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Abstract: Respiratory viruses are highly infectious; however, the variation of individuals' 

physiologic responses to viral exposure is poorly understood. Most studies examining molecular 

predictors of response focus on late stage predictors, typically near the time of peak symptoms. 

To determine whether pre- or early post-exposure factors could predict response, we conducted a 

community-based analysis to identify predictors of resilience or susceptibility to several 

respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV) using peripheral blood gene expression 

profiles collected from healthy subjects prior to viral exposure, as well as up to 24 hours 

following exposure. This analysis revealed that it is possible to construct models predictive of 

symptoms using profiles even prior to viral exposure. Analysis of predictive gene features 

revealed little overlap among models; however, in aggregate, these genes were enriched for 

common pathways. Heme Metabolism, the most significantly enriched pathway, was associated 

with higher risk of developing symptoms following viral exposure. 
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Acute respiratory viral infections are among the most common reasons for outpatient clinical 

encounters (1). Symptoms of viral infection may range from mild (e.g. sneezing, runny nose) to 

life-threatening (dehydration, seizures, death), though many individuals exposed to respiratory 

viruses remain entirely asymptomatic (2). Variability in individuals' responses to exposure has 

been observed both in natural infections (3) and controlled human viral exposure studies. 

Specifically, some individuals remained asymptomatic despite exposure to respiratory viruses, 

including human rhinovirus (HRV) (4–6), respiratory syncytial virus (RSV) (4–6), influenza 

H3N2 (4–9) and influenza H1N1 (4, 5, 9). Factors responsible for mediating response to 

respiratory viral exposure are poorly understood. These individual responses are likely 

influenced by multiple processes, including the host genetics (10), the basal state of the host 

upon exposure (11), and the dynamics of host immune response in the early hours immediately 

following exposure and throughout the infection (12). Many of these processes occur in the 

peripheral blood through activation and recruitment of circulating immune cells (13). However, 

it remains unknown whether host factors conferring resilience or susceptibility to symptomatic 

infectious disease can be detected in peripheral blood before infection or whether they are only 

apparent in response to pathogen exposure. 

In order to identify such gene expression markers of resilience and susceptibility to acute 

respiratory viral infection, we utilized gene expression data from seven human viral exposure 

experiments (6, 7, 9). These exposure studies have shown that global gene expression patterns 

measured in peripheral blood around the time of symptom onset (as early as 36 hours after viral 

exposure) are highly correlated with symptomatic manifestations of illness (6, 9). However, 

these later-stage observations do not necessarily reflect the spectrum of early time point immune 

processes that might predict eventual infection. Since transcriptomic signals are weak at these 
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early time points, the detection of early predictors of viral response has not yet been possible in 

any individual study. By combining data collected across these seven studies and leveraging the 

community to implement state-of-the-art analytical algorithms, the Respiratory Viral DREAM 

Challenge (www.synapse.org/ViralChallenge) aimed to develop early predictors of resilience or 

susceptibility to symptomatic manifestation based on expression profiles that were collected 

prior to and at early time points following viral exposure. 

 

Results 

Human Viral Exposure Experiments 

In order to determine whether viral susceptibility could be predicted prior to viral exposure, we 

collated 7 human viral exposure experiments: one RSV, two influenza H1N1, two influenza 

H3N2 and two human rhinovirus studies, in which a combined total of 148 healthy volunteers 

were exposed to virus (Fig. 1A-B) or sham (n=7) (6, 7, 9). Subjects were excluded if pre-existing 

neutralizing antibodies were detected, except for the RSV study in which neutralizing antibodies 

were not an exclusion criteria. Each subject in the study was followed for up to 12 days after 

exposure and serially sampled for peripheral blood gene expression by Affymetrix Human 

U133A 2.0 GeneChips. Throughout the trial, subjects self-reported clinical symptom scores 

across 8-10 symptoms (Fig. S1); these data were used to stratify subjects as either symptomatic 

or asymptomatic and to quantify symptom severity. Additionally, nasopharyngeal swabs 

measured viral shedding; these data were used to stratify subjects as either shedders or non-

shedders (Fig. 1C). Clinical symptoms were summarized based on a modified Jackson score (14) 

and viral shedding was determined to be present if two or more measurable titers or one elevated 

titer was observed within 24 hours following viral exposure (15). Viral shedding and clinical 
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symptoms were provided to Respiratory Viral DREAM Challenge teams only for the training 

data set (Fig. 1C). An additional, but not previously available, human exposure experiment to the 

RSV virus (n = 21) was used as an independent test data set (Fig. 1A). The study design for this 

data set was similar to those of the 7 original data sets. 

 

Data Analysis Challenge 

Using these data, an open data analysis challenge, the Respiratory Viral DREAM Challenge, was 

formulated. Teams were asked to predict viral shedding and clinical symptoms based on 

peripheral blood gene-expression from up to two timepoints: prior to viral exposure (T0) or up to 

24 hours post viral exposure (T24). Based on gene expression data from the two timepoints, 

teams were asked to predict at least one of three outcomes: presence of viral shedding 

(subchallenge 1 (SC1)), presence of symptoms, defined as a modified Jackson score ≥ 6 

(subchallenge 2 (SC2)), or symptom severity, defined as the logarithm of the modified Jackson 

score (subchallenge 3 (SC3)). Teams were asked to submit predictions based on gene-expression 

and basic demographic (age and gender) data from both timepoints to enable cross-timepoint 

comparison. The 7 collated data sets served as a training dataset on which teams could build their 

predictive models. For a subset of subjects (n = 23), phenotypic data were withheld to serve as a 

leaderboard test set for evaluation with real-time feedback to teams. 

