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Abstract 
When different types of functional genomics data are generated on single cells from different samples 
of cells from the same heterogeneous population, the clustering of cells in the different samples 
should be coupled. We formulate this “coupled clustering” problem as an optimization problem, and 
propose the method of coupled nonnegative matrix factorizations (coupled NMF) for its solution. The 
method is illustrated by the integrative analysis of single cell RNA-seq and single cell ATAC-seq data. 
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Significance Statements 
Biological samples are often heterogeneous mixtures of different types of cells. Suppose we have two 
single cell data sets, each providing information on a different cellular feature and generated on a 
different sample from this mixture. Then, the clustering of cells in the two samples should be coupled 
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as both clusterings are reflecting the underlying cell types in the same mixture. This “coupled 
clustering” problem is a new problem not covered by existing clustering methods. In this paper we 
develop an approach for its solution based the coupling of two nonnegative matrix factorizations. 
The method should be useful for integrative single cell genomics analysis tasks such as the joint 
analysis of single cell RNA-seq and single cell ATAC-seq data. 

 

Introduction 
Biological samples of interest in clinical or experimental studies are often heterogeneous mixtures, 
i.e. a sample may consist of many different subpopulations of cells with distinct cellular states. To 
resolve the heterogeneity and to characterize the constituent subpopulations, it is necessary to 
generate functional genomic data at the single cell level. An exciting recent development in genomics 
technology has been the emergence of methods for single cell (sc) measurements, for example, 
scRNA-seq (1) enables transcription profiling, scATAC-seq (2) offers chromatin accessibility data, sc-
bisulfite sequencing (3) measures DNA methylation, all at the single cell level.  

Often, the first step in the analysis of single cell data is clustering, which aims to resolve the single 
cells into the constituent subpopulations. Clustering methods for scRNA-seq data were discussed in 
(4, 5), and clustering of scATAC-seq data were given in (6). Existing methods, however, do not cover 
the increasing common situation when two or more types of sc-genomics experiments were 
performed on different subsamples from the same cell population. For example, Figure 1A depicts 
the situation when one subsample is analyzed by scRNA-seq while another is analyzed by scATAC-
seq. Since both types of measurements are informative about the constituent cell types in the 
heterogeneous population, it is clear that we should aim to couple the two clustering processes in 
such a way that the clustering of the cells in the scRNA-seq sample can also make use of information 
from the scATAC-seq sample, and vice versa. In this paper we formulate this “coupled clustering” 
problem as an optimization problem, and introduce a method, called coupled nonnegative matrix 
factorizations (coupled NMF), for its solution. 

We first introduce our approach in general terms. Let O be a p1 by n1 matrix representing data on p1 
features for n1 units in the first sample, then a “soft” clustering of the units in this sample can be 
obtained from a factorization O=W1H1 as follows: the ith column of W1 gives the mean vector for the 
ith cluster of units, while the jth column of H1 gives the assignment weights of the jth unit to the 
different clusters. Similarly, clustering of the second sample can be obtained from the factorization 
E=W2H2 where E is the p2 by n2 matrix of data on p2 features (which are different from the features 
measured in the first sample) for n2 units. To couple two matrix factorizations, we solve the 
optimization in Figure 1 C, where the cost function contains a term 𝜆𝜆2𝑡𝑡𝑡𝑡 �𝑊𝑊2� 𝑇𝑇𝐴𝐴𝑊𝑊1� where 𝑊𝑊2�  is a 
submatrix containing a subset of rows of 𝑊𝑊2, and A is a “coupling matrix”. The construction of A is 
application specific but depends on the assumption that, based on scientific understanding or prior 
data, it is possible to identify a subset of features in one of the sample that are linearly predictable 
from the features measured in the other sample.  In such a situation, we can take A to be the matrix 
representation of the linear prediction operator. For the application of interest in the current paper, 
where gene expression is measured in one sample and chromatin accessibility is measured in the 
other sample, we will use a diverse panel of cell lines with both expression and accessibility data, to 
train a prediction model of gene expression from accessibility.  See Approach section for details. 
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Approach 
Construction of Data Matrices: From single cell ATAC-seq data, we compute a data matrix O, where 
𝑂𝑂𝑖𝑖𝑖𝑖  denotes the degree of openness (i.e. accessibility) of the ith region in the jth cell (6). By region we 
mean union of predefined regulatory elements (REs) and peaks. From single cell RNA-seq data, we 
compute the data matrix E where 𝐸𝐸𝑔𝑔ℎ  denotes the expression level of the gth gene in the hth cell (7). 
Details are given under data processing in the Methods and Materials. Note that the single cell ATAC-
seq and the single cell RNA-seq data are not measured in the same cell (Fig. 1 A). 

