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Abstract

There is growing interest in using genetic variants to augment the reference genome
into a ”graph genome” to improve read alignment accuracy and reduce allelic bias.
While adding a variant has the positive effect of removing an undesirable alignment-
score penalty, it also increases both the ambiguity of the reference genome and the cost
of storing and querying the genome index. We introduce methods and a software tool
called FORGe for modeling these effects and prioritizing variants accordingly. We
show that FORGe enables a range of advantageous and measurable trade-offs be-
tween accuracy and computational overhead.

1 Introduction

Assembled genomes are typically stored and understood as strings, simple sequences of
base pairs. High-throughput technologies have brought an explosion of population ge-
netics information, including from projects like HapMap [1], the 1000 Genomes Project
[2] and UK10K [3]. The question is emerging: how can we use population genetics infor-
mation to improve accuracy of genomic analyses? This has fueled interest in techniques
that depart from a linear string as point of reference for all individuals, and toward pan-
genome representations [4, 5] more inclusive of genetic variation.

While methods for including variants in the reference are growing in number [6, 7, 8,
9, 10, 11, 12], there is little or no work on how to choose which variants to include. Past
studies have made such decisions in ad hoc ways, with some filtering according to allele
frequency [13, 8], ethnicity [7], or both [9].

Here we examine the advantages and disadvantages of adding variants to the refer-
ence. We show that the disadvantages are important to measure, since simply adding
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more variation to the reference eventually reduces alignment accuracy. We suggest effi-
cient models for scoring variants according to the effect on accuracy and “blowup” (com-
putational overhead), and further show that these scores can be used to achieve a balance
of accuracy and overhead superior to current approaches. For example, extrapolating to
a whole-human DNA sequencing experiment at 40-fold average coverage, we estimate
that a well-engineered augmented reference can yield about 4.8M more correctly aligned
reads and 1.2M fewer incorrectly aligned compared to the linear reference. Our methods
for selecting variants also reduce reference bias, a chief goals of graph genomes. Finally,
we compare the accuracy yielded by our methods to that achieved using an ideal person-
alized graph genome. We show that our methods approach the ideal much more closely
than both linear genomes – even when they are modified to contain only major alleles –
and graph genomes built on different sets of variants.

These methods are implemented in a new open source software tool called FORGe. We
demonstrate FORGe in conjunction with the HISAT2 [12] graph aligner and with another
aligner based on the Enhanced Reference Genome [7]. But FORGe’s models and methods
are suitable for any aligner that can include variants in the reference.

Read alignment with variants Read alignment is the process of determining each read’s
point of origin with respect to a reference genome. The origin can be ambiguous and re-
ported alignments can be incorrect [14]. Repetitive genomes and sequencing errors con-
tribute to this problem [14, 15]. Importantly, genetic differences between donor and ref-
erence genomes also contribute. Alignments overlapping positions where the genomes
differ — i.e. where the donor genome has a non-reference allele — are systematically pe-
nalized. This can (a) reduce the correct alignment’s score below the threshold considered
significant by the aligner, (b) cause the aligner’s heuristics to miss the correct alignment,
(c) cause the correct alignment’s score to fall below the score at a different, incorrect loca-
tion. The problem is magnified in hyper-variable regions such as the Major Histocompati-
bility Complex (MHC) [16, 17]. It is also problematic when individuals differ dramatically
e.g. if they are from distinct inbred strains [6], or when downstream analyses are vulner-
able to allelic bias, such as when detecting allele-specific expression [18, 7, 19] or calling
heterozygous variants [20, 21].

Augmenting the reference genome with known variants helps in two major ways.
First, it reduces the genetic distance between donor and reference genomes, removing
the tendency to penalize correct alignments that overlap non-reference alleles. Second,
it avoids the allelic bias, also called “reference bias,” [18] that results when one donor
haplotype resembles the reference more closely than the other(s).

There are many proposals for how to include and index genetic variants along with
the reference genome. Two early approaches were GenomeMapper [6] and the Enhanced
Reference Genome [7]. GenomeMapper came from a project to sequence many inbred
strains of Arabidopsis Thaliana, and it used a graph representation and an accompanying
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k-mer index to represent and align to a graph representing all strains. The Enhanced Ref-
erence Genome [7], which specifically addresses reference bias for allele-specific expres-
sion, included variants by taking the non-reference allele along with flanking bases and
appending these “enhanced segments” to the linear reference genome. Since the resulting
reference is linear, a typical read aligner like Bowtie [22] can be used.

Several studies have expanded on these ideas. deBGA [23] uses a colored De Bruijn
graph [24] and an accompanying hash-table index. BWBBLE [8] and gramtools [13] use
an FM Index [25] with an expanded alphabet and modified backward-search algorithm
to account for variants. GCSA [9] generalizes the compressed suffix array to index not
a single reference but a multiple alignment of several references. HISAT2 [12] combines
GCSA with the hierarchical FM Index implemented in HISAT [26]. GCSA2 [10] indexes
paths in arbitrary graphs and is implemented in the VG software tool [11] which can align
reads to such indexes. MuGI [27] and GraphTyper [21] use k-mer-based indexes.

Genome assemblies are also evolving along these lines. The GRCh37 and GRCh38 hu-
man assemblies [28, 29] include “alt loci,” alternate assemblies of hypervariable regions
including MHC. Other studies suggest modifying the linear genome by replacing each
non-major allele with its major alternative [30, 31]. This leverages population-level infor-
mation while keeping a linear representation.