Teams were asked to submit at least one leaderboard submission at each timepoint to be 

evaluated on the leaderboard test set. Performance metrics for these models were returned in 

real-time, and teams could update their submissions accordingly up to a maximum of 6 

combined submissions per subchallenge. At the end of this exercise, teams were asked to provide 
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leave-one-out cross-validation-based predictions on the training set (LOOCVs) and predictor 

lists for each of their best models. 

Submitted models were ultimately assessed on the held-out human RSV exposure data set 

that had not been publicly available, previously. Predictions for the binary outcomes (shedding 

and symptoms) were assessed using Area Under the Precision-Recall (AUPR) and Receiver 

Operating Characteristic (AUROC) curves, and ranked using the mean rank of these two 

measures. The predictions for the continuous outcome (symptom severity) were assessed using 

Pearson’s correlation with the observed values. In each case, permutation-based p-values were 

used to identify submissions that performed significantly better than those expected at random. 

 

Challenge Results 

For presence of symptoms (SC2), 27 models were assessed; 13 models were developed using T0 

predictors, and 14 models using T24 predictors. Four of the T0 models and three of the T24 models 

achieved a nominal p-value of 0.05 for AUPR or AUROC, with the best scoring models at each 

timepoint achieving similar scores (AUPR(T0)=0.958, AUROC(T0)=0.863, AUPR(T24)=0.953, 

AUROC(T24)=0.863). Team Schrodinger’s Cat was the only team that achieved significance for 

all measures and timepoints. Despite the few teams achieving statistical significance, the models 

submitted were overall more predictive than expected at random (enrichment p-values 0.008, 

0.002, 0.021, and 0.05 for AUPR(T0), AUROC(T0), AUPR(T24), and AUROC(T24), respectively; 

Fig. 2A). 

For symptom severity (SC3), 23 models were assessed; 11 models were developed using 

T0 predictors and 12 models using T24 predictors. Four of the T0 models and two of the T24 
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models achieved a nominal p-value of 0.05 for correlation with the observed log-symptom score, 

and as above, the best performing models scored similarly at both timepoints (r=0.490 and 0.495 

for T0 and T24, respectively). Teams cwruPatho and Schrodinger’s Cat achieved significant 

scores at both timepoints. Consistent with SC2, we also saw that the models submitted were 

overall more predictive than expected at random (enrichment p-values 0.005 and 0.035 for T0 

and T24, respectively; Fig. 2B). For both SC2 and SC3, enrichment was more pronounced at T0 

compared to T24. Correlation between final scores and leaderboard scores was higher at T0, 

suggesting T24 predictions may have been subject to a greater degree of overfitting. 

For viral shedding (SC1), 30 models were assessed from 16 different teams; 15 models 

were developed using T0 predictors and 15 models using T24 predictors. No submissions were 

statistically better than expected by random. In aggregate, these submissions showed no 

enrichment (enrichment p-values 0.94, 0.95, 0.82, and 0.95, for AUPR(T0), AUROC(T0), 

AUPR(T24), and AUROC(T24), respectively). In contrast, final scores were negatively correlated 

with leaderboard scores (correlation -0.22, -0.19, -0.65, and -0.54 for AUPR(T0), AUROC(T0), 

AUPR(T24), and AUROC(T24), respectively) suggesting strong overfitting to the training data or 

a lack of correspondence to viral shedding as assessed in the independent test data set, relative to 

the training data sets. The negative correlation was strongest at T24 (Fig. S2). Accordingly, 

results based on this subchallenge were excluded from further analysis. 

 

Best performing approaches 

The two overall best performing teams were Schrodinger’s Cat and cwruPatho. Team 

Schrodinger’s Cat used the provided gene expression profiles before the viral exposure to predict 

shedding and log symptom scores (binary and continuous outcomes, respectively). For the T0 
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models, arithmetic means over measurements prior to exposure were calculated, whereas for the 

T24 models, only the latest measurements before viral exposure were used. Epsilon support 

vector regression (epsilon-SVR) (16) with radial kernel and 10-fold cross-validation were used to 

develop the predictive models. Their work demonstrated that predictive models of symptoms 

following viral exposure can be built using pre-exposure gene-expression. 

Team cwruPatho constructed models of infection based on pathway modulation, rather 

than gene expression, to predict infection outcomes. To do so, they used a sample-level 

enrichment analysis (17) approach to summarize the expression of genes implicated in the 

Hallmark gene sets (18) of the Molecular Signature DataBase (MSigDB) (19). They then fitted 

LASSO regularized regression models, which integrate feature selection with a regression fit 

(20), on the pathways to predict shedding, presence of symptoms and symptom severity 

following viral exposure. Their work demonstrated that including multiple genes sharing the 

same biological function results in more robust prediction than using any single surrogate gene.  