Construction of coupling matrix: Our approach to the initialization of A is to look for a subset of genes 
whose expression is highly predictable from chromatin accessibility of nearby REs. To do this, we 
take advantage our recent work on modeling paired gene expression and chromatin accessibility data 
(on bulk samples) across diverse cellular contexts (8). From the PECA model in that work, for each 
gene g, we can extract a set Sg of REs that regulate that gene. We consider the regression model of 
target gene (TG) expression (denoted as 𝐸𝐸𝑔𝑔) on its regulatory elements’ (RE) accessibility (denoted 
as 𝑂𝑂𝑖𝑖). 

𝐸𝐸𝑔𝑔 = 𝛼𝛼𝑔𝑔0 + ∑ 𝛼𝛼𝑔𝑔𝑖𝑖𝑂𝑂𝑖𝑖𝑖𝑖∈𝑆𝑆𝑔𝑔                                                                      (1) 

We estimate the parameter αg by fitting the penalized least square problem (eq. 2 below) based on 
expression and accessibility data on a diverse panel of cell lines (56 cell lines in the case of mouse, 
and 148 cell lines in the case of human (Supplementary Table 1).  

min
𝛼𝛼𝑔𝑔

1
2

�𝐸𝐸𝑔𝑔 − 𝛼𝛼𝑔𝑔0 − ∑ 𝛼𝛼𝑔𝑔𝑖𝑖𝑂𝑂𝑖𝑖𝑖𝑖∈𝑆𝑆𝑔𝑔 �
𝐹𝐹

2
+ λ(�𝛼𝛼𝑔𝑔�

1
+ �𝛼𝛼𝑔𝑔�

2
2)                                           (2) 

where λ is determined by 5-fold cross validation. After fitting the model, we select a set of ”well 
predicted” genes (denoted as S) for which the relative prediction error is less than 0.3, that is, |𝐸𝐸𝑔𝑔𝑔𝑔 −
𝐸𝐸𝑔𝑔𝑔𝑔� |<0.3Egs, for at least 80% of the cell lines in the panel.   In this way, we selected 5,281 well 
predicted genes in mouse and select 6,537 well predicted genes in human. The initial value of the 
coupling matrix A is obtained from the coefficients αg associated with these well predicted genes.  

Clustering by Coupled nonnegative matrix factorizations: The gene set S and the matrix A allow us to 
couple expression-based clustering and accessibility-based clustering according to a regulatory 
model supported by extensive prior data. Once the coupling is defined this way, we can obtain the 
factorizations of the two data matrices by solving the following optimization problem (Fig. 1C).  

min
𝑊𝑊1, 𝐻𝐻1,𝑊𝑊2,𝐻𝐻2≥0

1
2

‖𝑂𝑂 − 𝑊𝑊1𝐻𝐻1‖𝐹𝐹
2 + 𝜆𝜆1

2
‖𝐸𝐸 − 𝑊𝑊2𝐻𝐻2‖𝐹𝐹

2 − 𝜆𝜆2𝑡𝑡𝑡𝑡 �𝑊𝑊2� 𝑇𝑇𝐴𝐴𝑊𝑊1� + 𝜇𝜇(‖𝑊𝑊1‖𝐹𝐹
2 + ‖𝑊𝑊2‖𝐹𝐹

2 )         (3) 

