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 20 

ABSTRACT 21 

Fecal pollution at coastal beaches in the Northeast, USA requires management efforts to address 22 

public health and economic concerns. Concentrations of fecal-borne bacteria are influenced by 23 

different fecal sources, environmental conditions, and ecosystem reservoirs, making their public 24 

health significance convoluted. In this study, we sought to delineate the influences of these 25 

factors on enterococci concentrations in southern Maine coastal recreational waters. Weekly 26 

water samples and water quality measurements were conducted at freshwater, estuarine, and 27 

marine beach sites from June through September 2016. Samples were analyzed for total and 28 

particle-associated enterococci concentrations, total suspended solids, and microbial source 29 

tracking markers for multiple sources. Water, soil, sediment, and marine sediment samples were 30 

also subjected to 16S rRNA sequencing and SourceTracker analysis to determine the influence 31 

from these environmental reservoirs on water sample microbial communities. Enterococci and 32 

particle-associated enterococci concentrations were elevated in freshwater, but suspended solids 33 

concentrations were relatively similar. Mammal fecal contamination was significantly elevated 34 

in the estuary, with human and bird fecal contaminant levels similar between sites. A partial least 35 

squares regression model indicated particle-associated enterococci and mammal marker 36 

concentrations had the most significant positive relationships with enterococci concentrations 37 

across marine, estuary, and freshwater environments. Freshwater microbial communities were 38 

significantly influenced by underlying sediment while estuarine/marine beach communities were 39 

influenced by freshwater, high tide height, and estuarine sediment. We found elevated 40 

enterococci levels are reflective of a combination of increased fecal source input, environmental 41 
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sources, and environmental conditions, highlighting the need for encompassing MST approaches 42 

for managing water quality issues. 43 

IMPORTANCE 44 

Enterococci have long been the federal standard in determining water quality at estuarine and 45 

marine environments. Although enterococci are highly abundant in the fecal tracts of many 46 

animals they are not exclusive to that environment and can persist and grow outside of fecal 47 

tracts. This presents a management problem for areas that are largely impaired by non-point 48 

source contamination, as fecal sources might not be the root cause of contamination. This study 49 

employed different microbial source tracking methods to delineate influences from fecal source 50 

input, environmental sources, and environmental conditions to determine which combination of 51 

variables are influencing enterococci concentrations in recreational waters at a historically 52 

impaired coastal town. Results showed that fecal source input, environmental sources and 53 

conditions all play a role in influencing enterococci concentrations. This highlights the need to 54 

include an encompassing microbial source tracking approach to assess the effects of all 55 

important variables on enterococci concentrations.      56 

      57 

INTRODUCTION 58 

Fecal contamination of coastal recreational waters is a significant public health concern, as fecal 59 

material, often from nonpoint sources, can harbor an array of different pathogens. The US EPA 60 

has established regulations based on enterococci bacteria as the indicator of fecal-borne pollution 61 

to help manage water quality at estuarine and marine beaches (1). These organisms correlated 62 

well with predicted public health outcomes in several epidemiological studies that served as the 63 
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basis for their adoption as the regulatory water quality indicator (2–5). The presence of human 64 

feces can present an elevated public health risk in recreational waters compared to non-human 65 

sources due to the lack of an “inter-species barrier” for diseases and the higher density of human 66 

pathogens that humans can carry (6–8). Although human pollution represents the greatest public 67 

health risk, other fecal sources that contain enterococci and possibly human pathogens can be 68 

chronic or intermittent sources of both, making beach water quality management and 69 

remediation efforts more complex.  70 

 71 

The need to differentiate fecal sources in recreational waters led to the emergence of microbial 72 

source tracking (MST) methods in the early 2000s, most notably the PCR-based assays that 73 

target the 16S rRNA gene in Bacteroides spp. (9, 10). There are a wide range of species-specific 74 

genetic markers designed to identify human fecal sources and various domestic and wildlife fecal 75 

sources. These assays have been in use for well over a decade and are supported by numerous 76 

and rigorous laboratory evaluations and field applications (11–17). Initial field studies 77 

investigated the relationship between MST markers and FIB concentrations in recreational 78 

waters to better elucidate potential sources of fecal pollution. Some studies have found strong 79 

relationships between the MST markers and enterococci (12, 18) while other studies have found 80 

either weak or no relationships (19–21), many of which are discussed in a review by Harwood et 81 

al. (22). One main factor affecting the relationship between enterococci and the relative strength 82 

of different sources of fecal contamination is that enterococci can persist and grow in the 83 

environment, which can significantly influence their concentrations in recreational water (23).       84 

 85 
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Due to the pervasiveness of enterococci in natural ecosystems, recent studies have been 86 

conducted to not only elucidate environmental parameters controlling their growth, but also to 87 

identify naturalized niches that can act as reservoirs for enterococci and the associated influence 88 

on water quality measurements. Specifically, enterococci have been shown to persist in fresh 89 

water sediments (24–26) and marine sediments (24, 27), and in some cases their relative 90 

concentrations in sediments are several orders of magnitude higher than the overlying water (24, 91 

28–30). In addition, enterococci persist in soils affected by anthropogenic activities (31) as well 92 

as more natural soil environments (32–34). Thus, soil can act as a significant reservoir of 93 

enterococci that can, if eroded, confound concentrations observed in recreational waters. 94 

Evaluating the influence of sediment and or soil on water quality has, in some studies, been 95 

conducted by measuring total suspended solids as a surrogate for sediment-associated 96 

enterococci (27, 35, 36), however this non-specific approach does not indicate the specific type 97 

of source(s) of the suspended solids. With the advent of next generation sequencing, sources of 98 

sediment or soil bacteria can be fingerprinted via 16S rRNA sequencing, and programs like 99 

SourceTracker can then determine relative fractions of source-specific 16S fingerprints within a 100 

water sample (37).   101 

 102 

This study examined the coastal and estuarine beaches of Wells, ME where there has been 103 

historically elevated enterococci levels, as reported by the Maine Healthy Beaches Program (38). 104 