Teams Schrodinger’s Cat and cwruPatho used different feature transformation methods 

and machine learning approaches, suggesting that methods can successfully identify pre- or early 

post-exposure transcriptomic markers of viral infection susceptibility or resilience. To gauge the 

range of approaches taken, we extended this comparison to all Respiratory Viral DREAM 

Challenge teams who reported details on the methods they used to develop their submissions. 

We assessed the range of data preprocessing, feature selection and predictive modeling 

approaches employed for the submissions, to determine whether any of these methods were 

associated with prediction accuracy. Details of these three analysis steps (preprocessing, feature 

selection and predictive modeling) were manually extracted from reports of 24 teams (35 

separate reports) who submitted predictions either for the leaderboard test set or the independent 
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test set. To more precisely reflect the conceptual variations across employed methodologies, each 

of these three analysis tasks was broken down into 4 data preprocessing categories, 7 feature 

selection categories and 9 predictive modeling categories (Table S1). Twenty of 24 (83.3%) 

teams employed some version of data preprocessing, the task most significantly associated with 

predictive ability (Fig. S3A). Specifically, exclusion of sham-exposed subjects and data 

normalization associated best with predictive performance (Fig. 3). 

Feature selection and predictive modeling approaches positively associated with 

predictive ability differed depending on whether the task was classification (presence of 

symptoms) or regression (symptom severity). Random forest-based predictive models performed 

slightly better than SVM/SVR methods at predicting symptom status (SC2) (Fig. S3B). 

However, there was no discernible pattern relating feature selection and improved performance 

in SC2. Feature selection using machine learning approaches such as cross-validation was 

associated with improved performance in predicting symptom severity (SC3) (Fig. 3), as were 

SVM/SVR approaches when compared to linear regression model-based methods (e.g. logistic 

regression; Fig. S3C). Of note, SVM/SVR approaches were the most popular among the 

submissions. 

We also sought to compare cross-timepoint predictions to determine the stability of 

predictions by timepoint. Significant correlation was observed between predictions using T0 and 

T24 gene expression for symptomatic classification (SC2) (Leaderboard: ρ=0.608, p=1.04e-61; 

Independent test set: ρ=0.451, p=2.05e-25). Interestingly, we observed that approximately 25% 

of subjects were difficult to predict based on T0 gene expression profile (inherently difficult; Fig. 

S4); similarly, approximately 25% of subjects were correctly predicted by the majority of teams 

(inherently easy; Fig. S4). Inherently difficult subjects were also misclassified when T24 gene 
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expression data was used for the predictions. Inherently easy subjects were also consistently easy 

to classify using T24 gene expression data. This suggests ab initio characteristics allow some 

subjects to be more susceptible or resilient to symptomatic disease and that, within 24 hours, 

those characteristics are not substantially altered in post-exposure peripheral blood expression 

profiles. 

 

Biological Interpretation of Predictors 

In addition to predictions, each team was asked to submit lists of gene expression features used 

in their predictive models. Six teams submitted separate models for each virus and reported 

virus-specific predictors. The remaining 28 teams reported predictors independent of virus, 

submitting a single model for all viruses. With the exception of the list from cwruPatho, which 

used pathway information in the selection of features, pathway analysis of individual predictor 

lists showed no enrichment of pathways from MSigDB (19), possibly due to the tendency of 

most feature selection algorithms to choose one or few features from within correlated sets. 

We then assessed whether models showing predictive ability (leaderboard test set 

AUROC > 0.5 for SC2 or r > 0 for SC3) tended to pick the same gene features, or whether the 

different gene sets may provide complementary information. Within each subchallenge and 

timepoint, significance of the overlap among predictor lists was calculated for every combination 

of two or more predictor lists across teams. All two-way, three-way, four-way, etc. overlaps were 

considered. This analysis revealed that there was no gene shared among all teams for any 

timepoint or subchallenge (Fig. 4A). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2018. ; https://doi.org/10.1101/311696doi: bioRxiv preprint 

https://doi.org/10.1101/311696
http://creativecommons.org/licenses/by-nc-nd/4.0/


Despite the paucity of overlap among predictor lists, we sought to identify whether genes 

used in the predictive models were part of the same biological processes or pathways. In other 

words, we examined if different teams might have chosen different surrogate genes to represent 

the same pathway. To test this hypothesis, we performed pathway enrichment analysis of the 

union of predictors across predictor lists within timepoint and subchallenge. We observed 

significant enrichments in each case (Fig. 4B), suggesting that predictive gene features are 

indeed complementary across models. More pathways were enriched among predictors from T24 

models (SC2=17 pathways and SC3=20 pathways) than from T0 models (SC2=15 pathways and 

SC3=17 pathways). At T0, genes involved in the metabolism of heme and erythroblast 

differentiation (HEME METABOLISM), genes specifically up-regulated by KRAS activation 

(KRAS_SIGNALING_UP), genes defining an inflammatory response (INFLAMMATORY 

RESPONSE) and genes mediating cell death by activation of caspases (APOPTOSIS) were 

associated with presence of symptoms in both SC2 and SC3 (Fig. 4B). At T24, along with HEME 

METABOLISM, the expression of several inflammatory response pathways like KRAS 

SIGNALING, INFLAMMATORY  RESPONSE, genes up-regulated in response to the gamma 

cytokine IFNg (INTERFERON GAMMA RESPONSE), genes upregulated by IL6 via STAT3 

(IL6 JAK STAT3 SIGNALING), genes regulated by NFkB in response to TNF (TNFA 

SIGNALING VIA NFKB) and genes encoding components of the complement system 

(COMPLEMENT) were associated with symptoms in both SC2 and SC3 (Fig. 4B). Additionally, 

there was a significant overlap in genes across timepoints and subchallenges in each of these 

enriched pathways (Fisher’s exact test p-value ≤ 0.05) (Table S2). 

