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Abstract

Deep sequencing based genetic mapping has greatly enhanced the ability to catalog

variants with plausible disease association. The bigger challenge now is to ascertain

pathological significance to the array of identified variants to specific disease

conditions. Differential selection pressure may impact frequency of genetic variations,

and thus the detection of association with disease conditions, across populations. To

understand the genotype to phenotype correlations, it thus becomes important to first

understand the genetic variation spectrum of a population by creating a reference map.

In this study, we report the development of phase I of a new database of coding

variations, from the Indian population, with an aim to establish a centralized database

of integrated information. This could be useful for researchers involved in studying

disease mechanism at the clinical, genetic and cellular level.

Database URL: http://indexdb.ncbs.res.in

Keywords

Population-specific database; Genetic variations catalogue; Indian population; Whole
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Introduction

Human population has increased significantly in numbers across all geographical

regions in the recent past, resulting in population specific genetic architecture. Such
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rapid population growth has significant impact on the occurrence and frequency of

genetic variations, especially rare variants which may lie on conserved protein

encoding sites, that may have a likely role in disease biology (Keinan and Clark,

2012). Next Generation Sequencing (NGS) strategies have greatly improved the

ability to identify genetic variants, of varying frequencies. Recent studies to identify

genetic variants associated with ‘common non-communicable disease’ suggest that

these syndromes have high heritability, and that the risk arises from a polygenic

contribution, caused by a combination of rare deleterious and common polymorphic

modifier variants. NGS based evaluation of disease association thus becomes a useful

way to identify disease genetic signature. A critical component of this analysis is the

assignment of pathogenic relevance to the identified variants, done primarily by

defining the frequency in affected individuals as compared to control, healthy samples.

In this context, several genetic variation databases have been established

incorporating different strategies and technological improvements (eg. haplotype

mapping - HapMap project (The International HapMap Consortium, 2005); whole

genome sequencing - 1000 Genomes project (The 1000 Genomes Project Consortium,

2015); whole exome sequencing - Exome Aggregation Consortium (Lek et al., 2016)).

While the information gleaned from these databases improved our understanding of

the complexities of the genetic architecture, it also reported that a significant

proportion of genetic variations identified are population specific. We thus need a

detailed evaluation in diverse populations, to better understand the genetic basis of

epidemiology and semiology of human diseases by identifying modifier genetic
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variations (Bamshad et al., 2011; Craddock and Owen, 2010; Higasa et al., 2016;

Hindorff et al., 2011).

The Indian subcontinent is estimated to see an increase in the number of individuals

needing care for adult onset common disorders due to improved health care and life

expectancy. Identification of disease specific genetic signature is a critical first step in

identifying – a) disease associated genetic variations, b) molecular sub-typing of

complex human phenotypes and c) at risk individuals with improved efficiency. A

comprehensive reference variation map, established from a clinically normal cohort

that is representative of this population, will be of great benefit. There have been

several reports of cataloging genetic variation from the Indian population which have

suggested presence of distinct genome level sub-structuring, and its probable impact

on disease Biology (Narang et al., 2010; Rustagi et al., 2017; The HUGO Pan-Asian

SNP Consortium, 2011; The Indian Genome Variation Consortium, 2005; Upadhyay

et al., 2016). However, there are a few limitations to these studies – a) these

predominantly catalogue germline variants; b) are designed to capture high frequency

common variations, which is sufficient for deciphering population structure, but lack

information on rare mutations, CNVs and disallow haplotype analysis; and,

importantly c) are not available as open access reference map.

In this study we report the development and completion of phase 1 of a new

accessible database- the INDian EXome database (INDEX-db), that catalogues

variations in exonic and regulatory regions from healthy control individuals, across
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different geographical regions of southern India. To make the database a

comprehensive resource for disease genetics studies, we have integrated WES derived

SNV, CNV and phased LD information, along with expression data, on samples

derived from a subset of individuals sequenced. We believe that such an integrated

reference database may be valuable to understand the genomic architecture underlying

susceptibility to disease, detect familial or geographical clustering of the population,

and thus aid efforts to understand disease genetics.

Materials and methods

Samples information and ethical approval

Thirty one individuals tested to be asymptomatic for any adult onset common clinical

illness were selected for the study at National Institute of Mental Health and Neuro

Sciences, Bengaluru (Gender, age and other information of the individuals in

Supplementary Table 1). The study was approved by the institutional ethics committee.