Variant selection and evaluation Past efforts that evaluated graph aligners have been
selective about what variants to include in the graph, but without a clear rationale. Some
included all variants from a defined subset of strains or haplotypes [6, 23, 27] or from
a database such as the 1000 Genomes Project callset [2] or dbSNP [32]. In some cases,
variants were filtered according to ethnicity, e.g. keeping just the Finnish 1000 Genomes
individuals [9] or the Yoruban HapMap [1] individuals [7]. The ERG study (concerned
with allele-specific expression) excluded variants outside annotated genes. The gramtools
study [13] used 1000 Genomes variants but excluded those with observed allele frequency
less than 5%. GraphTyper [21] used dbSNP variants in one experiment, excluding single-
nucleotide variants (SNVs) with under 1% frequency in all populations. HISAT2’s soft-
ware for selecting variants to include filters out SNVs with an allele frequency of under
10% in some cases [12].

Here we explicitly model the variants according to their effects on alignment, and
we provide methods for choosing an optimal set based on those models. We apply these
methods in combination with two different augmented-reference alignment methods, and
compare to a range of relevant competing methods, including a linear reference with refer-
ence alleles, a linear reference with all-major alleles, and an ideal “personalized” reference
that customized to fit the donor individual’s alleles (including at heterozygous positions)
as closely as possible. This experimental design allows us to make statements about how
our methods affect accuracy, how those effects vary with genomic region, how close the
methods come to achieving ideal accuracy, and how practical current graph alignment
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methods are overall.

2 Results

Strategy Read alignment can be divided into offline (index building) and online (align-
ment) stages. FORGe operates in the offline stage. Specifically, FORGe takes a reference
genome (FASTA format) and catalog of variants and their frequencies in the population
(Variant Call Format). FORGe can also use phasing information when provided in the
VCF. FORGe then selects variants to include in the index according to a model and de-
sired fraction or number of variants.

Simulation We used Mason 0.1.2 to simulate reads (details in Supplementary Note 1).
Mason simulates sequencing errors and base quality values. Mason also annotates each
read with information about its true point of origin. We disabled Mason’s facility for
adding genetic variants, since we simulate from already-individualized references. We
classify an alignment as correct if its aligned position in the reference is within 10 bases of
the true point of origin. If the aligner reports several alignments for a read, we consider
only the primary alignment — of which there is exactly one per aligned read, usually with
alignment score equal to or greater than all the others — when determining correctness.

Alignment We tested FORGe with two read alignment strategies capable of including
variants in the reference: HISAT2 [12] and the Enhanced Reference Genome (ERG) [7].
HISAT2 is a practical graph aligner that we hypothesized would benefit from careful se-
lection of genetic variants to include. The ERG is simple and compatible with linear align-
ers like Bowtie. We use ERG only with short unpaired reads (25 nt) to test the hypothesis
that the seed-finding step of an aligner can benefit from including FORGe-selected vari-
ants. While HISAT2 can be used with unpaired and paired-end reads, we test it only with
unpaired reads here. Adapting the ERG approach to paired-end alignment is probably
not practical (see Discussion).

In its offline stage, HISAT2 takes a linear reference genome and a VCF file with single-
nucleotide variants and indels. HISAT2 uses GSCA indexing [9] to build a graph-genome
index. The resulting graph is the generating graph for all combinations of reference (REF)
and included alternate (ALT) alleles. HISAT2 also provides software that, starting from a
VCF file (or the UCSC “Common SNPs” track, derived from dbSNP [32]), selects a sub-
set of variants to include. It filters in two ways. First, it excludes variants with allele
frequency under 10%. Second, where variants are densely packed, it imposes artificial
haplotype constraints to avoid the exponential blowup that results from considering all
combinations of REF and ALT alleles. We call this the HISAT2 auto method.

We also tested FORGe with our implementation of the ERG [7]. ERG’s offline phase
starts with a linear reference genome and a variant file. It builds an augmented reference
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genome by adding enhanced segments: reference substrings that include ALTS and flank-
ing context. The amount of context depends on a user-specified window size, r, which
typically equals the maximum read length. When n variants co-occur in a window, 2n− 1
enhanced segments are added to cover all combinations of ALT and REF alleles. The orig-
inal ERG study limited growth by considering only the leftmost k variants per length-r
window, with k = 5 in practice. We use a variation on this limit: if a window contains
more than k variants, we consider (a) the leftmost variant, and (b) the k− 1 other variants
with highest allele frequency according to the input VCF. Including the leftmost guaran-
tees that each variant has its ALT included in at least one of the overlapping enhanced
segments. We also set the limit higher (k = 15) by default. While k is configurable, we
used the default in all experiments here. After adding enhanced segments to the refer-
ence, we indexed it with Bowtie [22]. In the online stage, we used Bowtie to align to the
enhanced reference. Details on our ERG implementation are in Supplementary Note 2.

In all experiments, we ran HISAT2 with the -k 10, --no-spliced-alignment,
and --no-temp-splicesite options. In the ERG experiments we ran Bowtie with the
-v 1 option to allow alignments with up to 1 mismatch. Note that HISAT2 is able to
find alignments with mismatches, insertions or deletions, whereas Bowtie can only find
alignments with mismatches. In all cases, we used Python’s rusage module to measure
peak resident memory usage and we used the Linux time utility to measure running
time. All tools were run using a single thread.

Variant models As detailed in Methods, FORGe has two main models for ranking and
selecting variants to include in the reference. First is Population Coverage (Pop Cov), which
scores variants according to allele frequency. Second is Hybrid, which weighs both a vari-
ant’s allele frequency and the degree to which its addition would make the reference more
repetitive. Additionally, we evaluated versions of these two models enhanced with a
blowup avoidance strategy that, at variant adding time, dynamically down-weights candi-
dates that are close to already-added variants. These versions are called Pop Cov+ and
Hybrid+. All of these strategies are detailed in the Methods section.