A meta-analysis across subchallenges (SC2 and SC3) and timepoints (T0 and T24) was 

performed in order to identify the most significant pathways associated with outcome. HEME 
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METABOLISM was the most significantly associated with developing symptoms 

(susceptibility), while OXIDATIVE PHOSPHORYLATION and MYC TARGETS were the 

most significantly associated with a lack of symptoms (resilience) (Fig. S5). This indicates that 

heme, known to generate inflammatory mediators through the activation of selective 

inflammatory pathways (21) is the best predictor of becoming symptomatic both pre- and early 

post-exposure to respiratory viruses. Genes in HEME METABOLISM associated with 

symptoms include genes coding for the hemoglobin subunits (HBB, HBD, HBQ1 and HBZ), the 

heme binding protein (HEBP1) and genes coding for enzymes important for the synthesis of 

heme (ALAS2, FECH, HMBS, UROD). It also includes glycophorins, which are the major 

erythrocyte membrane proteins (GYPA, GYPB, GYPC and GYPE), which are known receptors 

for the influenza virus (Fig. 4C) (22, 23). Genes essential for erythroid maturation and 

differentiation (NEF2, TAL1, EPOR and GATA1), including the transcription factor GATA1 

and its targets, the hemoglobin subunit genes HBB and HBG1/2, were also part of HEME 

METABOLISM associated with an increase in symptom frequencies and severity. 

 

Discussion 

Using an open data analysis challenge framework, this study showed that models based on 

transcriptomic profiles, even prior to viral exposure, were predictive of infectious symptoms and 

symptom severity. The best scoring individual models for predicting symptoms and log-

symptom score, though statistically significant, fall short of practical clinical significance. 

However, these outcomes suggest that there is potential to develop clinically relevant tests based 

on the knowledge gained from these results, though this would necessitate further efforts to 
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generate more data or identify different biomarker assays which more accurately assess the 

mechanisms observed in the transcriptomic models.  

A generally useful exercise in crowdsourcing-based challenges is to construct ensembles 

from the submissions to assimilate the knowledge contained in them, and boost the overall 

predictive power of the challenge (24). This exercise has yielded useful results in earlier 

benchmark studies (25, 26) and the DREAM Rheumatoid Arthritis Challenge (27). However, the 

ensembles constructed for the Respiratory Viral DREAM Challenge did not perform better than 

the respective best performers among all the individual submissions for the various 

subchallenges and time points. We attribute this shortcoming partly to the relatively small 

training set (118 subjects), which may incline the ensemble methods to overfit these data, and the 

assumption of class-conditioned independence of the submissions inherent in SUMMA may not 

have been appropriate in this challenge (28). The relative homogeneity, or lack of diversity, 

among the submissions for the various subchallenges and timepoints may have been another 

potential factor behind the diminished performance of the ensembles (29). 

The relative homogeneity of submissions and observation that the same subjects are 

misclassified by almost all participating teams suggests there may be a plateau in predictive 

ability when using gene expression to predict the presence of symptoms or symptom severity. It 

is possible that an integrative analysis supplementing or replacing the gene expression data with 

post-transcriptional (such as metabolomic or proteomic) data could further improve accuracy. 

For example, metabolomic data have been used to differentiate patients with influenza H1N1 

from others with bacterial pneumonia or non-infectious conditions as well as differentiate 

influenza survivors from non-survivors (30). With respect to proteomics, Burke et al. used four 

of the viral exposure studies described here to derive and validate a proteomic signature from 
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nasal lavage samples which distinguish, with high accuracy, symptomatic from asymptomatic 

subjects at time of maximal symptoms (31). Cytokines are a special class of proteins that has 

been investigated in a variety of infectious disease conditions. Of particular relevance, cytokine 

profiling has been performed for one of the influenza H3N2 studies used in this Challenge. In 

that work, McClain et al. demonstrated that several cytokines were upregulated early after viral 

exposure (within 24 hours in some cases) and differentiated symptomatic from asymptomatic 

cases (32). Baseline differences in cytokine expression were not observed, however, suggesting 

that cytokine expression is useful for predicting response to viral exposure but not baseline 

susceptibility. To our knowledge, no study has identified baseline metabolomic or proteomic 

predictors of resilience or susceptibility to respiratory viral infection. In addition, the 

combination of these data with transcriptomic predictors has not yet been investigated and may 

yield robust predictors of susceptibility or resistance to infection. 

Our analyses revealed a significant concordance between predictions at T0 and T24 (Fig. 

S4), as well as a significant overlap between predictors at each of these timepoints (Table S2). 