Prior to this study, only a ribotyping-based MST study (39) that also involved other indicator 105 

tracking work had  been conducted in this area. In that study, the two major freshwater inputs, 106 

the Webhannet River and Depot Brook were found to be the major influences on water quality 107 

related to an array of fecal contamination sources. To investigate potential sources of enterococci 108 
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we measured three major categories of variables (fecal source input, environmental conditions, 109 

and environmental sources) and then used a partial least squares regression model approach to 110 

determine the most significant influences on the enterococci concentrations in water samples.  111 

 112 

RESULTS 113 

Total and particle-associated enterococci concentrations and total suspended solids in 114 

water. During this study, total enterococci concentrations were highest in freshwater sites, with 115 

concentrations significantly decreasing from there to the estuary and then the marine beach areas 116 

(Figure 2). The geometric mean enterococci concentrations were 197 and 40 CFU/100 ml at the 117 

Depot and Webhannet sites, respectively, with 71% of samples exceeding 104 CFU/100 ml at the 118 

Depot site compared to 21% at the Webhannet site. In contrast, the geometric mean enterococci 119 

concentrations at the other sites were all <15 CFU/100 ml and samples exceeded 104 CFU/100 120 

ml 0% (at Wells Beach) to 25% of the time. In addition to measuring enterococci concentrations 121 

in water samples, particle-associated enterococci and suspended solid concentrations were 122 

measured to better understand the potential mode of transport of these bacteria within this coastal 123 

watershed. Throughout the study period (June-September 2016), levels of total and particle-124 

associated enterococci varied by site. Concentrations were lowest at the marine beach (Wells 125 

Beach) compared to other sites, with levels significantly higher in all estuary sites (W11-W15) 126 

and freshwater sites (Depot & Webhannet; Figure 2).  127 

 128 

Both total and particle-associated enterococci geometric mean concentrations were statistically 129 

similar at the estuary beach (W11, W12, W13) and estuary (W14, W15) sites. Freshwater sites 130 
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(Webhannet and Depot) however, had statistically higher enterococci concentrations than other 131 

sites (Figure 2; p < 0.05). The ratio of total to particle-associated enterococci varied throughout 132 

the season, with an average of 36.3% (SD ± 30) across all sites. Sites within the estuary beach 133 

showed the highest ratio (41%, SD ± 32), however there were no significant differences observed 134 

between sites or types of sites. Average TSS concentrations were relatively low and similar for 135 

most sites, with an overall average of 2.9 mg TSS/L (SD± 1.2). The Webhannet freshwater site, 136 

however, had a significantly lower average TSS concentration (1.2 mg/L ± 1.0SD, p < 0.05) 137 

(Figure 2), despite, as previously mentioned, having higher enterococci concentrations. The 138 

relationship between particle-associated enterococci and TSS was not significant (r
2
 = 0.0011), 139 

and significant rainfall events were seldom and sparse with only one greater than 1 in 48 h prior 140 

to sampling. Overall, this study showed enterococci concentrations were significantly different 141 

by site and were ubiquitously associated with particles, which was independent of suspended 142 

solids concentrations. 143 

   144 

Presence of fecal sources in fresh, estuarine, and marine waters. The concentration of fecal 145 

pollution in this study area was determined using both PCR and quantitative PCR MST assays to 146 

identify and quantify predominant sources of fecal contamination present in the water. The 147 

mammal fecal marker (Bac32) was detected via PCR at all sites 100% of the time throughout the 148 

study period. (Supplementary Material 1E). The human fecal marker (HF183) was detected in 149 

51% of all water samples, with the highest detection rate in fresh water (56%) and the lowest 150 

detection rate in marine beach water (46%). Differences in the percent detection of the gull fecal 151 

marker (Gull2) were most pronounced between freshwater (10%) and all other sites (>77%). The 152 

dog fecal marker (DF475) detection rate was highest in the estuary beach water (10/44 = 23%), 153 
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however 8 of the 10 positive samples were detected in July (8/13 = 61%). For all other sites, an 154 

increase in the detection of dog fecal marker also occurred during July, with 44% (16/36) 155 

detection, compared to 0% for August and September and <1% for June. Thus, most of the dog 156 

contamination at all sites was associated with unknown dog-related conditions during July. 157 

 158 

Concentrations of mammal, human, and bird fecal sources. We used qPCR to provide 159 

relative quantitative measures of mammal, human and bird fecal contamination levels. Water at 160 

estuary and estuary beach sites contained significantly higher levels of mammal (AllBac) fecal 161 

marker copies, with an average of 1.54 x 10
7
 compared to 2.62 x 10

6 
in freshwater and 3.9 x 10

6 
162 

copies/100 ml in marine beach (p < 0.05). Average concentrations of human (HF183) and bird 163 

(GFD) fecal markers were not statistically different between sites, however, concentrations of the 164 

human marker in individual samples varied from 0 - 2.04 x 10
4
 copies/100 ml (Figure 3), while 165 

bird fecal marker concentrations were relatively stable across all sites. No significant temporal 166 

trends were observed for any of the quantitative fecal marker levels. Compared with 167 

presence/absence detection of fecal sources, quantitative measurements also did not show strong 168 

spatial patterns, except mammal marker levels showed significant increases at estuary and 169 

estuary beach sites compared to marine and freshwater sites.  170 

 171 

Differences between water, soil, and sediment bacterial community compositions. 16S 172 

amplicon sequencing was used to characterize the microbial community present in water and 173 

other sample matrices (soil, sediment, and marine sediment), which was the nexus for ensuing 174 

SourceTracker analysis. A total of 3,276,196 reads and 7,706 unique OTUs were obtained from 175 
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the 177 samples of fresh, estuary, estuary beach and marine beach water and soil, sediment, and 176 

marine sediment. The number of OTUs assigned and the Shannon diversity index were 177 

significantly higher for soil, sediment, and marine sediment when compared to water samples 178 

(Figure 4, p < 0.05). Most taxa in the estuary and marine beach water samples were identified as 179 

Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria classes, which together 180 

accounted for 84% of the total assigned taxa. Cyanobacteria accounted for 34% of the taxa in 181 

marine sediment, and Betaproteobacteria was one of the top three most abundant taxa in fresh 182 

water, soil and sediment (Figure 4). A Non-Metric Multi-Dimensional Scaling (NMDS) 183 

ordination was used to determine if the bacterial communities from water and other matrices 184 