Where 𝑊𝑊2�  represent a submatrix of 𝑊𝑊2 only containing the rows corresponding to the genes in S, the 
first row of 𝑊𝑊2�  is [1,1,…1], which corresponding to the first column of matrix A [𝛼𝛼10, 𝛼𝛼20, … 𝛼𝛼𝑛𝑛0]T, the 
intercept of the regression model in eq. (1).  After solving the optimization, the cluster profile and 
the cluster assignments for the kth cluster in the accessibility data can be obtained respectively from 
the kth column of W1 and the kth row of H1. Similarly, the expression-based clustering can be obtained 
from W2 and H2 (Fig. 1D). In this application, AW1 gives the cluster-specific predictions of the 
expression of genes in S based on the cluster-specific accessibilities of REs, and hence the trace term 
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enforces our expectation that the expression of genes in S should be consistent with the predictions 
based on accessibility of nearby REs. We can refine the coupling iteratively, as follows. We assign single 
cells to clusters according to the assignment weights given by H1 and H2. After getting the cluster results, 
we choose cluster-specific genes based on single cell RNA-seq clustering. Then we restrict the gene set S 
in cluster-specific gene and re-cluster the cells by optimizing the objective function in eq. (3).  We continue 
until the cluster assignments are not changed by further iterations. 

Results 
Results on simulation data: The performance of our coupled clustering method is first evaluated in a 
simulation study where single cell data is simulated by mixing reads that are sampled from two bulk 
data sets corresponding to two cell types. The bulk data sets used in our simulation study are from 
two very similar cell types from hematopoietic differentiation process, namely common myeloid 
progenitor (CMP) and megakaryocyte erythroid progenitor (MEP) (9). We randomly sample 3,000 
reads from bulk RNA-seq data and add a Gaussian noise of SNR = 5 to simulate a single cell RNA-seq. 
Similarly, we randomly select 40,000 reads from bulk ATAC-seq data and add a Gaussian noise of 
SNR = 5 to simulate a scATAC-seq data. Number of reads in our simulation data are similar to the 
number of reads in 10 X genomics scRNA-seq and C1 Fluidigm scATAC-seq data. In our simulation, 
we generated 100 scRNA-seq and 100 scATAC-seq for CMP and MEP respectively.  

To simulate a scRNA-seq data set from a mixed population with two cell types, we simply combine 
the 200 single cell RNA-seq data from two cell lines together and treat it as a single scRNA-seq data 
set. We then apply k-means and non-negative matrix factorization (NMF) to cluster the mixed cells. 
We run k-means 50 times with different random initial values and choose the result that gives the 
minimum total sum of within cluster distances. Similarly, we run NMF 50 times and choose the result 
that gives the minimum approximation error in Frobenius norm. The results of all the 50 runs on 
scRNA-seq and scATAC-seq data by k-means and NMF are shown in Supplementary Fig. S1. Finally, 
we perform coupled NMF clustering based on both the scRNA-seq sample (200 cells mixture) and 
the scATAC-seq sample (200 cells mixture). The performance of the three clustering results (k-means 
on scRNA-seq only, NMF on scRNA-seq only, and coupled NMF on both scRNA-seq and scATAC-seq) 
are presented in Figure 2A). A similar improvement is also seen in the clustering results on the 
scATAC-seq sample (Fig 2B).  It is seen that coupling leads to greatly improved results, reducing the 
assignment error rate by more than 4 folds over the other two methods (Fig 2C).   

Assessment of prediction model before coupling: We are interested in applying coupled NMF to 
analyze data generated from differentiation of mouse embryonic stem cell, namely scRNA-seq and 
scATAC-seq at day 4 after retinoic acid (RA) treatment (Methods and Materials).  To assess whether 
the model learned from the diverse panel still have good predictive power in this new biological 
context, we first generated bulk RNA-seq and ATAC-seq from this context (i.e. RA day-4). Using the 
model trained on the diverse panel, we predicted the expression at RA day-4 of genes in gene set S 
based on the accessibility data at RA day-4. Figure 3 presents the observed versus predicted scatter 
plot, which shows the genes in S can indeed be predicted with high accuracy in this context (R2=0.86, 
r=0.93). This gives us confidence in using the model to initiate the coupling. 