2.1 Chromosome 9 simulation

We tested FORGe in a series of simulation experiments. We used human chromosome 9
from the GRCh37 assembly [28]. GRCh37 was chosen to match the coordinates for the
official 1000 Genomes Project Phase-3 variants [2]. We simulated sequencing reads from
chromosome 9 of NA12878, a female from the CEPH (Utah residents with Northern and
Western European ancestry) group studied in the 1000 Genomes Project. Specifically, we
generated 10 million unpaired Illumina-like reads from each haplotype of NA12878 for a
total of 20 million reads. We created a VCF file containing all single-nucleotide variants
(SNVs) appearing in chromosome 9 in at least one 1000-Genomes individual, excluding
NA12878 and family members. The resulting file contained 3.4 million SNVs. Details on
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how this set of SNVs was obtained are presented in Supplementary Note 3. We used the
Pop Cov, Hybrid, Pop Cov+ and Hybrid+ models to score the 3.4M SNVs. The Hybrid and
Hybrid+ models used phasing information, whereas the Pop Cov and Pop Cov+ models did
not (explained in Methods). We compiled subsets of SNVs consisting of the top-scoring
0%, 2%, 4%, 6%, 8%, 10%, 15%, and 20% up to 100% in 10 point increments.

HISAT2 Figure 1 shows alignment rate and accuracy when using HISAT2 to align our
simulated 100bp reads to the genome indexes created with hisat2-build. The leftmost
point (in the case of 1c, the point labeled 0%) corresponds to a HISAT2 index with no SNVs
added, i.e. a linear reference genome. The diamond labeled Major Allele Ref corresponds
to a linear reference with all major alleles; i.e. with every SNV set to the allele that was
most most frequent among CEU individuals in the filtered callset. The diamond labeled
HISAT2 auto corresponds to the pruned set obtained by running HISAT2’s scripts. The
diamond labeled Personalized shows results when aligning to a personalized NA12878
genome with all non-reference homozygous (HOM) alleles replaced by their ALT versions
and all heterozygous (HET) SNVs added as variants, so that neither REF nor ALT are
penalized at alignment time. This is not a realistic scenario, but helpful for assessing
how close the tested methods come to the personalized-genome ideal. Plotted lines show
results obtained when adding progressively larger subsets of SNVs to the graph genome,
prioritized by model score.

Figures 1a and 1b show alignment rate and fraction of alignments that are correct
(henceforth “correctness”) as a function of the number of SNVs included in the genome.
For all models except Hybrid+, peak alignment rate and correctness occur in the 8–12%
range of SNVs included. All the FORGe models at their peak achieve higher alignment
rate and correctness than the major-allele and HISAT2 methods. When greater fractions of
variants are included — more than around 12% — alignment rate and correctness gener-
ally decrease. Correctness eventually decreases to a level only somewhat higher than that
achieved by the linear reference, showing that alignment suffers when too many variants
are included. Figures 1d and 1e are similar to 1a and 1b but show alignment rate and cor-
rectness as a function of HISAT2’s memory footprint at alignment time. While FORGe’s
models at their peak have a roughly 50% larger memory footprint than the linear refer-
ences (both major-allele and reference-allele), they use roughly half the memory of the
“HISAT2 auto” method.

Figure 1c plots a point or a parametric curve for each indexing strategy and model. The
vertical axis is the fraction of reads (not alignments) that aligned correctly, and the hori-
zontal axis is the fraction of reads that aligned incorrectly. Notable points on the curves
are labeled with the fraction of SNVs included. Diamonds mark points on the curves with
maximal y − x, where y is fraction correct and x is fraction incorrect. This is a combined
measure for alignment rate and accuracy, and maximal values are reached in the 8–10%
range of SNVs included (except Hybrid+, which peaked at 30%). The best-performing
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are superior to (above and to the left of) the linear-genome methods, the “HISAT2 auto”
method, and to the the genome obtained by adding all of the SNVs (labeled 100%). The
best-performing graph genomes come much closer to the personalized-genome ideal than
the other methods.

It is notable that the alignment rate curves in Figure 1a,b,d and e eventually trend
downward. Like most read aligners, HISAT2 uses heuristics to limit the effort spent align-
ing reads to many repetitive regions of the same reference genome. HISAT2 is unusual
in that when a read has too many repetitive alignments, it will abort and leave the read
unaligned. Bowtie does not have this heuristic; rather, Bowtie chooses one best-scoring
alignment to report even when the read has many repetitive alignments. Because of this,
HISAT2’s alignment rate decreases as more variants are included and the genome be-
comes more repetitive.

A known drawback of graph aligners is that accuracy and overhead can suffer when
many variants co-occur in a small window of the genome. To measure the impact this has
on FORGe’s models, we also plotted results using blowup avoiding versions of the Pop Cov
and Hybrid models (Figure 1, dotted lines), called Pop Cov+ and Hybrid+. These versions
will, when selecting variants to add, deprioritize variants that are near already-added
variants. We observed that blowup avoidance had a minimal impact on the shape of the
Pop Cov curve; e.g. Figure 1d & e shows the solid and dotted lines for Pop Cov on top
of each other. Notably, blowup avoidance did cause the alignment memory to increase
more slowly with respect to the number of added variants for the Pop Cov ranking (Figure
1f). For the Hybrid model, blowup avoidance did not change the relationship between
memory footprint and number of variants added (Figure 1f) and had an adverse effect
on alignment rate and correctness. This is likely because the Hybrid model already takes
clustered variants into account in its k-mer counts.

Enhanced Reference Genome Figure 2 shows alignment rate and correctness when us-
ing Bowtie [22] to align simulated 25bp reads to enhanced references constructed with the
ERG method [7]. We used shorter reads and configured Bowtie to find alignments with
up to 1 mismatch (-v 1) to mimic the seed alignment step of seed-and-extend aligners.