Written informed consent was obtained from all participants prior to sampling. 10 ml

of peripheral blood was collected under aseptic conditions and high molecular weight

DNA isolated.

Library preparation and exome sequencing

The genomic DNA was extracted from the blood and the Illumina Nextera Rapid

Capture Expanded Exome kit was used for library preparation. Sequencing was

carried out on Illumina Hiseq NGS platform. Quality check of the raw reads was
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performed using FASTQC tool (www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Only the paired-end raw reads with a score more than Q20 was filtered using Prinseq

lite version 0.20.4 (Schmieder and Edwards, 2011) for further alignment to the

reference genome. Reads were also checked for per base and per sequence quality

scores, GC content, and sequence length distribution.

Alignment and mapping of reads

The raw reads were aligned to the Human reference genome hg19 (GrCh37) using

BWA tool version 0.5.9 (Li and Durbin, 2009). PCR duplicates in the mapped reads

were marked using Picard (http://broadinstitute.github.io/picard/). INDEL realignment

was performed using GATK version 3.6 (Depristo et al., 2011). Conversion of the

sequence alignment file (SAM to BAM), indexing and sorting were done by samtools

version 1.5 (Li et al., 2009). The quality check for the alignment on the mapped reads

was performed using Qualimap version 2.2.1 (Okonechnikov et al., 2015).

Detecting SNPs, indels and CNVs

SNPs and indels were called from the aligned files using Varscan2 version 2.3.9

(Koboldt et al., 2009; Koboldt et al., 2012) (with the criteria min coverage = 8,

MAF >/= 0.25% and P </= 0.001). Depth of coverage was calculated using GATK

version 3.8.0 (16) and this was used to detect copy number variations using XHMM

(Fromer et al., 2012; Fromer and Purcell, 2014). XHMM employs principal

component analysis to remove batch and target effects. Principal component analysis
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was performed on the entire read-depth matrix (31 individuals by 336,037 targets) and

a hidden Markov model was applied to the normalized data to detect CNVs.

Haplotype phasing

Haplotype pre-phasing was done for SNP genotypes from 31 individuals using

SHAPEIT2 (v2.r837.GLIBCv2.12) (Delaneau et al., 2014; O’Connell et al., 2014). As

a haplotype reference, we downloaded 1000Genome project Phase3 reference

(http://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3/) and used only the SAS

subgroup haplotype reference. The phased data was visualized and haplotype blocks

were generated based on the Dprime values computed for every comparisons between

markers (SNPs) which are present within a distance range of 500kb using Haploview

version 4.2 (Barrett et al., 2005). Default parameters were used which includes

markers having MAF>0.05, p-value cutoff of 0.001, with maximum Mendelian errors

of 1, minimum genotype percentage of 75%, exclusion of individuals with >50% of

missing genotypes, with 95% confidence bounds (Gabriel et al., 2002).

Development of INDEX-db

The SNPs and indels obtained from all the 31 individuals were merged using vcftools

(Danecek et al., 2011) to create a merged SNPs and indels catalogue. This was

annotated with ANNOVAR (reference assembly 65) (Wang et al., 2010). Copy

number variations were pooled from all the individuals and used to create a reference

copy number profile for the population. Pooling of data, functional analysis and other
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downstream analysis were performed using in-house shell and python scripts. The

entire workflow of developing INDEX-db is shown in Fig. 1. The graphical genome

browser for the database was developed on JBrowse version 1.12.3 (Skinner et al.,

2009).

Data availability

The raw sequence data has been deposited at the NCBI SRA database (SRA accession

SRP135959). The entire database is hosted online at http://indexdb.ncbs.res.in and is

freely accessible along with associated tools for querying and comparing user data to

INDEX-db. The data is also available for download in standard formats at

http://indexdb.ncbs.res.in/downloads.html. The SNPs are also deposited at the NCBI’s

dbSNP

(https://www.ncbi.nlm.nih.gov/SNP/snp_viewTable.cgi?handle=OMUKHERJEE_AD

BS).

Results

INDEX-db: Variant summary profile

A total of 397,336 single nucleotide variations were identified in this phase 1 of the

INDEX-db with an average 96% of the reads mapping to the reference genome at a

mean coverage of 54.6% with at least 20X depths (Fig. 2). There was no significant

bias seen, in terms of sequencing and/or sample QC (Fig. 2). About ~23% of the total

genetic mutations identified were in the coding region, of which nearly half (51.34%)
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were a missense variation, followed by silent (43.36%), indel (1.8%), nonsense

(0.81%) and splice sites (0.55%) (Fig. 3A). The ratio of non-synonymous (NS=49013)

to synonymous variants (S=39876) was 1.23 (Fig. 2). The SNP profile observed in our

study is comparable to exome sequencing reports published earlier (Lek et al., 2016;

Rustagi et al., 2017; Upadhyay et al., 2016).