Results on real single cell data: Next, we test our method on scRNA-seq and scATAC-seq data 
generated from the RA day-4 cell population. We first perform coupled NMF with K = 2 (i.e. 2 clusters) 
and then visualize the clustering result on a t-SNE plot computed based on Spearman correlation. 
There are clearly 2 separated clusters in both the t-SNE plot from scATAC-seq and the t-SNE plot from 
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scRNA-seq (Supplementary Fig. S2). When we increase the number of clusters to 3, we can see 3 well 
separated clusters in t-SNE plot. However, when K is increased to 4 or 5, the resulting clusters are no 
longer clearly separated (Supplementary Fig. S2). Thus we conclude that K=3 is sufficient for this 
data.   

For each of the 3 clusters, we identify cluster-specific TFs based on their expression from RNA-seq 
data, and compare their motif activities across different clusters (Figure 4). Here the motif activity of 
a TF reflects the degree of enrichment of the TF’s motif on accessible REs (see Methods and Materials). 
Figure 4B shows the motif activities and expressions of some cluster-specific TFs on the t-SNE 
visualization (Figure 4B, Supplementary Fig. S4). Fig. 4 C shows the heat maps of motif activities and 
expressions for a subset cluster specific TFs, namely those with expression TPM greater than 10 in 
at least 40 cells. It is seen that cluster-1-specific TFs’ (e. g. Ebf1, Lhx1, and Neurod1) have high motif 
activities in cluster-1 specific peaks. Similarly, cluster-2-specific TFs, Gata4, Foxa2, and Jun, have high 
motif activity in cluster 2 and cluster-3-specific TFs, Rfx4, Sox2, Sox9, Pou3f2 & Pou3f4, have high 
motif activity in cluster 3. This result shows that our method leads to highly consistent TF expression 
and TF motif activities within each of the inferred constituent subpopulations.  

Next, we select cluster-specific genes from RNA-seq data and cluster-specific peaks from ATAC-seq 
data. We assess whether the cluster-specific peaks are significantly close to the cluster-specific-genes 
by performing Fisher exact test based on the count of such gene-peak pairs that are within 100kb of 
distance each other (Supplementary Fig. S5). Figure 4D gives the p-values for all possible pairings of 
the RNA-seq clusters with ATAC-seq clusters. It is seen that the pairings identified by coupled NMF 
indeed gave dramatically more significant p-values and higher fold changes than the other possible 
pairings.  

Coupled clustering of single cells sheds light on stem cell differentiation: The cluster-specific gene 
expression profiles and chromatin accessibility profiles provided by our method can provide useful 
insight on the constituent subpopulations. First, we use cluster-specific peaks from single cell ATAC-
seq data to annotate the clusters. We collect previously determined enhancers in mouse tissues at 7 
developmental stages from 11.5 days post conception until birth (10). Fig. 5 A-C shows the degree of 
overlap of our cluster-specific peaks with these developmental enhancers for different tissues and at 
different developmental stages. The number represents 10,000 times Jaccard index (intersection 
over union) and NA indicates that enhancer data for that tissue in that stage is not available. The 
results show that cluster-1-specific peaks are enriched in forebrain and midbrain enhancers at E12.5 
and E13.5. Cluster-2-specific peaks are enriched in heart enhancers at E15.5 and E16.5. Cluster-3-
specific peaks are enriched in forebrain enhancers from E12.5 to E16.5 and also in midbrain, 
hindbrain and neural tube. We also collect experimentally validated tissue-specific enhancers from 
VISITA database and overlap them to cluster-specific peaks. Fig. 5 D shows the percentage of tissue 
specific VISITA enhancers overlapped to cluster-specific-peaks. Only those tissues with at least one 
enhancers overlapping with the cluster-specific peaks are shown. Enhancers from neural associated 
tissue (neural tube, cranial nerve, hind brain, midbrain, forebrain, trigeminal V, dorsal root ganglion, 
eye, nose) have overlap with cluster-specific peaks from cluster 1 and cluster 3. Cluster 2 specific-
peaks are enriched in blood vessels enhancers and heart enhancers. These results suggest that cluster 
1 and 3 may be related to neural tissues and cluster 2 may be related to heart tissue. 