Unlike HISAT2, Bowtie always reports an alignment if one is found, regardless of
how repetitively the read aligns. Consequently, the alignment rate shown in Figure 2a
and d strictly increases as variants are added to the graph. Apart from that, the results
reinforce those from Figure 1. Peak alignment rate occurs at a relatively small fraction
of SNVs (6-20%). As more variants are added, decreases eventually decreases, though
the Hybrid ranking does not suffer this drop until over 70% of SNVs are included. The
alignment-time memory footprint of the best-performing FORGe indexes is higher than
that of the linear reference; e.g., including the top 6% of Pop Cov+-scored SNVs increases
the footprint 29%, from 127.9 MB to 165.0 MB. But it is a fraction of the size of the index
when 100% of variants are included (1.87 GB). Blowup avoidance (Figure 2, dotted lines)
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had a somewhat minor effect on alignment rate and correctness for Pop Cov, and a clear
negative effect for Hybrid. On the other hand, it slowed the rate of index growth for both
models at low and intermediate fractions of SNVs (Figure 2f).

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2018. ; https://doi.org/10.1101/311720doi: bioRxiv preprint 

https://doi.org/10.1101/311720
http://creativecommons.org/licenses/by/4.0/


98.8

98.9

99.0

0 25 50 75 100
% SNVs

%
 re

ad
s 

al
ig

ne
d

94.46

94.50

94.54

0 25 50 75 100
% SNVs

%
 a

lig
nm

en
ts

 c
or

re
ct

●

8%8%

10%

30%

0%

100%

93.3

93.4

93.5

93.6

5.40 5.44 5.48
% reads incorrect

%
 re

ad
s 

co
rre

ct

98.8

98.9

99.0

200 400 600 800
Alignment Mem (MB)

%
 re

ad
s 

al
ig

ne
d

94.46

94.50

94.54

200 400 600 800
Alignment Mem (MB)

%
 a

lig
nm

en
ts

 c
or

re
ct

200

400

600

800

0 25 50 75 100
% SNVs

Al
ig

nm
en

t M
em

 (M
B)

Population coverage Hybrid HISAT2 Auto Major Allele Personalized Standard Blowup avoid

(a) (b) (c)

(d) (e) (f )

Figure 1: Results from NA12878 simulation. 100-bp unpaired reads were simulated from
GRCh37 Chromosome 9 with NA12878’s variants included using Mason. FORGe and
HISAT2 created and indexed augmented reference genomes with various sets of variants.
(a) and (d) show the fraction of reads that aligned. (b) and (e) show the fraction that
aligned correctly to the simulated point of origin. (c) plots a parametric curve of the
fraction of reads with a correct alignment (vertical) versus the fraction with an incorrect
alignment (horizontal). Lines follow measurements made over a range of fractions of
SNVs, with points for 0%, 2%, 4%, 6%, 8%, 10%, 15%, and 20% up to 100% in 10 point
increments.The diamond labeled HISAT2 auto is an augmented genome produced using
HISAT2’s pruning scripts. The diamond labeled Major allele ref is a linear reference with
all positions set to the most frequent allele. Other diamonds indicate the SNV fraction
maximizing y − x, where y is the fraction of reads aligned correctly and x is the fraction
aligned incorrectly.
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Figure 2: Results from aligning simulated 25-bp unpaired reads to GRCh37 chromosome
9 using the ERG+Bowtie approach.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2018. ; https://doi.org/10.1101/311720doi: bioRxiv preprint 

https://doi.org/10.1101/311720
http://creativecommons.org/licenses/by/4.0/


2.2 Stratification by read type and region

Figure 1c showed that when we move from 0% to 8% of variants included in the aug-
mented reference, the number of correct alignments increases by about 0.4 percentage
points (as a fraction of reads) and the number of incorrect decreases by about 0.1 points.
Though these may seem like small differences, in a study with 1.2 billion reads — ap-
proximately the number of unpaired 100 nt unpaired reads required to cover the human
genome to 40-fold average depth — this would yield about 4.8M more correctly aligned
reads and 1.2M fewer incorrectly aligned.

Still, we hypothesized that certain read subsets might be affected more dramatically
by the inclusion of variants. To this end, we measured alignment rate and correctness
when we varied the number of alternate alleles overlapped by a read (3a-c), whether the
alternate allele was common or rare ((3d-f)) and what kind of genomic region or repeat
the read originated from ((3g-i)). The measurements studied here are the same as those
presented in Figure 1, but filtered as described below.

Figures 3a-c show alignment rate and correctness stratified by the number of non-
reference SNVs overlapped by a read. To obtain these subsets, we first removed reads
originating from reference-genome regions deemed repetitive by DangerTrack [33] (score
over 250). We did this after finding that these regions had a combination of low SNV
density and repetitive content that caused the 0-SNV stratum to behave very differently
from the others. Reads containing 1 or more SNVs undergo a rapid increase in alignment
rate and correctness from 0% to 10% of SNVs. Beyond 10%, all strata experience a slow
decrease in alignment rate and correctness up to 100% of SNVs added. The 0-SNV stra-
tum has decreasing alignment rate and correctness across the whole range, as expected
since the addition of variants cannot help (since the reads lack alternate alleles) but can
harm alignment by increasing the repetitiveness of the reference. Strata with more SNVs
experience a more dramatic rising-and-falling pattern; for the 3-SNV stratum, alignment
rate varies from about 80–98%. While curves for the various strata have different shapes,
all peak at a relatively low SNV fraction: 20% or lower.

Figures 3d-f show alignment rate and correctness for reads containing a single rare
SNV allele (1000 Genomes frequency < 0.5) versus reads containing a single common
SNV allele (≥ 0.5). In both cases, we considered only reads with a single non-reference
allele. Rare-SNV reads peak lower and at a higher SNV fraction than common-SNV reads
for both alignment rate and correctness (Figures 3d-f). This is expected, since the Pop cov
model prioritizes common over rare SNVs. In other words, by the time a rare variant
is added, many common variants have already been added, making the genome more
repetitive.