Given the stability of predictions and predictors between T0 and T24, it appears that the pre-

exposure biological mechanisms conferring susceptibility or resilience to respiratory viral 

infection may be observable up to one day post-exposure. We also observed significant overlap 

between gene signatures at both T0 and T24 and late stage signatures of viral infection, reported 

in the literature, and derived from gene-expression 48 hours or later after viral exposure (Table 

S3) (5–9, 15, 33–38). The overlap between the predictors identified in this study and the later 

stage signatures was more significant at T24 than T0, suggesting that pre-exposure signatures of 

susceptibility differ somewhat from post-exposure signatures of active infection, and T24 
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predictors may reflect some aspects of both. The T0 gene signatures may encompass novel 

insight into ab initio factors that confer resilience or susceptibility. 

Pathway enrichment analysis in our study revealed that the most significantly enriched 

pathway associated with symptomatic infection was HEME METABOLISM, known to have a 

direct role in immunity through activation of innate immune receptors on macrophages and 

neutrophils (21). Of note, genes part of HEME METABOLISM were also enriched among late 

stage signatures of viral infection (ex. Hemoglobin gene HBZ and the iron containing 

glycoprotein ACP5 in (33)). Iron (obtained from heme) homeostasis is an important aspect of 

human health and disease. Viruses require an iron-rich host to survive and grow, and iron 

accumulation in macrophages has been shown to favor replication and colonization of several 

viruses (e.g. HIV-1, HCV) and other pathogenic microorganisms (39). Furthermore, iron-replete 

cells have been shown to be better hosts for viral proliferation (39). Increased iron loading in 

macrophages positively correlates with mortality (39) and it has been shown that viral infection 

can cause iron overload which could further exacerbate disease. Additionally, previous evidence 

suggests counteracting iron accumulation may limit infection (21, 39). Studies have shown that 

limiting iron availability to infected cells (by the use of iron chelators) curbed the growth of 

several infectious viruses and ameliorated disease (21, 39–41). This important role of iron in the 

susceptibility and response to infection may be the mechanism by which HEME METABOLISM 

genes conferred susceptibility to respiratory viral infection. As such, it represents an important 

biological pathway potentially offering a means by which an individual’s susceptibility or 

response to infection can be optimized. Such a relationship should be investigated in future 

studies of infection susceptibility. In addition, Heme-oxygenase (HMOX1), a heme-degrading 

enzyme that antagonizes heme induced inflammation and is essential for the clearance of heme 
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from circulation (42), was among the predictors from the T0 models. Interestingly, the expression 

of this gene at baseline was associated with lack of symptoms (for both SC2 and SC3), in 

concordance with its reported antiviral role during influenza infection (43, 44). Augmentation of 

HMOX1 expression by gene transfer had provided cellular resistance against heme toxicity (45). 

Hence enhancing HMOX1 activity could be an alternative to antagonize heme induced effects 

and thereby controlling infection and inflammation. 

In addition to HEME METABOLISM, pro-inflammatory pathways such as 

INFLAMMATORY RESPONSE, KRAS SIGNALING, and APOPTOSIS were also associated 

with susceptibility to viral infection in our study, while homeostatic pathways, such as 

OXIDATIVE PHOSPHORYLATION and MYC TARGETS, were associated with resilience, 

both prior to and post-viral exposure (Fig. 4). Enrichment of these pathways among T24 

predictors was more significant than among the T0 predictors, suggesting these mechanisms are 

not only emblematic of baseline system health, but also response to viral invasion. Additional 

pathways enriched among T24 predictors include INTERFERON GAMMA RESPONSE and 

COMPLEMENT, which are involved in innate and acquired immunity. Several genes among T0 

and T24 predictors overlapped with genes positively associated with flu vaccination response 

(46). Among them, FCER1G and STAB1, members of the inflammatory response pathway 

positively associated with symptoms in this study and were elevated prior to vaccination in 

young adults who showed good response to vaccination (46) (Fisher exact test: p=0.0338 for T0 

and p=0.000673 for T24). This suggest that individuals predicted at a higher risk of presenting 

symptoms following influenza exposure may also be the most likely to benefit from vaccination. 

The Respiratory Viral DREAM Challenge is to date the largest and most comprehensive 

analysis of early stage prediction of viral susceptibility. The open data analysis challenge 
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framework is useful for comparing approaches and identifying the most scientifically or 

clinically relevant model or method in an unbiased fashion (24). In this case, we observed few 

commonalities among the best performing models of symptomatic susceptibility to respiratory 

viral exposure. Indeed, the overall best performing teams in the challenge used different machine 

learning techniques to build their models. Interestingly, data preprocessing was the analysis task 

most significantly associated with model accuracy, suggesting what has often been speculated, 

that adequate attention to data processing prior to predictive modeling is a crucial first step (47). 