In addition, we analyzed cluster-specific genes from scRNA-seq data. Fig. 5 E presents the most 
enriched gene ontology (GO) terms, their p-values and fold changes in each cluster. The results show 
that cluster 2 is enriched in blood vessel development and cardiovascular system development, 
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cluster 1 and 3 are enriched in neuron associated terms. The results from scRNA-seq based 
annotation are consistent with the results from scATAC-seq based analysis. Although clusters 1 and 
3 are neural associated clusters, there are interesting differences. Cluster 1 is more enriched in axon 
guidance and neuron projection guidance, which are relevant for general neuronal functions. On the 
other hand, cluster 3 are more enriched in brain development and oligodendrocytes differentiation, 
which are specifically relevant to the central nervous system (CNS). To examine this further, we 
check the expression of some known markers for motor neurons, which are present in PNS 
(peripheral nervous system) rather than in CNS. Fig. 5F shows the percentage of cells expressing (i.e. 
TPM>2) motor neuron markers (Chat, Isl1, Isl2 and En1). Motor neuron markers are more highly 
expressed in cluster 1 compared to cluster 3. Overall our results suggest that retinoic acid induced 
stem cell at day 4 is a mixture of cells related to peripheral nervous system, cardiovascular system, 
and central nervous system.  These results are largely consistent with the previous studies (11, 12). 

We can construct cluster-specific gene regulatory networks as graphs with directed edges from the 
cluster-specific peaks to the cluster-specific genes that are within 100 kb distance, and directed edges 
from cluster-specific TFs to cluster-specific peaks containing significant matches to the 
corresponding motifs. These cluster-specific subnetworks are presented in Supplementary Fig. S6. It 
is seen that Klf7, Ebf1, Sox11, and Nhlh1 are playing important role in the network for cluster 1, Gata4, 
Gata6, Sox17, Foxa2, Ap1 complex and Tead family are important in cluster 2 and Rarb, Nr2f1, Rfx4, 
Sox2, Sox9, Sox21, Pou3f2, Pou3f3, and Pou3f4 are important in cluster 3.  

 

Discussions 
 As far as we know, coupled clustering is a new problem different from other complex clustering tasks 
such as bi-clustering or multi-view clustering.  Bi-clustering (13, 14), also called block clustering or 
co-clustering, has been used widely used to cluster subjects and cluster genes simultaneously based 
on a p by n data matrix of expression measurements on p genes for n subjects. The same data matrix 
is used the clustering in gene space as well as the clustering in subject space. In contrast, two different 
data matrices are used in coupled clustering of two separate samples. In multi-view clustering (15), 
the set of features measured on each subject can be divided into two independent subsets, for 
example, one of them may represent gene expression measurements while the other represent 
accessibility measurements. The important difference between multi-view clustering and coupled 
clustering is that in the former setting all features are measured on each subject, whereas in the latter 
only one of the subsets can be measured on any subject. Clearly, coupled clustering is a more 
challenging task and requires external information such as subject domain knowledge or prior data 
in order to initialize the coupling.  