(soil and sediments) differed based on their taxonomic composition. Bacterial communities from 185 

the marine beach and estuary (All Estuary) waters were similar, but were statistically different 186 

from fresh water (Figure 5, p < 0.05). The bacterial communities associated with soil, sediment 187 

and marine sediment were all distinct when compared to each other and water samples, 188 

indicating unique groups of OTUs (Figure 5, p < 0.05). Samples taken from different areas 189 

within the watershed (soil, estuarine water, freshwater, etc.) contained unique bacterial 190 

compositions, allowing for downstream analysis with the SourceTracker software to discern 191 

relative contributions of these different communities to the make-up of microbial communities in 192 

the different types of water samples.        193 

 194 

Environmental source contribution to water samples. The fraction of freshwater, sediment, 195 

soil, estuarine sediment, and marine beach water source bacterial communities within estuary 196 

and estuary beaches water samples were calculated using the Bayesian mixing model 197 

SourceTracker. Freshwater sample analysis showed a high probability of taxa originating from 198 
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underlying sediment (74%) and much lower probability of taxa originating from soil (2.6%). 199 

Initial results for the estuary and estuary beach indicated that marine beach water was the 200 

dominant source of bacteria (Table 1). However, given that likely fecal sources are coming from 201 

the watershed, we excluded marine beach water as a potential source and included it as a sink 202 

then re-analyzed the data. These second results showed that freshwater taxa had a high 203 

probability of being a significant fraction of estuary (73%), estuary beach (66%) and marine 204 

beach (35%) water communities, with a significantly higher percentage for the estuary locations 205 

compared to the marine beach (Table 1, p < 0.05), which is more influenced by ocean microbial 206 

taxa. Despite the significant percentage of freshwater taxa assignments in the estuary, estuary 207 

beach, and marine beach waters there were no freshwater sediment or soil taxa assignments for 208 

these sites.  The data for the percent of unidentifiable taxa showed the opposite trend compared 209 

to percent of assigned freshwater taxa. Unidentifiable taxa in the marine beach were significantly 210 

higher (46%; p < 0.05), which is not surprising given that marine beach water community would 211 

likely be most influenced by non-terrestrial sources. Estuarine sediment was the highest likely 212 

identified source in the water from the marine beach site (19%), and it was significantly higher 213 

than percentages calculated for all estuary sites (p < 0.05). Overall results showed that freshwater 214 

source-related taxa were a pervasive source throughout the estuary and marine beach, and while 215 

sediment source-related taxa were highly abundant in the freshwater they were not observed 216 

within the estuary or marine beach. 217 

 218 

Relationships between environmental conditions, fecal source concentrations, 219 

environmental sources and enterococci concentrations. Two PLSR models were created to 220 

determine relationships between enterococci and fecal source concentrations, environmental 221 
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sources, and environmental conditions (outlined in the Methods). The first ‘freshwater’ PLSR 222 

model indicated particle-associated enterococci concentration, concentration of mammal fecal 223 

marker, TSS concentration, percent of sediment source, percent of unknown source, and salinity 224 

were important variables (VIP > 0.8) in resolving variation in enterococci concentrations (Table 225 

1). A one-factor (single PLSR regression) model was deemed optimal (root mean PRESS = 226 

0.735), and showed that all variables (except salinity) had positive associations with enterococci 227 

concentrations. Values for model performance (R
2
Y = 0.6, R

2
X = 0.5, and Q

2 
= 0.4) indicated 228 

that the model fit the data moderately well (R
2
X ≥ 0.5) but had poor predictive capability of 229 

enterococci concentrations (Q
2
 < 0.5; Supplementary Material 3). Out of all the important 230 

variables, particle-associated enterococci (Particle ENT) concentrations showed the strongest 231 

relationship to total enterococci concentrations (Table 2). The second PLSR model, a two-232 

factor/two PLSR regressions model, was the best fit (root mean PRESS = 0.744) from the PLSR 233 

constructed for the estuary, estuary beach, and marine beach sites. The analysis identified 234 

particle-associated enterococci concentration, mammal fecal source concentration, percent of 235 

freshwater, unidentified and estuarine sediment sources, water temperature, and high tide height 236 

as significantly related to enterococci concentrations. Factor one showed that all variables were 237 

positively associated, except for the percent unidentified and marine sediment sources. The 238 

second factor showed mammal fecal sources, freshwater sources, and water temperatures were 239 

negatively related to enterococci concentrations, which was the opposite of their associations for 240 

factor one. The high tide height and marine sediment were positively related to enterococci 241 

concentrations for factor 2 of the PLSR (Table 2). Together both factors explained 61.8% in the 242 

variation observed in enterococci concentrations, and model performance (R
2
Y = 0.6, R

2
X = 0.5, 243 

and Q
2 
= 0.6) indicated better predictive ability with a similar fit to the data compared to the 244 
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freshwater model (Supplementary Table 3). Out of all the potential variables measured (19 total) 245 

across three categories (fecal source input, environmental source contribution, and environmental 246 

conditions), particle-associated enterococci and mammal fecal marker concentrations had the 247 

most significant relationships to enterococci concentrations. The relationships between other 248 

variables and enterococci concentrations were specific to freshwater and estuary/marine beach 249 

models, indicating ecosystem specific relationships. However, the joint relationship of particle-250 

associated and mammal fecal marker across freshwater and estuary/marine environments 251 

indicate their overarching importance in determining enterococci concentrations.    252 

 253 

4 Discussion: 254 

Geometric mean enterococci concentrations at the marine beach, estuary, and estuary beach 255 

sampling sites were all less than the State of Maine water quality standard of 35 CFU/100 ml and 256 

the majority of concentrations were less than the 104 CFU/100 ml single sample standard, 257 

indicating the water quality was typically considered acceptable for recreational use. Previous 258 

monitoring by the Maine Healthy Beaches Program in 2014 had shown the Wells Beach area 259 

was one of 7 beaches in Maine that had a greater than 20% exceedance rate, with suspicion that 260 

freshwater inputs are a significant source of contamination (38). Our findings confirmed that 261 

enterococci concentrations were statistically higher at both major freshwater tributaries to the 262 

estuary, especially at the Depot Brook site where levels were regularly above the 104 CFU/100 263 

ml single sample standard. The Depot Brook site is located in a watershed with a higher fraction 264 

of developed land (0.27-0.50) and more people per km
2
 (325-2,650 people) compared to the 265 