The open data challenge framework is also useful in arriving at consensus regarding 

research outcomes that may guide future efforts within a field (24). Through this challenge, we 

have identified ab initio transcriptomic signatures predictive of response to viral exposure, which 

has provided valuable insight into the biological mechanisms conferring susceptibility to 

infection. This insight was not evident from any individual model, but became apparent with the 

meta-analysis of the individual signatures. While development of a diagnostic test of baseline 

susceptibility in not yet feasible based on these findings, they suggest potential for development 

in this area. 
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Methods 

Training Data 

Training data came from seven related viral exposure trials, representing four different 

respiratory viruses. The datasets are DEE1 RSV, DEE2 H3N2, DEE3 H1N1, DEE4X H1N1, 

DEE5 H3N2, Rhinovirus Duke, and Rhinovirus UVA (6, 7, 9). In each of these human viral 

exposure trials, healthy volunteers were followed for seven to nine days following controlled 

nasal exposure to the specified respiratory virus. Subjects enrolled into these viral exposure 

experiments had to meet several inclusion and exclusion criteria. Among them was an evaluation 

of pre-existing neutralizing antibodies to the viral strain. In the case of influenza H3N2 and 

influenza H1N1, all subjects were screened for such antibodies. Any subject with pre-existing 

antibodies to the viral strain was excluded. For the rhinovirus studies, subjects with a serum 

neutralizing antibody titer to RV39 > 1:4 at pre-screening were excluded. For the RSV study, 

subjects were pre-screened for neutralizing antibodies, although the presence of such antibodies 

was not an exclusion criterion. 

Symptom data and nasal lavage samples were collected from each subject on a repeated basis 

over the course of 7-9 days. Viral infection was quantified by measuring release of viral particles 

from nasal passages ("viral shedding"), as assessed from nasal lavage samples via qualitative 

viral culture and/or quantitative influenza RT-PCR. Symptom data were collected through self-

report on a repeated basis. Symptoms were quantified using a modified Jackson score (14), 

which assessed the severity of eight upper respiratory symptoms (runny nose, cough, headache, 

malaise, myalgia, sneeze, sore throat, and stuffy nose) rated 0-4, with 4 being most severe. 

Scores were integrated daily over 5-day windows.  
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Blood was collected and gene expression of peripheral blood was performed 1 day (24 to 30 

hours) prior to exposure, immediately prior to exposure, and at regular intervals following 

exposure. These peripheral blood samples were gene expression profiled on the Affy Human 

Genome U133A 2.0 array. 

All subjects exposed to influenza (H1N1 or H3N2) received oseltamivir 5 days post-exposure. 

However, 14 (of 21) subjects in the DEE5 H3N2 cohort received early treatment (24 hours post-

exposure) regardless of symptoms or shedding. Rhinovirus Duke additionally included 7 

volunteers who were exposed to sham rather than active virus. 

All subjects provided written consents, and each of the seven trials was reviewed and approved 

by the appropriate governing IRB. 

 

RSV Test Data 

Healthy non-smoking adults aged 18-45 were eligible for inclusion after screening to exclude 

underlying immunodeficiencies. A total of 21 subjects (10 female) were inoculated with 104 

plaque-forming units of RSV A Memphis 37 (RSV M37) by intranasal drops and quarantined 

from 1 day before inoculation to the 12th day after. Peripheral blood samples were taken 

immediately before inoculation and regularly for the next 7 days and profiled on the Affy Human 

Genome U133A 2.0 array. Subjects were discharged after study day 12, provided no or mild 

respiratory symptoms and a negative RSV antigen respiratory secretions test. Shedding was 

determined by polymerase chain reaction (PCR) in nasal lavage and defined as detectable virus 

for ≥2 days between Day +2 and Day +10 to avoid false-positives from the viral inoculum and to 

align case definitions with the other 7 studies. Subjects filled a diary of upper respiratory tract 
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symptoms from Day −1 to Day +12, which was summarized using a modified Jackson score. All 

subjects returned for further nasal and blood sampling on Day +28 for safety purposes. All 

subjects provided written informed consent and the study was approved by the UK National 

Research Ethics Service (London-Fulham Research Ethics Committee ref. 11/LO/1826). 

 

Analysis Challenge Design 

The training data were split into training and leaderboard sets, where the leaderboard subjects 

were chosen randomly from 3 of the trials: DEE4X H1N1, DEE5 H3N2, and Rhinovirus Duke, 

which were not publicly available at the time of challenge launch. Outcome data for the 

leaderboard set were not provided to the teams, but instead, teams were able to test predictions in 

these individuals using the leaderboard, with a maximum of 6 submissions per subchallenge. Of 

these, at least one submission was required to use only data prior to viral exposure and at least 

one using data up to 24 hours post-exposure.  

For the training data, teams had access to clinical and demographic variables: age, sex, whether 

the subject received early oseltamivir treatment (DEE5 H3N2 only) and whether the subject 

received sham exposure rather than virus (Rhinovirus Duke only), as well as gene expression 

data for the entire time-course of the studies. They also received data for the three outcomes used 

in the data analysis challenge: 

● Subchallenge 1: SHEDDING_SC1, a binary variable indicating presence of virus in nasal 

swab following exposure 

● Subchallenge 2: SYMPTOMATIC_SC2, a binary variable indicating post-exposure 

maximum 5-day integrated symptom score >= 6 
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● Subchallenge 3: LOGSYMPTSCORE_SC3, a continuous variable indicating the log of 

the maximum 5-day integrated symptom score+1 

as well as the granular symptom data by day and symptom category. For the leaderboard test 

data, they were supplied with the clinical and demographic variables and gene expression data up 

to 24 hours post-exposure. 