Figures 3h-j show alignment rate and correctness for reads stratified by feature of ori-
gin. We analyzed reads originating from (a) RepeatMasker-annotated repetitive regions
(http://www.repeatmasker.org), (b) RepeatMasker-annotated “Alu” repeats, (c) re-
gions captured by the Nextera exome sequencing protocol, and (d) all reads. Reads from
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repetitive regions generally had lower alignment rate and correctness compared to all
reads. As before, alignment rate and correctness curves peaked at low SNV fractions:
10% or lower. Reads from more repetitive features were more sensitive to the number of
variants included in the reference, as evidenced by the vertical spans of the curves.

In a related experiment, we examined the graph genome’s effect specifically on the
hypervariable MHC region. We simulated reads from NA12878 Chromosome 6 and used
HISAT2 to align to both a linear and a graph genome augmented with the top-scoring
10% of SNVs. We visualized the read-alignment pileup in the hypervariable MHC region
using IGV [34] (Supplementary Figure 3). Qualitatively, the pileup for the augmented
reference looks superior — with more coverage in variant-dense regions and with more
even overall coverage — to the pileup for the linear reference.
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Figure 3: First row: Results for simulated reads stratified by the number of SNV alternate
alternate alleles overlapped by the read. Reads overlapping regions with high Danger-
Track [33] score, indicating the regions are difficult to align to. Second row: Results for
simulated reads overlapping exactly one common alternate allele (and no other alternate
alleles) and reads overlapping exactly one rare allele. Reads overlapping regions with
high DangerTrack [33] score, indicating the regions are difficult to align to. Third row:
Results for simulated reads stratified by region of origin. Regions examined are: regions
labeled with the “Alu” family by RepeatMasker, regions captured by the Nextera exome
sequencing protocol (“Exome”), and regions labeled with any repeat family by Repeat-
Masker (“Rep”).
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Figure 4: Results from chromosome-9 NA12878 simulation when using an ethnicity-
specific (“CEU”) versus a pan-ethnic (“All”) augmented reference. Reads are 100 bp and
unpaired.

2.3 Ethnicity specificity

We also studied how ethnicity-specific augmented references, advocated in other studies
[35, 36, 37], can improve alignment. We used FORGe to select variants from two lists: one
with variants drawn from and scored with respect to the overall 1000-Genomes phase-3
callset, and another drawn from and scored for just the CEU individuals. In both cases,
variants private to NA12878 and family members were excluded and reads were simu-
lated from NA12878.

Figure 4 shows alignment rate and correctness when aligning to CEU-specific and pan-
ethnic references. As expected, the CEU-specific reference yielded higher alignment rate
and correctness. CEU-specific curves also peaked at lower numbers of SNVs compared to
pan-ethnic. However, the differences were only a few hundredths of a percentage point
and cover only a small fraction of the remaining distance to the ideal point. Looking
at this another way, if we extrapolate the results to a whole-genome DNA sequencing
experiment with 40-fold average coverage, around 250,000 alignments would be affected.
We return to these small differences in the Discussion section.
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2.4 Whole human genome

Simulated reads To show our methods generalize to whole genomes, we repeated ex-
periments like those presented in Figure 1 using the full GRCh37 reference. We gathered
over 79.2 million SNVs from the Phase-3 callset of the 1000 Genomes Project [2]. We
used FORGe’s Pop Cov+ model to score SNVs and compiled subsets consisting of the top-
scoring 2%, 4%, 6%, 8%, 10%, 15%, and 20% up to 100% in 10 point increments.We built
graph-genome indexes for each using HISAT2. We used the Pop Cov+ model because the
others required excessive time and/or memory; specifically, the Pop Cov model (without
blowup avoidance) produced a set of variants that HISAT2 was unable to index in a prac-
tical time and space budget (Supplementary Note 4) and the Hybrid and Hybrid+ models
required excessive time for the step that generates the FASTA file for G∗ due to exponen-
tial blowup (Supplementary Note 5).

Figures 5a & b plot HISAT2 alignment rate and correctness as a function of the SNV
fraction. We aligned 20 million 100 bp unpaired reads from simulated from NA12878.
We omitted NA12878 and family members from variant selection. Results using the ideal
personalized index are also shown for comparison. Maximal y−x, where y is the fraction
of reads aligned correctly and x is the fraction aligned incorrectly, occurred at 10% of
SNVs (Figure 5c). Interestingly, the maximal point does not approach the personalized-
genome ideal point as closely here as it did for the chromosome-9 experiment (Figure
1). This seems to be due to the added ambiguity that comes when variants in all non-
chromosome-9 portions of the genome are added (Supplementary Figure 1).

Platinum reads, SNVs For a more realistic setting, we conducted further experiments
using a set of 1.57 billion real 100 bp unpaired sequencing reads from the Platinum Genomes
Project [38] (accession: ERR194147). Like the simulated reads, these also come from
NA12878. For this experiment we gathered a set of 80.0 million SNVs from the 1000
Genomes phase-3 callset but omitting variants private to NA12878 and family members.
We again used the Pop Cov+ model to select variants.

We cannot assess correctness since the reads were not simulated. Following a prior
study [39], we measured the number of reads that align uniquely — where HISAT2 re-
ported exactly one alignment — versus the number that aligned perfectly, matching the
reference exactly with no differences. The goal was to capture the variant-inclusion trade-
off; we hypothesized that adding more variants will remove the alignment-score penalty
associated with known genetic variants (increasing the number of perfect matches) with-
out increasing reference ambiguity (decreasing the number of unique alignments). As
shown in Figure 6a, the points that achieved the peak number of unique plus perfect
alignments corresponded to 30% of the SNVs. This fraction is higher than most of our
simulated results, perhaps due to the fact that unique-plus-perfect is an imperfect proxy
for correct-minus-incorrect (Supplementary Figure 2).
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Figure 5: Results from aligning NA12878-simulated reads to HISAT2 graph genomes with
variants selected using FORGe’s Pop Cov+ model.