Copy number variations (CNVs) contribute about one tenth of a percent of the total

genetic variations of an individual, and it affects longer regions than both SNPs and/or

short indels (The 1000 Genomes Project Consortium, 2015). The CNVs have a

spectrum of phenotypic effects, from adaptive traits (Beckmann et al., 2007) to

embryonic lethality (Hurles et al., 2008), and are implicated in many disorders

including schizophrenia (Cook and Scherer, 2008), Down’s syndrome (Korenberg et

al., 1994), kidney diseases (Nagano et al., 2018), diabetes (Ascencio-Montiel et al.,

2017; Prabhanjan et al., 2016), hypertension (Boon-Peng et al., 2016; Marques et al.,

2014), cancer (Araujo et al., 2014; Liu et al., 2013), bipolar disorder (Grozeva et al.,

2013) etc. While array comparative genomic hybridization (aCGH) is considered as

the standard for molecular assessment of genome-wide copy number detection (Pinkel

et al., 1998; Pinkel and Albertson, 2005), methods have now been developed to detect

copy number variations from NGS based exome and genome sequencing data (Yoon

et al., 2009). Using a hidden Markov model, we identified a total of 1,538 CNVs in

the size range of 50 bp to 3 mb in the INDEX-db phase I analysis represented as a

circos plot (Fig. 3B). The number, size range and distribution of the detected CNVs in

INDEX-db is comparable to other published data (MacDonald et al., 2014).
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The common pattern in which variants are inherited across a population have critical

importance in studying genetic correlates to rare and complex human diseases (The

International HapMap Consortium, 2005). As parental genotype information may not

be available for all the samples, reference phased haplotypes imputed using

population relevant reference is valuable for disease genetics investigations. In

INDEX-db phase I, we identified a total of 3365 LD blocks spread across the

autosomes with an average block length of ~3.6 kb. (Fig. 3C).

To identify if there exists any population specific mutation/recombination hotspots,

we computed the mean density of the variants (SNPs and CNVs) and the resulting LD

blocks across the chromosomes by calculating the number of variants and/or LD

blocks per million base pairs for each chromosome (normalizing for chromosome

size). Apart from chromosome 19 which showed a significantly higher number of

SNPs and CNVs, we did not observe any significant clustering of variants in any

other chromosome (Fig. 4A-B). The increased density of variants observed in

chromosome 19 may be due to the highest gene density or the presence of many

paralogues of immunoglobulins localized to this chromosome that may undergo

repeated duplication and/or mutation as reported by earlier studies (Castresana, 2002;

Grimwood et al., 2004). We also observed that chromosome 19 had the highest

number of LD blocks compared to the other chromosome. This could be due to the

increased number and polymorphic diversity of the variants localized to this region

resulting in low levels of common haplotypes. (Fig. 4C and Supplementary Table 2).

Population genetics studies have shown that there is greater genetic drift in East Asian
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populations, impacting the individual mutation burden load (Balick et al., 2015; Gao

and Keinan, 2016; Simons and Sella, 2016). To ascertain the value of INDEX-db as a

reference resource for disease genetics studies for the Indian population, we compared

the INDEX-db phase I data with two publicly available databases. We used the ExAC

as it is one of largest exome sequencing reference database with significant

representation of South Asian population (although low representation from the

pan-Indian population), and the AP-SAS, as it is a WGS based resource generated

using samples from southern India. The variant parameter profile identified in

INDEX-db are comparable to these other databases (Supplementary Table 3).

We found 12% (48732) of the variants identified were unique to INDEX-db phase I

(Fig. 3A, Supplementary Table 3). Within the coding region, this translated to 8860

(~2.23%) variations, out of which 966 had a functional annotation of being

‘deleterious’ by two in silico algorithms (Fig. 4D) (Adzhubei et al., 2010; Ng and

Henikoff, 2003). We found ~20% of coding variants identified in INDEX-db to be

common between ExAC, and ~ 7% common to AP-SAS. The observation of low

overlap between INDEX-db and AP-SAS could be attributed to the low coverage in

the whole genome sequencing design of the AP-SAS study (~2X mean coverage).