Webhannet site watershed that has a lower developed fraction (0.13-0.25) and 150-325 people 266 

per km
2
; 40). This could help explain the difference in enterococci concentrations between 267 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2018. ; https://doi.org/10.1101/311928doi: bioRxiv preprint 

https://doi.org/10.1101/311928
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

freshwater sites as a more urbanized watershed can increase transport of more pollution from the 268 

watershed to the freshwater tributary. However, the summer of 2016 was especially dry in this 269 

region (41) with just one event with >1 inch of rain (1.73 in., 6/28/16) 48 h prior to the sampling 270 

time. This overall dry condition likely contributed to less fecal contamination transport (via 271 

freshwater discharge) from the watershed to the estuary and marine beach. This suggests that 272 

more typical rainfall conditions would probably have resulted in more freshwater discharge and 273 

higher enterococci concentrations than what we observed.  274 

 275 

Enterococci were significantly associated with suspended particles of >3.0 µm diameter (R
2 
= 276 

0.96, p < 0.05). On average, 36% (SD ± 30) of the total enterococci concentrations were 277 

associated with particles, which suggests particles as a potentially important transport 278 

mechanism. Other studies conducted in estuary and storm waters have found similar fractions of 279 

particle associated enterococci, but they noted enterococci demonstrated a preference for a larger 280 

particle size of >30 µm (42–44). The large standard deviation for particle-associated enterococci 281 

could be attributed to the complex nature of particle interactions (sedimentation rate, 282 

electrostatic, hydrophobic, and other surface-surface interactions) and hydrogeological dynamics 283 

(salinity-driven turbidity maximum) (45). The mechanisms underlying enterococci-particle 284 

interactions may also be related to ionic strength in surface waters, as Enterococcus faecalis is 285 

negatively charged over a broad pH range (2-8 pH units) and in the presence of different ion 286 

concentrations (46). Results for this study indicate that TSS and particle-associated enterococci 287 

had no linear relationship, indicating particle-associated enterococci were not dependent on the 288 

total amount of suspended material and thus the association is likely due to other factors 289 

influencing cell-particle interactions.  290 
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 291 

Quantitative PCR assessment of several fecal sources is a potentially useful strategy to determine 292 

the relative significance of the different sources in a single sample and over time at sites of 293 

interest. PCR detection showed a chronic presence of mammalian fecal source(s) (100% of 294 

samples) with human fecal source(s) detected in approximately half of all samples, so qPCR 295 

analysis is useful for bringing context to the significance of these findings. For example, Mayer 296 

et al. (47) showed that wastewater effluent contains about 10
8 
copies/100 ml of the AllBac 297 

mammal fecal marker, Sowah et al. (48) found that streams impacted by septic systems could 298 

contain 10
5
 – 10

7 
copies/100 ml depending on the season, and Bushon et al. (49) determined that 299 

under storm flow conditions in an urban watershed mammal marker copy numbers could exceed 300 

10
8 
copies/100 ml. Results for this study ranged from 10

5
 to 8.6 x 10

7 
copies/100 ml, values that 301 

are within previously reported ranges and likely a concentration reflective of a predominantly 302 

non-urbanized watershed and intermediate mammal source loading. The estuary and estuary 303 

beach area showed a statistically higher concentration of the mammal marker, however, there 304 

was no responsive increase in the concentrations of the human associated fecal marker (HF183), 305 

which may indicate that humans are not the primary mammalian source for the increased fecal 306 

contamination.  307 

 308 

The average concentration of the human marker was 1,500 copies/100 ml across all sites 309 

(geometric mean 167 copies/100 ml), with the highest concentration being 20,364 copies/100ml 310 

(Webhannet 6/22/16). Boehm et al. (50) showed that 4,200 copies/100 ml of HF183 is the cutoff 311 

for where GI illnesses exceed the EPA acceptable risk level of approximately 30/1000 for 312 

swimmers (1). On average, sites in this study did not exceed this benchmark level, however, 313 
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there were 10 occasions when sites were above the 4,200/100ml threshold (7 different sites 314 

across 4 sampling dates), indicating that sporadic events or conditions can cause elevated human 315 

fecal contamination and potential public health concerns (Supplementary 4). Boehm et al. also 316 

showed that at the LOQ for most assays, 500 copies/100ml or 1000 copies/100ml, there is still a 317 

predicted GI illness of 4 or 8 cases per 1000 swimmers, suggesting positive detection at the LOQ 318 

is indicative of low level health risk (50). For this study, the LOQ was 250 copies/100ml for the 319 

HF183 assay and 67 of 117 samples (57%) tested positive at or above this limit, suggesting that 320 

over half of collected water samples indicated the presence of a low-level health risk. Although 321 

there were no statistical differences between sites for human fecal contamination, W11 did 322 

contain the highest geometric mean (493 copies/100 ml; Supplementary 4). This could be 323 

reflective of the location of the site as it’s where drainage from the Webhannet and Depot 324 

watershed meets and is also directly downstream from a boat marina with the harbor sewage 325 

pump station, which could be a possible point source of contamination. Nonetheless, even 326 

though sites on average were below published thresholds, detection of human contamination 327 

even at low concentrations is a concern. 328 

 329 

Although human fecal sources are the greatest public health concern (6, 7, 22, 51) we did not 330 

observe any relationship between human fecal contamination and enterococci concentrations, 331 

suggesting other mammalian fecal sources are more influential in explaining the variation 332 

observed in this study. Interestingly gull fecal sources were detected in 77% or more of the 333 

samples in the estuary and marine beach area, however only 10% of the samples were positive 334 

within the fresh water (Supplementary Material 1), despite there being no decrease in the bird 335 

fecal marker concentration, suggesting the presence of different bird sources in these areas. 336 
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Anecdotally, Canada geese were observed upstream of both the Webhannet and Depot 337 

freshwater sites periodically throughout the season, which could be a significant source of bird 338 

fecal contamination in the fresh water locations (52).     339 

 340 

One of the unique findings of this study was the relative contribution of different sources to the 341 

bacterial community in the estuarine water. The bacterial community in estuarine water primarily 342 

originated (>90%) from marine beach water, which is not surprising for a well-flushed estuary 343 

like the study site. Because the study period was minimally influenced by rainfall and associated 344 

runoff of freshwater, we expected that the influence of freshwater sources would be low. In 345 

ensuing analyses, we chose not to include marine beach water as a potential source for a variety 346 

of reasons. First, the samples were always collected during low tide before the ebb when the 347 

estuary water was draining and water was moving from the watershed towards the marine beach. 348 