Platinum reads, SNVs and indels To highlight the effect of including indels in the ref-
erence, we repeated the previous experiment but using both SNVs and indels from the
1000 Genomes phase-3 callset. Specifically, we gathered 83.1 million variants, both SNVs
and indels, but omitting variants private to NA12878 and family members. We again used
the Pop Cov+ model to select variants. We again plotted the number of reads that aligned
uniquely versus the number that aligned perfectly (Figure 6a). The graph genome built
from both SNVs and indels achieved peak unique+perfect at 30% of variants, like the
graph built from SNVs alone. However, at every percentage it yields more unique and
perfect alignments.

Reference bias Finally, we measured how reference bias varies with the fraction of vari-
ants included. We analyzed the alignments of the ERR194147 reads to the whole human
genome with both SNVs and indels included in in reference. Figure 6b shows a series of
boxplots summarizing bias at a set of 2.07 million HET SNVs called in NA12878 by the
Platinum Genomes Project [38]. The set of 2.07M HETs was chosen by taking all HETs cov-
ered by at least 25 reads in all of our experiments. Each boxplot summarizes the fraction
of REF alleles (REF/(REF +ALT )) at the HET site for all 2.07M HETs. As expected, bias
decreased as more variants were included. The decrease plateaued at 10–20% of variants.
Beyond 20%, including more variants did further reduce bias, but only slightly. From 20%
to 70% of variants the mean decreased by only 0.00011. This is consistent with previous
results showing that most of the benefit is achieved at a small fraction of variants.
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Figure 6: (a) Perfect/unique alignment results when aligning real reads. The blue curve is
parametric, as a function of the fraction of variants included from 0% (bottom left) to 80%
(top). The green diamond marks the number perfect and unique mappings for HISAT2’s
custom variant pruning script applied to the set of SNVs and Indels. Graph genomes
were built for SNVs alone (red) and for SNVs and Indels (blue), both ranked with the Pop
Cov+ strategy. Blue and red diamonds mark the fractions that achieved the highest sum of
unique and perfect alignments. (b) Allelic bias for the 2.07 M heterozygous SNVs that met
a minimum coverage threshold of 25 in all experiments. Whiskers show the 5th-to-95th
percentile range.
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3 Methods

FORGe works in cooperation with a variant-aware read aligner such as HISAT2 [12] or the
ERG [7]. The strategy has two stages. In the offline stage, FORGe selects variants to include
in the augmented reference based on a variant model — which predicts the pros and cons
of including a variant — and a variant limit. The model and limit together constitute a
variant inclusion strategy (VIS) that aims for a balance between accuracy and overhead.
Once variants have been selected, the aligner software is used to create an index of the
augmented reference. The second stage is an online stage where the read aligner aligns
reads to the augmented reference using the index.

3.1 Offline stage.

Inputs to the offline stage consist of (a) a reference genome, (b) variants in VCF format,
(c) a VIS, and (d) a window size s. The variant inclusion strategy (VIS) consists of a
variant model and a limit on the number or fraction of variants to include. The VIS is the
user’s most direct means for balancing blowup and alignment accuracy in the augmented
reference. We now propose multiple variant models, each aiming to give higher scores
to variants that will impart a greater net benefit when considering accuracy and blowup.
The window size s is used in three separate places in the software (described below) and
should typically be set to the maximum read length.

3.1.1 Variant models

Let Gref denote the linear reference genome and G∗ the complete augmented genome
including all variants in the population. Let G be a possible result of a VIS, i.e. an aug-
mented genome that includes a subset of population variants. For simplicity, assume all
variants are SNVs (substitutions). Let a localized s-mer 〈s, l〉 be a string of length s (the
configurable windows size) that matches some combination of alleles in an augmented
genome G starting at offset l; we also call these simply 〈s, l〉-mers . For instance, if G is
GATYACA, where Y can be either C or T, then 〈GAT, 0〉, 〈TCA, 2〉 and 〈TTA, 2〉 are all 〈3, l〉-
mers of G. For an 〈s, l〉-mer σ, let p(σ) be the probability a random 〈s, l〉-mer drawn from
a random individual in the population equals σ. This can be calculated as:

p(〈s, l〉) = pl(l) · ps(〈s, l〉) ≈
ps(〈s, l〉)
|Gref |

where pl(σ) is the probability a random s-mer begins at σ’s offset, which we approximate
by 1
|Gref | . ps(σ) is the probability a localized s-mer starting at l has alleles matching σ’s.

We approximate ps(σ) by assuming independence and multiplying the frequencies of each
allele, or, if phasing information is available, by using allele co-occurrence frequencies.
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Population Coverage The population coverage C(G) of an augmented reference G is pro-
portional to the population variation included, weighted by allele frequency. Specifically:

C(G) =
∑
〈s,l〉∈G

p(〈s, l〉)

Note that C(Gref ) ≤ C(G) ≤ C(G∗) = 1.
We want to prioritize alleles according to how much they increase C(G). To do so

accurately, each variant’s effect on C(G) must be calculated according to which nearby
variants (within s− 1 positions) are already in G. While this is possible, it requires much
recalculation of scores as variants are added toG. It also means there is no way to produce
a single, static list of per-variant model scores. For these reasons, we instead compute each
variant’s effect on C(G) assuming that all surrounding variants are already in G; in other
words, we compute the decrease in C(G) caused by removing the variant from G∗. We
call this the complete graph assumption.

Although FORGe is capable of using phasing data — describing which alleles co-occur
on the same haplotype — the complete graph assumption makes this irrelevant for our
calculation here. We do make (optional) use of phasing data in the Hybrid model, dis-
cussed below.

Uniqueness The uniqueness U(G) of a genome G decreases as the multiplicities of its
k-mers increase, i.e. as the genome becomes more repetitive. Let fG(s) be the number of
〈s′, l′〉-mers in genome G with s = s′. We define uniqueness of the genome as:

U(G) =
∑
〈s,l〉∈G

1

fG(s)

Adding a variant to the genome can either increase or decrease U(G). Specifically,
an 〈s, l〉-mer overlapping the variant increases U(G) if there is no other 〈s′, l′〉-mers with
s = s′. Alternately, an 〈s, l〉-mer overlapping the variant decreases U(G) if there are any
other 〈s′, l′〉-mers with s = s′.

