established methods such as CADD and Exomiser.

Our performance results demonstrate that DeepPVP can identify causative vari-

ants with significantly higher recall at rank one and rank ten than several other

methods, including the PVP system from which DeepPVP is derived. In some ap-

plications of variant prioritization, it is also important to identify causative variants

quickly and with low computational costs. We therefore benchmarked the time it

takes DeepPVP to process large VCF files. We used a machine equipped with 128

GB Memory and an Intel Xeon ES-2680 v3 CPU with 2.50GHz and 16 cores, using a

64-bit Ubuntu 14.04 LTS system. We selected a genome from the Personal Genome

Project (PGP) [37] which contains 4,120,185 variants to benchmark DeepPVP. We
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(a)

(b)

Figure 3: Performance of DeepPVP on a random test set (20% split)

prioritized variants in this genome using DeepPVP ten times and recorded the time

elapsed. On average, it took DeepPVP 85 minutes to fully analyze the VCF file.

Conclusions
DeepPVP is an easy to use and fast phenotype-based tool for prioritizing variants

in personal whole exome or whole genome sequence data. DeepPVP takes a VCF

file of an individual as input, together with an ontology-based description of the

phenotypes observed in an individual. It then aims to identify the variants of the

individual that are causative of the phenotypes observed.

Through the use of a deep neural network, an updated training and evaluation

strategy, DeepPVP improves over its predecessor PVP, and further outperforms sev-

eral established methods for variant prioritization, including the phenotype-based

tool Exomiser [17, 18] and pathogenicity scoring algorithms such as CADD [3].

Importantly, DeepPVP shows a better performance than other methods in finding
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(a)

(b)

Figure 4: Performance of DeepPVP on a stratified-by-disease test set (25% split)

variants in novel genes, i.e., genes not previously associated with a disease pheno-

type, and may therefore be particularly suited for investigating variants in orphan

diseases as well as variants of unknown significance in genes not yet associated with

phenotypes.

We update DeepPVP in regular intervals when new training data (i.e., vari-

ants associated with diseases and phenotypes, as well as gene–phenotype associ-

atons) becomes available. DeepPVP is freely available at https://github.com/

bio-ontology-research-group/phenomenet-vp.

Availability and requirements
• Project name: DeepPVP

• Project home page: https://github.com/bio-ontology-research-group/

phenomenet-vp

• Operating system: Java virtual machine

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/311621doi: bioRxiv preprint 

https://doi.org/10.1101/311621
http://creativecommons.org/licenses/by-nc/4.0/


Boudellioua et al. Page 11 of 13

Table 1: Comparison of top ranks of ClinVar variants as recovered from WES data

filtered by MAF > 1% using different methods.
Top hit Top 10 hits Total ROC AUC

DeepPVP 4,096 (72.04%) 4,768 (83.86%) 5,686 0.95
PVP 3,619 (63.65%) 4,076 (71.68%) 5,686 0.95
Exomiser 2,910 (51.18%) 3,608 (63.45%) 5,686 0.89
CADD 1,060 (18.64%) 2,429 (42.72%) 5,686 0.94
DANN 170 (2.99%)) 1,322 (23.25%)) 5,686 0.90
GWAVA 63 (1.11%) 264 (4.64%) 5,686 0.66

• Programming language: Java, Groovy, Python

• Other requirements: none

• License: 4-clause BSD-style license
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