Final assessment was performed in the RSV Test Data (i.e. independent test set), and outcomes 

for these subjects were withheld from teams. In order to assure that predictions were limited to 

data from the appropriate time window, the gene-expression data were released in two phases 

corresponding to data prior to viral exposure, and data up to 24 hours post exposure. Teams were 

also supplied with age and sex information for these subjects. 

Both raw (CEL files) and normalized versions of the gene-expression data were made available 

to teams. Both versions contained only profiles that pass QC metrics including those for RNA 

Degradation, scale factors, percent genes present, β-actin 3’ to 5’ ratio and GAPDH 3’ to 5’ ratio 

in the Affy Bioconductor package. Normalization via RMA was performed on all expression data 

across all timepoints for the training and leaderboard data sets. The RSV data were later 

normalized together with the training and leaderboard data. 

 

Submission Scoring 

Team predictions were compared to true values using AUPR and AUROC for subchallenges 1 

and 2, and Pearson correlation for subchallenge 3. For each submission, a p-value, estimating the 

probability of observing the score under the null hypothesis that the predicted labels are random, 

was computed by 10,000 permutations of the predictions relative to the true values. 
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We also had access to leaderboard predictions from 10,000 models build on data with randomly 

permuted labels for 3 teams for SC2 and 2 teams for SC3. This second test estimates the 

probability of observing the score under the null hypothesis that the independent variables does 

not contain information about the target variable within the model structure used in the predictor. 

Comparisons between permutation p-values and scores from models built on the permuted data 

showed that the latter approach to p-value computation was slightly more conservative (data not 

shown), and presumably more robust to overfitting the training data. Albeit theoretically 

preferable, the computational demands of this approach makes it infeasible for most challenges. 

 

Heterogeneity of the Predictions 

T0 and T24 predictions for each outcome and team were collected to assess whether they were 

correlated to each other. Three teams provided predictions as binary values while 12 teams 

provided predictions as continuous values on different scales. In order to compare binary and 

continuous predictions, we first transformed them into ranks (with ties given the same average 

rank) and then ordered subjects increasingly by their mean rank across outcomes (mean-rank). 

The lower the mean-rank, the more likely a subject was predicted by the teams as not showing 

shedding/symptoms, whereas a higher mean-rank means a subject was predicted by most of the 

teams as showing shedding/symptoms. Distribution of the mean-rank (Fig. S4) revealed three 

groups of subjects: (1) ~25% of subjects correctly predicted by most of the teams (i.e. inherently 

easy), (2) ~25% of subjects incorrectly predicted by most of the teams (i.e. inherently difficult) 

and (3) ~50% of subjects who were predicted differently by the teams. 
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Ensemble Prediction 

We constructed a variety of ensembles from the teams’ submissions to the various subchallenges 

as a part of the collaborative phase of the Respiratory Viral DREAM Challenge. To enable a 

comparative analysis between individual and ensemble models in the collaborative phase, the 

teams were requested to submit leave-one-out cross-validation (LOOCV)-derived predictions on 

the training examples using the same methods used to generate leaderboard and/or test set 

predictions in the competitive phase. The LOOCV setup, which doesn’t involve random 

subsetting of the training data, was chosen to avoid potential overfitting that can otherwise occur 

from training and testing on predictions made on the same set of examples (25). We used three 

types of approaches for learning ensembles, namely stacking and its clustering-based variants 

(25), Reinforcement Learning-based ensemble selection (26) methods, as well as SUMMA, an 

unsupervised method for the aggregation of predictions (28). Consistent with the process 

followed by the individual teams, we learnt all the ensembles using the training set LOOCV-

derived predictions described above, and used the leaderboard data to select the final models to 

be evaluated on the test data. 

 

Combined Gene Sets 

Statistical significance of the overlap among predictor lists was calculated using the multi-set 

intersection probability method implemented in the SuperExactTest R package (48). A first set of 

analysis was performed with teams whose leaderboard AUROC > 0.5. A second set of analysis 

aimed at identifying genes that overlap virus-specific, subchallenge-specific and timepoint-

specific predictive models, was restricted to teams that provided virus-specific (Nautilus, aydin, 

SSN_Dream_Team, Txsolo, cwruPatho and Aganita), subchallenge-specific (aydin, 
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SSN_Dream_Team, cwruPatho, jhou) and timepoint-specific predictors (aydin, 

SSN_Dream_Team, cwruPatho, Espoir, jdn, jhou, burkhajo) and participated in the leaderboard 

phase of the challenge, respectively. For both analyses, overlapping predictors associated with p-

values less than or equal to 0.05 were considered significant. 

 

Pathway enrichment analysis 

To assess pathway enrichment among predictors of infection, we considered predictors from 

teams with leaderboard AUROC > 0.5 (SC2) or Pearson correlation, r > 0 (SC3). Affymetrix 

Human U133A 2.0 GeneChip probe identifiers were mapped to gene symbols. We removed 

probes matching multiple genes, and when multiple probes matched a single gene, we retained 

the probe with the maximum median intensity across subjects. 