While we rely on this definition below, we do not expect uniqueness alone to be an
effective variant model. This is because for most variants all the added (overlapping)
〈s, l〉-mers are unique. All such variants therefore receive an identical score. The hybrid
measure, presented next, effectively breaks ties by also considering allele frequency.

Hybrid score The hybrid score H(G) of a genome G considers both population coverage
and uniqueness. Again let fG(s) be the number of 〈s′, l′〉-mers in G with s = s′ and let
p(〈s′, l′〉) be the probability a random 〈s, l〉-mer drawn from a random individual equals
〈s′, l′〉. We define the hybrid measure H(G) of an augmented reference G as
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H(G) =
∑
〈s,l〉∈G

p(〈s, l〉)
fG(s)

Note that this is simply the dot product of the terms from the C(G) and U(G) sums.
For a variant v, we wish to compute the increase in H(G) caused by adding v. For

each 〈s, l〉-mer overlapping v and containing the alternate allele, let 〈s, l1〉, 〈s, l2〉, ..., 〈s, ln〉
be all other 〈s, l〉-mers with the same sequence s. Before adding v, the hybrid score can be
written as

C +
n∑

i=1

p(〈s, li〉)
n

where C is the hybrid-score portion due to the 〈s′, l〉-mers with s′ 6= s. After adding 〈s, l〉
to G, the score becomes

C +
n∑

i=1

p(〈s, li〉)
n+ 1

+
p(〈s, l〉)
n+ 1

The change in hybrid score due to the addition of 〈s, l〉 is

∆Hs,l =

n∑
i=1

p(〈s, li〉)
n+ 1

+
p(〈s, l〉)
n+ 1

−
n∑

i=1

p(〈s, li〉)
n

=
p(〈s, l〉)− 1

n

∑n
i=1 p(〈s, li〉)

n+ 1

Assuming each 〈s, l〉-mer overlapping variant v has a distinct sequence s, their ∆Hs,l

terms are independent. Thus the total change in hybrid score due to the addition of v is
the sum of the ∆Hs,l’s for each 〈s, l〉-mer overlapping and including v.

There are a couple caveats to how FORGe implements the hybrid model. First, As
with the Pop Cov model, we make the complete graph assumption, allowing us to produce
a scored variant list without dynamic re-scoring of variants as they are added. Second,
computing ∆Hs,l’s for all variants is expensive, since it involves calculating the read prob-
ability for each other occurrence of sequence s for every overlapping 〈s, l〉-mer . Instead,
we approximate it using average probabilities. Specifically, we pre-calculate p̄ref , the av-
erage p(〈s, l〉) for all 〈s, l〉-mers in Gref , and p̄∗, the average p(〈s, l〉) for all 〈s, l〉-mers in
G∗ but not in Gref . We approximate the summation with a weighted average:

1

n

n∑
i=1

p(〈s, li〉) ≈
1

fG∗(s)
[(fG∗(s)− fGref

(s)) · p̄∗ + fGref
(s) · p̄ref ]

Whereas the complete graph assumption rendered phasing data irrelevant to the Pop
Cov model, we can use phasing data in the Hybrid model. This is because the Hybrid model
weights the terms of the sum according to their frequency in the genome. By default,
FORGe uses phasing information when it is available.
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Hybrid score implementation The Uniqueness and Hybrid models are concerned with
s-mer counts both in the linear reference genome (Gref ) and in the complete augmented
reference (G∗). FORGe uses Jellyfish v2.2.6 [40] to calculate these counts. Since Jellyfish
counts s-mers in a FASTA input file, FORGe must first construct an augmented FASTA
such that 〈s, l〉-mers in this FASTA map one-to-one to 〈s, l〉-mers in G∗. This is also the
goal of the Enhanced Reference Genome [7] representation, which accomplishes this by
adding 2k − 1 “enhanced segments” for every length-s window containing k variants.
Thus, to obtain s-mer counts for G∗, we first constructed such as FASTA file using our
implementation of the ERG, then counted s-mers using Jellyfish.

Once s-mers have been counted, FORGe computes the average probability for reads
in the linear reference (p̄ref ) and in the complete augmented reference (p̄∗), for use in the
Hybrid model formula. Finally, we compute the change in H(G) for each s-mer in both
and update the Hybrid model scores for every variant with an alternate allele in that read.
After this, we have the full set of Hybrid model scores for all variants.

Considering blowup Adding variants to the augmented reference increases computa-
tional costs, including (a) size of the index on disk, (b) memory footprint during read
alignment, and (c) time required for read alignment. We collectively refer to these as
“blowup.” Blowup is most drastic in genomic regions where variants are densely clus-
tered, driving a exponential increase in the number of allelic combinations possible. A
model based purely on minimizing blowup would prioritize isolated variants over those
in clusters. We do not expect such a model to perform well on its own, though, since
(like the Uniqueness model described above) it would fail to prioritize among the isolated
variants. For this reason, we sought a way to combine a blowup avoidance strategy with
the models already described above.

Selecting variants with blowup avoidance After ranking variants, FORGe selects the
subset of variants to include in the augmented reference. The user specifies either a num-
ber of a fraction of all variants to include. In the simplest case, variants are chosen in order,
starting with the highest-scoring variant, until the desired number have been included.

As an additional defense against blowup, we also propose a dynamic re-scoring scheme
that can be added to an existing model. In this scheme, when a variant is added to the
reference, FORGe searches for other variants within s bases (the window length) of the
added variant that have not yet been selected for addition. These nearby variants are re-
scored by multiplying their score by a penalty factor w, where 0 < w ≤ 1. By letting w
be variable, FORGe can trade off between maximizing the model score and minimizing
blowup. w = 1 maintains the original scores, whereas a penalty near w = 0 would ensure
all isolated variants were added before any neighboring variants. We found that a penalty
ofw = 0.5 performed well in practice, and this is FORGe’s default, used in all experiments
performed here. Pop Cov+ and Hybrid+ are how we refer to those models when they are
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combined with this dynamic re-scoring scheme.