Measurements of different types of features generally require different types of reagents and 
biochemical reactions. To measure multiple types of features in the same cell, it is necessary to carry 
out all the required reactions within the same cell, which is extremely challenging technically. 
Although there are current efforts to develop methods for simultaneous measurement of two types 
of measurement in single cells (for example, RNA+DNA, RNA+accessibility, or RNA+CpG 
methylation, etc), these methods are still not yet ready for general use. Furthermore, even when we 
have two types of data (say RNA + accessibility) on single cells, there are always additional features 
(say CpG methylation) that we may want to incorporate into the analysis. For example, we may have 
two types of features measured in single cells in the first sample, and a third type of features 
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measured on single cells in another sample. Then we are again facing a coupled clustering problem. 
Thus our method for coupled clustering is of interest to single cell genomics. 

 

Methods and Materials 
Optimization algorithm:  We optimize the object function in eq. (3) by multiplicative update algorithm. 

𝑤𝑤𝑖𝑖𝑖𝑖
1 ← 𝑤𝑤𝑖𝑖𝑖𝑖

1
�𝑂𝑂𝐻𝐻1

𝑇𝑇 + 𝜆𝜆2
2 𝐴𝐴𝑇𝑇𝑊𝑊2� �

𝑖𝑖𝑖𝑖

(𝑊𝑊1𝐻𝐻1𝐻𝐻1
𝑇𝑇 + 2𝜇𝜇𝑊𝑊1)𝑖𝑖𝑖𝑖

 

𝑤𝑤𝑖𝑖𝑖𝑖
2 ← 𝑤𝑤𝑖𝑖𝑖𝑖

2
�𝑋𝑋𝐻𝐻2

𝑇𝑇 + 𝜆𝜆2
2𝜆𝜆1

𝐴𝐴𝑊𝑊1�
𝑖𝑖𝑖𝑖

(𝑊𝑊2𝐻𝐻2𝐻𝐻2
𝑇𝑇 + 2𝜇𝜇𝑊𝑊2)𝑖𝑖𝑖𝑖

 

ℎ𝑖𝑖𝑖𝑖
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𝑇𝑇𝑂𝑂)𝑖𝑖𝑖𝑖

(𝑊𝑊1
𝑇𝑇𝑊𝑊1𝐻𝐻1)𝑖𝑖𝑖𝑖

 

ℎ𝑖𝑖𝑖𝑖
2 ← ℎ𝑖𝑖𝑖𝑖

2 (𝑊𝑊2
𝑇𝑇𝐸𝐸)𝑖𝑖𝑖𝑖

(𝑊𝑊2
𝑇𝑇𝑊𝑊2𝐻𝐻2)𝑖𝑖𝑖𝑖

 

Where 𝑤𝑤𝑖𝑖𝑖𝑖
1  represent the element of ith row and jth column in matrix 𝑊𝑊1, The same representation  is 

used in 𝑊𝑊2, 𝐻𝐻1 and 𝐻𝐻2. We stop the iteration when the relative error is less than 0.0001.  

Cluster-specific features: We apply t-test to define the cluster-specific genes and cluster-specific 
peaks, default p-value cut-off is 0.0001.  

Evaluation of the clustering results: We evaluate the results in terms of consistency of true expression 
values and the predicted values. We calculated the correlation 𝐾𝐾 × 𝐾𝐾 matrix of AW1 with 𝑊𝑊2� , which 
is denoted by R. We use the determinant of correlation matrix R to measure the consistency of true 
expression values and the predicted values. Higher determinant means higher diagonal of the matrix, 
which means higher correlation between matched clusters and lower correlation in unmatched 
clusters.  

Parameters selection: We solve optimization problems  min
𝑊𝑊1, 𝐻𝐻1≥0

‖𝑂𝑂 − 𝑊𝑊1𝐻𝐻1‖𝐹𝐹
2   , min

𝑊𝑊2, 𝐻𝐻2≥0
‖𝐸𝐸 − 𝑊𝑊2𝐻𝐻2‖𝐹𝐹

2  

by alternating least squares (ALS) algorithm with 50 different initializations using a Monte Carlo type 
approach (16) and get the solutions 𝑊𝑊10,  𝐻𝐻10, 𝑊𝑊20,  𝐻𝐻20 , which are used as initial solution in our 