Differences between ExAC-SAS and INDEX-db could perhaps be attributed to

population specific variation signature, especially since ExAC-SAS has a low

representation from the Indian population. The mutational profile obtained in the

phase I of this database is comparable to other databases, though currently limited by

the number of individuals it represents.
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Functional relevance of INDEX-db as a population specific reference database

for disease association studies

Based on the protein perturbing impact, mutations can be classified as benign

(tolerated), deleterious (loss of function) and neutral (no influence). Functional impact

of genetic variants identified in INDEX-d, was analyzed using SIFT (Ng and Henikoff,

2003) and PolyPhen2 (Adzhubei et al., 2010) algorithms that predict the functional

consequences based on conservation and protein structure. A total of 8345

non-synonymous variants (9% of the total protein-coding variants) spanning 5097

genes were predicted to be damaging by SIFT and Polyphen2 in INDEX-db (Fig. 4D).

Of these, 11% (966) spanning 700 genes were novel to INDEX-db. The percentage of

damaging and unique variants observed in our dataset is in the range as reported

earlier, although the specific genes and/or pathways may differ (The 1000 Genomes

Project Consortium, 2015). To evaluate the biological impact of these deleterious

mutations, we performed enrichment analysis on the genes harbouring deleterious

mutations, and found increased enrichment for Wnt signaling, Nicotinic acetylcholine

receptor signaling, Integrin signalling, cytokine signaling and Cadherin signalling

pathway (Fig. 2). These pathways are implicated in various disorders including severe

mental illness, diabetes and cancer. (Supplementary Table 4). Assessing the frequency

of these rare variants in the general, healthy population may be useful to understand

the genetic contributions to risk for disease, and also the relation with particular

clinical syndromes. The comprehensive profile of genetic variations cataloged in

INDEX-db phase I is detailed in Fig. 2.
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Discussion

We report the development of a new database, INDEX-db, which summarizes

variations in coding and regulatory regions, identified from healthy control

individuals. The first phase of the database consists of 31 individuals from southern

India. We have integrated the exome sequencing results with expression data

generated from a subgroup of the individuals constituting INDEX-db. The database is

also layered with information regarding CNVs and phased LD mapping. The

integrated database is available freely at http://indexdb.ncbs.res.in along with

associated tools for querying and comparing user input data to INDEX-db.

The INDEX-db is in its first phase and thus in comparison to other public databases is

limited in terms of the number of individuals sequenced to represent the population,

but the variant profile we report in our pilot phase is comparable to population-based

databases signifying its value in terms of giving population-specific information.

Genetic basis of complex disorders need to be better understood in India where the

burden of these disorders is expected to increase significantly in the coming decades.

In this context, we believe that an integrated reference database may be valuable to

understand the genomic architecture underlying susceptibility to disease, familial or

geographical clustering of the population and aid in disease genetics studies.
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Fig. 1: The workflow of the development of phase 1 of INDEX-db. The steps

involved in the development of INDEX-db. The tools used in every step are

mentioned in the brackets.
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Fig. 2: Variant summary profile. The distribution of coding and non-coding variants,
the nonsynonymous to synonymous and the transitions to transversions ratios, and the
percentage coverage of sequencing at 20X of 31 individuals catalogued in INDEX-db.
The number of SNPs and CNVs detected in every individual with the pathway
enrichment of genes harbouring damaging SNPs predicted by SIFT and PolyPhen2.
Abbreviations: NS-Non-synonymous; S-Synonymous; UTR-Untranslated Region;
ncRNA-Non-coding RNA; Ts-Transitions; Tv-Transversions.
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Fig. 3: INDEX-db genetic catalogue (A) Comparison of INDEX-db with other

public databases. (B) The circos plot showing the copy number variation events

catalogued in INDEX-db. The duplication and deletion events has been coloured

green and red respectively. (C) Mean length of linkage disequilibrium blocks

identified in autosomes.
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Fig. 4: The distribution of genetic variations across chromosomes. The number of

(A) SNPs, (B) CNVs and (C) LD blocks catalogued in INDEX-db per million

basepairs in each chromosome. (D) In silico prediction of deleteriousness on coding

and non-coding variants by 2 predicting algorithms (SIFT and PolyPhen2) and 5

algorithms (SIFT, PolyPhen2, Mutation Taster, Mutation Accessor, LRT predictor).
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