Secondly, we had already shown that the OTU compositions for the marine beach and estuary 349 

samples were very similar, increasing the possibility of a type I error (false positive) for 350 

identifying marine beach as the likely source of enterococci. Lastly, fecal pollution sources most 351 

likely come from the watersheds and not from marine water, so excluding marine beach water 352 

helps to enhance the determination of watershed influences. Our second analysis (marine beach 353 

source excluded) showed that freshwater was a significant source of bacteria to the estuary 354 

(>65% assignment) compared to soil, sediment, and estuarine sediment. This implicates 355 

freshwater as a major conduit for bacterial transport, as well as the major source of enterococci 356 

to the estuary. Overall this finding highlights the importance of freshwater discharge as a 357 

controlling factor in transporting contamination from the watershed to the coast. The specific 358 
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percent assignment of freshwater source could be an over-estimate, however the trend observed 359 

is a likely scenario given the rational discussed. 360 

 361 

Analysis of environmental reservoirs of enterococci (soil, sediment, etc.) and their presence 362 

within water samples using SourceTracker revealed a variety of source contributions to 363 

freshwater, estuary and marine waters. To date there have been limited studies using 364 

SourceTracker to identify soil and sediment-associated taxa within water samples, and none of 365 

these studies have focused on a coastal watershed with the potential for freshwater, estuarine and 366 

marine sources. One study conducted in the upper Mississippi River identified up to 14% of 367 

sediment and 1.4% of soil sources of the taxa within the river water (53). This study, however 368 

showed that the sediment source was much more abundant in freshwater (74%), indicating a 369 

greater degree of mixing between the freshwater and underlying sediment communities. The 370 

amount of sediment and soil sources within water samples may be related to site specific 371 

characteristics such as relief or soil texture, which has been shown with TSS fluxes on a global 372 

scale (54). Thus, the degree to which the underlying sediment community mixes with the 373 

overlaying water is likely site specific. Interestingly, even though freshwater contained a 374 

significant amount of sediment source taxa, no sediment source was observed at the estuary and 375 

marine beach sites through the SourceTracker analysis. This difference could indicate that rapid 376 

sedimentation happens during transit to and within the estuary and at the estuarine turbidity 377 

maximum zone (55). TSS concentrations and the ratio of particle-associated to total enterococci 378 

concentrations, however, showed no differences between freshwater and estuary/marine sites. 379 

This could be related to the separate and quite different hydrodynamics within these different 380 

water systems. The percent of sediment source in the freshwater samples observed here might 381 
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also be an over-estimate/over fit from SourceTracker given the limited number of potential 382 

sources used, but results consistently showed an elevated presence of sediment in all freshwater 383 

samples in this study. SourceTracker analysis also revealed that the freshwater source was 384 

significant (35% or more) in estuary and marine beach water samples, suggesting that fresh 385 

water is a significant conduit for microbial, and fecal contamination, transport from the 386 

watershed to the estuary and marine beach. 387 

 388 

The use of predictive models for water quality has been a focus in the field in parallel with the 389 

adoption of bacterial indicator organisms as the gold standard for water quality determination. 390 

The goal of this research was to identify significant influences on enterococci concentrations by 391 

measuring a wide variety of variables. To distill this information, we used a PSLR model, which 392 

has been shown to out-perform similar multiple linear regression and principle components 393 

regression analyses (56) and has gained popularity in the water quality field (57, 58). Results 394 

from the PLSR analysis in this study showed that particle-associated enterococci and 395 

concentrations of mammal fecal sources were the driving force behind variation in enterococci 396 

concentrations, as described by both PLSR models constructed. Other factors were found to 397 

influence enterococci concentrations, however, these differed between the freshwater and 398 

estuary/marine beach models. For example, TSS concentration as well as the percent of both 399 

freshwater sediment and unknown sources positively influenced enterococci concentrations at 400 

freshwater sites. This indicates that sediment is a likely source of enterococci that influences 401 

concentrations measured in the water. Positive influences from the unidentified source taxa 402 

suggests that there is either an alternative source (not measured in this study) within the 403 

watershed that also influences enterococci concentrations or that SourceTracker could simply not 404 
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resolve all the potential sources we used. This finding is not surprising given the vast number of 405 

potential sources of fecal pollution within a watershed and that fecal sources were not a part of 406 

the SourceTracker analysis. Results from the estuary and marine beach model returned a two-407 

factor regression, with each factor essentially being the inverse of each other. Specifically, it 408 

highlighted freshwater being a major conduit for microbial transport to and through the estuary. 409 