optimization problem. We choose parameters  𝜆𝜆1 = ‖𝑂𝑂−𝑊𝑊10𝐻𝐻10‖𝐹𝐹
2

‖𝐸𝐸−𝑊𝑊20𝐻𝐻20‖𝐹𝐹
2 , 𝜆𝜆2 = 𝜂𝜂

1
2‖𝑂𝑂−𝑊𝑊10𝐻𝐻10‖𝐹𝐹

2

𝑡𝑡𝑡𝑡�𝑊𝑊20�𝑇𝑇𝐴𝐴𝑊𝑊10�
. Tuning 

parameters 𝜂𝜂 and 𝜇𝜇 are chosen from 0.001, 0.01, 0.1, 1, 10, 100, 1,000, and 10,000. The determinant 
of correlation matrix R can be used to select the tuning parameters. We choose the tuning parameters 
which give the highest determinant. The number of clusters K can be determined by a method similar 
to that in ref (17).  

TF motif activity: We use software chromVAR (18) to calculate the TF motif activity on each of the 
scATAC-seq data. 
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Single cell sample at RA day-4:  We generated a heterogeneous biological population of cells that arise 
from the same origin. Specifically, we used the hanging drop technique to form embryonic bodies 
(EBs) from mouse embryonic stem cells (mESCs) and induced differentiation by retinoic acid (RA) 
treatment. After 4 days’ induction, we sample cells for bulk RNA-seq and bulk ATACC-seq 
experiments for use in validating the coupling. To test the couple NMF clustering method, we also 
generated single cell ATAC-seq and single cell RNA-seq on the RA day-4 population. After removing 
low read count cells (3,000 in RNA-seq and 10,000 in ATAC-seq), we get ATAC-seq data and RNA-seq 
data on 415 and 463 single cells respectively. 

Data processing: We align the single cell ATAC-seq reads to reference genome mm9 and remove 
duplicates. We employed MACS2 (19) to do peak calling by merging all the reads from all the single 
cells. We only consider the narrow peaks which at least present (1 or more reads) on 10 cells. Read 
counts for each region on each cell are calculated by bedtools (20) with intersect command. Feature 
of scATAC-seq data is regions including regulatory elements (REs) and narrow peaks from MACS2. 
REs include promoters and enhancers. We use REs that regulate at least one target gene from PECA 
network (8). 

 Single cell RNA-seq raw reads are mapped to mm10 by STAR (21) with ENCODE options. Gene 
expression transcripts per million (TPM) are calculated by RSEM (22). The transcriptome annotation 
we use is GENCODE vM16.  

Experimental design of retinoic acid-induced mESC differentiation: Mouse ES cell lines R1 were 
obtained from ATCC. The mESCs were first expanded on an MEF feeder layer previously irradiated. 
Then, subculturing was carried out on 0.1% bovine gelatin-coated tissue culture plates. Cells were 
propagated in mESC medium consisting of Knockout DMEM supplemented with 15% Knockout 
Serum Replacement, 100 µM  nonessential amino acids, 0.5 mM beta-mercaptoethanol, 2 mM 
GlutaMax, and 100 U/mL Penicillin-Streptomycin with the addition of 1,000 U/mL of LIF (ESGRO, 
Millipore).  

mESCs were differentiated using the hanging drop method (23). Trypsinized cells were suspended 
in differentiation medium (mESC medium without LIF) to a concentration of 50,000 cells/ml. 20 µl 
drops (~1000 cells) were then placed on the lid of a bacterial plate and the lid was upside down. 
After 48 h incubation, Embryoid bodies (EBs) formed at the bottom of the drops were collected and 
placed in the well of a 6-well ultra-low attachment plate with fresh differentiation medium containing 
0.5 µM retinoic acid (RA) for up to 4 days, with the medium being changed daily.  