For the list of predictors of presence of symptoms (SC2), we calculated the log2 fold-change of 

features (symptomatic(1)/asymptomatic(0)) at T0 and T24, and for prediction of the symptom 

scores (SC3), we calculated the Spearman’s correlation coefficient of the features, at T0 and T24, 

with the outcome. Pathway enrichment was then performed on the union of all predictors (across 

the teams) that were associated with presence/increase severity of symptoms (SC2: log2 fold-

change > 0 and SC3: Spearman’s correlation > 0), as well as, for the union of all predictors 

(across teams) that were associated with lack of symptoms/lower symptoms severity (SC2: log2 

fold-change < 0 and SC3: Spearman’s correlation < 0), separately by timepoint and 

subchallenge. We used the Hallmark gene sets (version 6.0) (18) of the Molecular Signature 

DataBase (MSigDB) (19) for the enrichment, and calculated the significance of enrichment using 

Fisher’s exact test. The resulting p-values were corrected for multiple comparisons using the 

Benjamini and Hochberg algorithm. Only significantly enriched pathways (corrected p-value < 
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0.05) were reported. Meta-analyses across subchallenges and timepoints were performed using 

the maxP test statistic (49). 
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Fig. 1. Respiratory Viral DREAM Challenge. (A) Schematic representation of the Respiratory
Viral DREAM Challenge. (B) Challenge data come from seven viral exposure trials with sham or
one of 4 different respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV). In each of these
trials, healthy volunteers were followed for seven to nine days following controlled nasal
exposure to one respiratory virus. Blood was collected and gene expression of peripheral blood
was performed 1 day (24 to 30 hours) prior to exposure, immediately prior to exposure and at
regular intervals following exposure. Data were split into a training, leaderboard, and
independent test set. Outcome data for the leaderboard and independent test set were not
provided to the teams, but instead teams were asked to predict them based on gene-expression
pre-exposure (T0) or up to 24 hours post-exposure (T24). (C) Symptom data and nasal lavage
samples were collected from each subject on a repeated basis over the course of 7-9 days. Viral
infection was quantified by measuring release of viral particles from viral culture or by qRT-
PCR ("viral shedding"). Symptomatic data were collected through self-report on a repeated basis.
Symptoms were quantified using a modified Jackson score, which assessed the severity of 8
upper respiratory symptoms (runny nose, cough, headache, malaise, myalgia, sneeze, sore throat
and stuffy nose). 
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Fig. 2. Models predict presence of symptoms and symptom severity better than expected at 
random. Observed -log10(p-value) versus the null expectation for submitted predictions for 
predicting (A) presence of symptoms (SC2) and (B) log symptom score (SC3). For both 
subchallenges significant enrichment of p-values (enrichment p-value 0.008, 0.002, 0.021, and 
0.05 for AUPR(T0), AUROC(T0), AUPR(T24), and AUROC(T24), respectively, for presence of 
symptoms, and enrichment p-value 0.005 and 0.035 for T0 and T24, respectively, for log 
symptom score) across submissions demonstrates that pre- and early post-exposure 
transcriptomic data can predict susceptibility to respiratory viruses. 
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Fig. 3. Adequate preprocessing leads to more accurate predictors of symptoms presence
and severity. (A) Schematic representation of the analysis of the participating teams' writeups to
identify methodological steps associated with more accurate prediction of symptoms. First, the
writeups were manually inspected to identify the preprocessing, feature selection and predictive
modeling method used by each team. Second, the methods were regrouped into general
categories across teams. Third, each general method was assessed for its association with
predictive model accuracies on the leaderboard test set and the independent test set. (B) Heatmap
showing the association of each general method with prediction ability (i.e. AUROC for
subchallenge 2 (prediction of symptom presence; SC2) and Pearson’s correlation coefficient for
subchallenge 3 (prediction of symptom severity; SC3)). For each general method, a Wilcoxon
rank-sum test was used to assess the association between using the method (coded as a binary
variable) and prediction ability. 
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Fig. 4. Overlap and pathway enrichment among predictors of symptoms. (A) Percent of
team combinations showing statistically significant intersections of predictors at T0 and T24.
Only teams whose with AUROC ≥ 0.5 or r ≥ 0 for subchallenge 2 and 3, respectively, were used
for this analysis. The x-axis indicates the number of teams included in the combination. For
example, the value 2 corresponds to pairwise overlaps, 3 corresponds to 3-way overlaps, etc. The
y-axis indicates the percentage of team combinations with a statistically significant (p-value <
0.05) predictor intersection. Point size indicates median intersection size of predictors among
team combinations with significant predictor intersection; ‘X’ indicates no significant predictor
intersection. (B) Pathway enrichment among predictors of infection for each subchallenge (SC2
and SC3) at T0 and T24. The x-axis indicates subchallenge and each grid indicates timepoint. The
y-axis indicates pathways enriched among predictors with a Benjamini-Hochberg corrected p-
value < 0.05. Point size represents the fisher’s exact test enrichment -log10(p-value). Point colors
indicate whether the pathway was associated with symptoms (red) or lack thereof (blue).
Pathways shared between both SC2 and SC3 at each timepoint are highlighted in grey. Pathways
are ordered by the decreasing maxP test statistic as determined in Fig S5 (C) GeneMANIA
network of the union of predictors involved in the Heme metabolism pathway across time points
(T0 and T24) and subchallenges (SC2 and SC3). Edges are inferred by GeneMANIA (50)
corresponding to co-expression (purple), physical interactions (orange) and genetic interactions
(green) among genes. Node size corresponds to the number of teams that selected the predictor. 
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