Negative influences from the unknown source reaffirms this finding, along with positive 410 

influences from the previous high tide height. The second factor explained approximately 15% of 411 

the variation in enterococci concentration, therefore its importance must be weighed 412 

proportionately to factor one, which explained almost 50% of the variation. However, positive 413 

loadings from previous high tide height and percent of estuarine sediment indicate estuarine 414 

sediment could be a source of enterococci whose influence is dependent on tide height. The 415 

negative loadings from mammal fecal source(s) may indicate that enterococci originating from 416 

the estuarine sediment are not from mammal fecal sources.  417 

 418 

Overall, the results from this study demonstrated that concentrations of enterococci in the coastal 419 

estuarine/marine beach study area were largely controlled by particle-associated enterococci and 420 

mammal fecal source input. The influence of these factors is likely universal across freshwater 421 

and estuarine environments, however other ecosystem factors likely play a role as well. For 422 

freshwater portions of the coastal watershed, sediment may act as a significant enterococci 423 

reservoir that is frequently re-suspended within the water column. Freshwater itself could act as a 424 

major conduit for bacterial transport to an estuary and marine beach area where other 425 

environmental factors (water temperature and high tide height) can influence enterococci 426 

concentrations as well. These findings highlight the dynamic nature of enterococci in natural 427 
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aquatic ecosystems outside of the mammalian fecal tract, and that concentrations within fresh 428 

water and estuary/marine beach water are influenced by a variety of factors. 429 

 430 

Materials and Methods: 431 

Site description. This study was conducted in Wells, Maine, USA (Figure 1). Eight different 432 

sites were used to monitor water quality (n = 2 freshwater, n = 2 estuary, n = 3 estuary beaches, n 433 

= 1 marine beach) as well as twelve soil, twelve fresh-water sediment and four estuarine 434 

sediment sampling sites. Data for air temperature and rainfall amount for the 48 h prior to 435 

sampling were obtained from Weather Underground 436 

(https://www.wunderground.com/cgibin/findweather/getForecast?query=Wells,%20ME) and 437 

characteristics of tides during sampling were obtained from US Harbors 438 

(www.meusharbors.com).     439 

 440 

Water sampling. Surface water samples were collected weekly from June to September 2017 (n 441 

= 117). Sampling started two hours before low tide to maximize the potential impacts of 442 

freshwater pollution sources, and samples from all estuary and marine beach sites were collected 443 

before the slack tide. Water samples were collected in autoclaved 1L Nalgene™ Wide-Mouth 444 

Lab Quality PPCO bottles (Thermo Fisher Scientific, Waltham, MA, USA), and environmental 445 

parameters were measured with a YSI Pro2030® dissolved oxygen, conductivity, and salinity 446 

Instrument (YSI Incorporated, Yellow Springs, Ohio, USA). A field replicate was collected at a 447 

different site for each sampling event. 448 

 449 
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Soil, sediment, and marine sediment collection. Environmental sources were collected twice 450 

throughout the sampling season to build source libraries that were “finger-printed” with 16S 451 

sequencing and SourceTracker analysis. Six soil and sediment samples were collected upstream 452 

of both freshwater sites (Webhannet and Depot; Figure 1). Soil samples were collected at the 453 

crest of the stream embankment, where a 10 x 10 cm a plastic square template was placed down 454 

and all soil (O-horizon) within the template at a 2 cm depth was collected. Samples were sieved 455 

(USA Standard No. 5) to remove any loose-leaf litter and roots to only sample smaller soil 456 

particles and their microbes. Underlying stream sediments were collected using a Van Veen 457 

sediment sampler from depositional sites chosen based on the presence of fine grain sediments. 458 

One grab sample was collected for each site and then the top 2 cm of sediment was subsampled 459 

for analysis. Sediments were sieved (USA Standard No. 45) to remove coarse grain and gravel 460 

size particles. Estuarine sediments were collected during low tide when intertidal sediments were 461 

exposed using the Van Veen sampler, and the top 2 cm were again collected for analysis.   462 

 463 

Enterococci and total suspended solids quantification. Total and particle-associated 464 

enterococci were enumerated using the EPA Method 1600 membrane filtration protocol (59) and 465 

particle-associated enterococci were determined via filtration through a 0.47 mm diameter 3.0 466 

µm pore size polycarbonate filter (Millipore™, Darmstadt, Germany) as first reported by Crump 467 

et al. (60). The filters were rolled onto plates containing mEI agar and incubated at 41°C ± 468 

0.5°C; representative colonies were counted in 24 ± 2 hours. Total suspended solids (TSS) were 469 

measured using EPA method 160-2, where 500 ml of the water sample was used to determine 470 

TSS concentrations (61). 471 
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DNA extractions. DNA extraction from all matrices was performed with the PowerSoils® DNA 472 

Extraction Kits (MO BIO Laboratories, Carlsbad, CA, USA), with modifications to the 473 

manufacture’s protocol needed to optimize the extraction from water sample filters. For water 474 

samples, 500 ml collected water sample was filtered through 0.47 mm diameter 0.45 µm pore 475 

size polycarbonate filter (Millipore™, Darmstadt, Germany), which was stored in a sterile 2 ml 476 

cryotube at -80°C for at least 24 h. Prior to DNA extraction, frozen filters were crushed into 477 

small pieces with an ethanol sterilized razor blade, a practice commonly used to maximize DNA 478 

recovery (62–64). To minimize additional DNA loss during the extraction process solutions C2 479 

and C3 (from manufacturer’s protocol) were halved in volume and combined into a single step. 480 

DNA extraction from soil, freshwater sediment, and marine sediment were conducted per the 481 

manufacture’s protocol. 482 

 483 

Microbial source tracking (MST) PCR and qPCR assays. MST PCR assays that target 484 

Mammals (Bac32; 65), Humans (HF183; 9), Gulls (Gull2; 66), Dogs (DF475; 10) and 485 

Ruminants (CF128; 9) were used to determine the presence of fecal sources in water samples. 486 

Positive control plasmids were created for each PCR assay from fresh fecal samples that came 487 

from each target organism (Human, Gull, Dog, and Cow). The TOPO
™

 TA
™

 Cloning Kit was 488 

used (Invitrogen, Carlsbad, CA, USA), with a blue/white screen of E. coli transformants on 489 

kanamycin (50 µg/mL) selective TSA plates. Positive E. coli colonies were screened with their 490 

respective PCR assay, and PCR positive colonies were then grown in TSB and extracted with the 491 

PureLink
®

 Quick Plasmid Miniprep Kit (Invitrogen, Carlsbad, CA, USA). PCR assays were run 492 

on a T100
™ 

Thermal Cycler (BioRad, Hercules, CA, USA) with the GoTaq
®

 Green MasterMix 493 

(Promega, Madison, WI, USA). Cycling conditions and amplification protocols for each assay 494 
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targeted the different source specific markers and followed protocols delineated by different 495 

studies: Bac32 (67) and HF183 (67), CF128 (68), DF475 (69), and Gull2 (66). Quantitative PCR 496 

assays were also run to determine fecal source strength for Mammals (AllBac; 70), Humans 497 