4 Discussion

FORGe’s modeling of positive and negative effects of including genetic variants in an
augmented reference yields accuracy-blowup tradeoffs superior to current approaches.
We proposed models for prioritizing variants with distinct rationales and strengths. We
found repeatedly that the most advantageous set of variants consisted of a fraction (6–
30%) of the variants called in the 1000 Genomes project. In the case of the Pop Cov model,
this corresponded to an allele frequency threshold of around 3.8–5%. Though the best
threshold varied depending on the properties of the read aligner used, we suggest a rule
of thumb of filtering out variants with allele frequency under 5%, as was done in at least
one prior study [13]. We also showed that FORGe’s modeling can substantially reduce
reference bias, also at a relatively low fractions of variants included.

FORGe and HISAT2 combine to make a practical graph aligner that works with hu-
man data with large variant databases like the 1000 Genomes Phase 3 call set. Using
hisat2-build to index a GRCh37-based graph genome with the top 8% of variants
from Phase-3 set required 4 hours and 165 GB of memory. Aligning 20 million reads to
this graph required 19 minutes and 6.5 GB of memory, about 50% more time and 50%
more memory than HISAT2 requires to align to the linear GRCh37 genome. (To prioritize
the variants prior to indexing, FORGe required about 110 minutes on a single processor.)
This is competitive with the performance of aligners like Bowtie 2 and BWA-MEM when
aligning to the linear reference, suggesting graph-based tools are ready for broader use.

Though we estimate that the overall improvement in alignment accuracy for a 40x
whole-genome DNA sequencing experiment would lead to 4.8M more correctly aligned
reads and 1.2M fewer incorrectly aligned reads, the magnitude of the improvement im-
parted by modeling variants depends on the genomic region. For some regions and vari-
ant classes (rare, isolated SNVs), the benefit is small. To improve alignment to these re-
gions might require an iterative approach that aligns to a graph containing known vari-
ants, calls donor-specific variants, then realigns to a graph that includes both. Strategies
like this are implemented in the GATK HaplotypeCaller [20], GraphTyper [21] and other
tools [41]. Better variant models might also benefit these hard cases. Even so, the effects
we measured translate into substantial net increases in the number of correctly aligned
reads, and the results are quite pronounced and visible in regions such as MHC (Supple-
mentary Figure 3).

An ethnicity-specific reference conferred a slight accuracy improvement compared to
a pan-ethnic reference with a similar number of variants. This is notable in light of propos-
als to use ethnicity-specific references [35, 36]. It suggests that the advantages of an inclu-
sive reference, applicable regardless of the donor individual’s ethnicity, might outweigh
the slight accuracy gain that comes with ethnicity-specificity. Also, ethnicity-specific refer-
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ences could be counterproductive or misleading in cases where donor ethnicity is reported
incorrectly or where the donor is admixed [42].

The accuracy achieved at relatively small fractions of the 1000 Genomes variants has
implications for the design of graph aligners. A central challenge for these tools is to
operate efficiently even when variants are densely clustered, causing local explosion in
the number of allelic combinations. But our observations that peak accuracy occurs at a
relatively small fraction of variants, and that memory footprint increases by a factor of 2
or less at peak accuracy, suggests that this is not a major barrier to practical graph-genome
alignment as long as variants are chosen carefully.

It should also be possible to adapt FORGe to study how including structural variants
can improve alignment. A common observation of studies that have assembled human
genomes from long reads is that the assemblies contain many megabases of sequence
not present in the standard human reference [36, 37, 43, 44]. The models we propose
are equally applicable to structural variants, assuming the variants are called in enough
individuals to estimate allele frequencies accurately.

While we investigated only unpaired alignment here, much of the work is readily
adapted to paired-end alignment. The main issue is how to adjust the method’s window
lengths as a function of the paired-end dataset’s read and fragment lengths. The windows
in question are (a) the s-mer length used in the model, (b) the maximum window length
used when forming enhanced segments for ERG-based alignment, and (c) for blowup
avoidance in the Pop Cov+ and Hybrid+ models, the radius to look within when seek-
ing nearby variants to deprioritize. While one option is to simply increase the window
size to the maximum fragment length, that can easily lead to an unacceptable blowup
penalty. For this reason, we suspect that there is no practical way to adapt our ERG-based
to paired-end alignment; rather, as we explain, we think it is best viewed as a model for
the seed-finding step of a seed-and-extend aligner that might itself handle paired ends.
While we expect it is practical to leave the window lengths relatively short — the length
of a read rather than a fragment — when using HISAT2 for paired-end alignment, we
have not verified this experimentally.
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7 Availability of data and materials

The FORGe software is available at: https://github.com/langmead-lab/FORGe/
releases/tag/v1.0 under the open source MIT license. The FORGe repo also includes
our implementation of the Enhanced Reference Genome, originally proposed by Satya et
al [7]. The experiments described in this paper are open source under the open source MIT
license and available at https://github.com/langmead-lab/FORGe-experiments.
We provide three variant datasets and HISAT2 indexes, available at ftp://ftp.ccb.
jhu.edu/pub/langmead/forge. These include the optimal graph genomes described
above for chromosome 9 (NA12878 chr9 subdirectory) and for the full genome (NA12878 full genome
subdirectory), both with NA12878 and family members witheld. We also provide what
we consider the best full genome graph, derived from all 1000 Genomes SNVs and indels
from all individuals and all populations (best full genome subdirectory). The variants
and index files in the (best full genome subdirectory) are the ones we suggest others
use for future studies.
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