(HF183; 71), and Birds (GFD; 72). All qPCR assays were run on a Mx3000P cycler (Agilent 498 

Technologies, Santa Clara, CA, USA), TaqMan assays used the PerfecCTa
®

 FastMix
®
 II 499 

(QuantaBio, Beverly, MA, USA) master mix and the SYBR green assay used the FastSYBR
™

 500 

Green Master Mix (Applied Biosystems, Foster City, CA, USA). A standard curve ranging from 501 

10
6
-10

2
 copies (Mammal assay) or 10

5
-10

1
 copies (Human & Bird assay) was also run for each 502 

experimental run with the limit of quantification (LOQ) being 100 copies (Mammal) or 10 copies 503 

(Human & Bird) per PCR. The Ct values, amplification efficiency, slope, and R
2
 values for each 504 

standard curve were compared to previously run standard curves, to ensure satisfactory 505 

performance before being used to calculate copy numbers for that run. Each environmental 506 

sample was diluted 1:10 and run in triplicate and the reaction volume (25 µl) contained a final 507 

concentration of 0.2 mg/ml BSA. Amplification/cycling conditions were preformed per 508 

published protocols for AllBac (73), HF183 (73), and GFD (16). TaqMan assays were run with 509 

an internal amplification control (74) with a down-shift of 1 cycle considered inhibition. Samples 510 

spiked with a plasmid containing 10
4
 copies of GFD amplicon were used as inhibition controls 511 

for the SYBR assay, with a recovery of less than 10
4
 copies (100%) considered inhibition. For a 512 

list of primers, probes, and standard curve performance, see Supplementary Material 1. 513 

 514 

16S library preparation. The V4 region of the 16S rRNA gene, using the 515F-806R primer-515 

barcode pairs, was used for amplicon sequencing (75). The Earth Microbiome Project protocol 516 

was used for amplification and pooling of samples, with minor modifications (76). The Qubit
®

 517 
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dsDNA HS assay was used to quantify sample concentrations, and 500 ng of DNA was pooled 518 

per sample. The pool was then run on a 1.2 % low-melt agarose gel to separate primer-dimers 519 

from acceptable product, and bands between 300-350 bps were cut and extracted as described 520 

above. The final DNA sample was then run on the Agilent Technologies 2200 TapeStation 521 

system (Santa Clara, CA, USA) to determine final size, quality, and purity of sample. Each 522 

library was sent to the Hubbard Center for Genome Studies at the University of New Hampshire 523 

to be sequenced (2 x 250 bp) on the Illumina HiSeq 2500 (San Diego, CA, USA). 524 

 525 

Quality filtering and Operational Taxonomic Unit (OTU) picking. QIIME 1.9.1 was used to 526 

perform all major quality filtering, and OTU picking (77). Forward and reversed reads were 527 

quality trimmed (µ P25) and removed of Illumina adapters via Trimmomatic (78). Any reads that 528 

were less than 200 bps were discarded, and reads were merged with the QIIME 529 

joined_paired_ends.py, using a minimum overlap of 10 bps and a maximum percent difference 530 

of 10%. Paired-end data were analyzed using the QIIME open-reference OTU picking strategy 531 

with UCLUST for de novo picking and the Greengenes 13_8 database (79) for taxonomic 532 

assignment. Alternative OTU picking strategies were also tested to determine best workflow, for 533 

performance of difference strategies refer to Supplementary Material 2. Data for all sequenced 534 

samples are publicly available through NCBI BioProject 535 

(http://www.ncbi.nlm.nih.gov/bioproject/431501).       536 

 537 

SourceTracker analysis. Samples from 4 source types (fresh water, soil, sediment, and marine 538 

sediment) and 4 sink types (fresh water, estuary water, estuary beach water, and marine beach 539 
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water) were analyzed by the open-source software SourceTracker v1.0 (37). Default parameters 540 

were used (rarefaction depth 1000, burn-in 100, restart 10, alpha (0.001) and beta (0.01) dirichlet 541 

hyperparameters) in accordance with previously published literature (53, 80). A ‘leave one out’ 542 

cross validation was performed to assess the general performance of the model and source 543 

samples were iteratively assigned as sinks to assess how well a known sink would be assigned 544 

(i.e. source = soil and sink = soil). The percent assignments from SourceTracker are the result of 545 

the Gibbs Sampler assigning OTUs from an unknown sample to sources in a random and 546 

iterative fashion, and then calculating likelihood of that OTU originating from said source. The 547 

final output can be interpreted as the percent (or likelihood) of OTUs present in an unknown 548 

sample originating from the sources used in the analysis 549 

 550 

Partial least squares regression model. A partial least squares regression (PLSR) model was 551 

used to determine  the most important and significant variables affecting enterococci 552 

concentrations (81). Two models were created, one for the estuary, estuary beach, and marine 553 

beach sites, and one for the freshwater sites. Particle-associated enterococci, environment 554 

variables (water temperature, air temperature, dissolved oxygen, salinity, height of previous high 555 

tide, rainfall in previous 48 h), fecal source strength (mammal, human, and bird), and percent of 556 

environmental source (fresh water, soil, sediment, and marine sediment) were used as 557 

explanatory variables for the non-freshwater model. The same parameters, except height of 558 

previous high tide and percent of freshwater source, were used for the freshwater model. All data 559 

except the percent assignments from SourceTracker were log (x+1) transformed before 560 

performing the analysis. A KFold cross validation (K=7) with the NIPALS method was used to 561 

determine optimal factors and variable importance (VIP > 0.8) for each model. Models were then 562 
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re-run with only explanatory variables that were determined to be significant. To see model 563 

validation and diagnostic plots, refer to Supplementary Material 3.    564 

Routine statistical analysis and data visualizations. All routine statistical analyses were 565 

performed in R v3.4.0, Python 3.6.1, or JMP Pro13, while multivariate analyses were performed 566 

with PC-ORD v6. Graphing was performed in IPython notebook with matplotlib, seaborn, 567 

pandas, and numpy packages. All pairwise comparisons were done using the Kruskal-Wallis 568 

nonparametric method, with Dunn’s nonparametric multiple comparisons run post hoc using a 569 

Bonferroni correction.  570 
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Tables 858 

 

Environmental Microbial Community Source (Including Marine Beach Source) 

Water Sample Type Marine Beach Freshwater Estuarine 

Sediment 

Sediment Soil 

Estuary Beach 97% <0.01% 0.4% <0.01% <0.01% 

Estuary 94% 2.9% 0.2% 0.02% <0.01% 

Freshwater <0.01% N/A <0.01% 74% 2.6% 

 

Environmental Microbial Community Source (Excluding Marine Beach Source) 

Water Sample Type Marine Beach Freshwater Estuarine 

Sediment 

Sediment Soil 

Estuary Beach N/A 66% 12% <0.01% <0.01% 

Estuary N/A 74% 7.6% 0.02% <0.01% 

Marine Beach N/A 35% 19% <0.01% <0.01% 

Freshwater N/A N/A 0% 74% 2.6% 

 859 

Table 1. The relative contribution of different sources to the microbial communities in 860 

estuarine and marine water. SourceTracker was run with two different configurations, one 861 

where Marine Beach water was included as a potential source (top) and a second run where 862 

Marine Beach water was excluded as a potential source (bottom).  863 

 864 

 865 

 866 

 867 
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Freshwater  

PLSR 1 

 Estuary, Estuary Beach & Marine Beach 

PLSR 1                                    PLSR 2    

X Variable Loading  X Variable Loading X Variable Loading 

Particle ENT 0.501  Particle ENT 0.456 Particle ENT 0.420 

qPCR Mammal 0.352  qPCR Mammal 0.438 qPCR Mammal -0.337 

TSS 0.408  % Freshwater 0.408 % Freshwater -0.418 

% Sediment 0.336  %Unknown -0.457 % Unknown 0.389 

% Unknown 0.476  Water Temp 

(C) 

0.302 Water Temp 

(C) 

-0.123 

Salinity -0.344  Hightide (ft) 0.170 Hightide (ft) 0.456 

   % Estuarine 

Sediment 

-0.294 % Estuarine 

Sediment 

0.401 

       

Total Y 

Variance 

60.1%  Total Y 

Variance 

47.2% Cumulative Y 

Variance 

61.8% 

 868 

Table 2. Most Significant Relationships/Contributions for All Factors to Enterococci 869 

Concentrations. Shown is the output from a partial least squares regression for a 870 

freshwater and estuary/marine model. All variables shown have significant relationships for 871 

each model (VIP > 0.8), and loadings are derived from re-running models with only variables 872 

deemed significant. Model loadings are specific weights on a multivariate regression axis, 873 

positive and negative loadings refer to positive or negative relationships to enterococci 874 

concentrations. Negative loadings in the model are designated with a – before the number.     875 

 876 

 877 

 878 
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Figure Legends  879 

Figure 1: Wells Maine Study area and sampling sites. All water collection sites are marked 880 

with a dark grey circle. Sites that correspond to fresh water are indicated with a (1), estuary (2), 881 

estuary beach (3), and marine beach (4).  882 

 883 

Figure 2: Geometric Mean Concentrations of Total and Particle Associated Enterococci 884 

and Average Total Suspended Solids Concentrations at the Eight Study Sites. (A) Total 885 

enterococci concentrations are represented with the blue bar, and particle associated enterococci 886 

concentrations correspond to the green bar. Error bars are derived from variation from each site 887 

across the entire study. (B) Violin plots were used to represent TSS concentrations, and the color 888 

corresponds to the type of site including marine beach (red), estuary beach (purple), estuary 889 

(green), or fresh water (blue). Horizontal lines go through the median of each violin plot.  890 

 891 

Figure 3: Relative Levels of Mammal, Human, and Bird Fecal Source at the Different 892 

Types of Study Sites. Box plots represent levels of microbial source tracking markers at marine 893 

beach (Wells Beach), estuary beach (W11, W12, W13), estuary (W14 & W15), and fresh water 894 

(Webhannet & Depot). Outlier data are represented with a black diamond. 895 

 896 

Figure 4: 16S Taxa Profiles and the Top Three Most Abundant Bacterial Classes in All 897 

Source and Sink Samples. Stacked bar plots represent percentages of the class level 898 

composition of the microbial communities. Source corresponds to environmental sources that 899 
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were finger-printed with the SourceTracker program, and then used to determine their presence 900 

within water (sink) samples. The table represents the top three classes for each group of samples 901 

and * corresponds to phylum level. For a complete list of all taxa assignments refer to 902 

Supplementary material 4.  903 

 904 

Figure 5. Differences Between Microbial Communities from Different Source Materials. 905 

Samples are color-coded based on sample matrix (i.e. soil, fresh water, etc.). Percent of variation 906 

explained are displayed on the x and y axis and the minimum stress of the ordination is shown in 907 

the top left corner.        908 

 909 
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Figure 1: Wells Maine Study area and sampling sites. All water collection sites are marked with 

a dark grey circle. Sites that correspond to fresh water are indicated with a (1), estuary (2), 

estuary beach (3), and marine beach (4). 
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Marine Beach Estuary Beach Estuary Fresh Water

Figure 2: Geometric Mean Concentrations of Total and Particle Associated Enterococci and Average Total Suspended Solids Concentrations at the 

Eight Study Sites. (A) Total enterococci concentrations are represented with the blue bar, and particle associated enterococci concentrations 

correspond to the green bar. Error bars are derived from variation from each site across the entire study. (B) Violin plots were used to represent 

TSS concentrations, and the color corresponds to the type of site including marine beach (red), estuary beach (purple), estuary (green), or fresh 

water (blue). Horizontal lines go through the median of each violin plot.
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Figure 5. Differences Between Microbial Communities from Different Source Materials. Sam-

ples are color-coded based on sample matrix (i.e. soil, fresh water, etc.). Percent of variation 

explained are displayed on the x and y axis and the minimum stress of the ordination is shown in 

the top left corner.       
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