Single cell ATAC-seq: We followed the single cell ATAC-seq protocol published by Jason et al. (24) 
with the following modifications. The EBs were first incubated with StemPro Accutase cell 
dissociation reagent (Gibco) at 37oC for 10 min, then the EBs were gently pipetted for additional 15 
min to obtain single cell suspension. To further remove non-dissociated EBs, the cell suspension was 
filtered sequentially with a 40 µM cell strainer (BD Falcon) and a 20 µM pluriStrainer (pluriSelect). 
After washing 3 times with C1 DNA Seq Cell Wash Buffer, cells at a concentration of 350-400 cells/µl 
were loaded on the C1 Single-Cell Auto Prep System (Fluidigm, Inc.). Single cells were captured and 
processed on a 10-17 µM IFC microfluidic chip using ATAC-seq scripts (24). Total 7 IFC chips were 
included in this study. The library was sequenced on Illumina NextSeq with 75 bp paired-end reads.  

Single cell RNA-seq:  To prepare single cell RNA-seq library, we followed SMART-Seq v4 Ultra Low 
Input RNA Kit for the Fluidigm C1 System (Clontech Laboratories, Inc.). The EBs were first 
dissociated with Accutase as described previously. Cells at a concentration of 200-250 cells/µl were 
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then loaded on the C1 Single-Cell Auto Prep System (Fluidigm, Inc.). The single cells were captured 
and processed on a 10-17 µM IFC microfluidic chip using SMART-Seq v4 scripts. Total 5 IFC chips 
were included in this study. After harvest, cDNA concentration for each sample was measured using 
the Fragment Analyzer Automated CE System (Advanced Analytical Technologies, Inc.) and the cDNA 
concentration we used for Nextera XT library preparation is ~0.2 ng/µl.  The library was sequenced 
on Illumina HiSeq with 100 bp paired-end reads. 

Software and Data: Software and simulation data are available at 
web.stanford.edu/∼zduren/CoupledClustering/. Single cell gene expression data and chromatin 
accessibility data of RA induction have been deposited in the GEO database under accession no. 
GSEXXXXX. 
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Figure legends 
Fig. 1. Overview of the coupled clustering method. 

Fig. 2. (A) Clustering results of k-means, NMF, and our coupled clustering on simulation scRNA-seq 
data on CMP and MEP. (B) Clustering results of k-means, NMF, and our coupled clustering on 
simulation scATAC-seq data on CMP and MEP. (C) Comparison of k-means, NMF, and coupled 
clustering on simulation data of CMP and MEP. 

Fig. 3. Scatter plot of RA day 4 gene expression (log(FPKM+1)) verses predicted expression values 
from our model. 

Fig. 4. (A) t-SNE plot of single cell RNA-seq (right) and single cell ATAC-seq data (left) from RA day 
4. Different colors represent clustering assignment from coupled clustering method. (B) Same t-SNE 
plots as Fig. 3 A. Different colors represent cluster-specific TFs’ (Ebf1, Gata4, and Rfx4) gene 
expression Z-score and motif activity Z-score. (C) Comparison of cluster-specific TFs’ expression Z-
score with motif activity Z-score on cluster level. (D) Overlap of cluster-specific peaks nearby genes 
with cluster-specific genes. The values in table represent fisher’s exact test p-value and fold change. 

Fig. 5. (A-C) Similarity of cluster-specific peaks with enhancers of 12 tissues’ 7 developmental stages. 
The number represent 10,000 times Jaccard index and NA represent enhancer data of that tissue in 
that stage are not available. (D) Percentage of VISITA enhancer that overlapped with cluster-specific 
peaks. (E) GO enrichment of cluster-specific genes. (F) Comparison of motor neuron markers’ 
expression on cluster 1 and 3. Number represent the percentage of expressed cells (TPM >2) on 
cluster. 
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Supplementary Figure S1. Clustering results of k-means and NMF on simulation data. Each dot represents a run

with random initial.

Supporting information

ATAC-seq, NMF                                            RNA-seq, NMF

# of mis-classification # of mis-classification

# of mis-classification # of mis-classification

T
o

ta
l 

su
m

 o
f 

d
is

ta
n

ce
s

T
o

ta
l 

su
m

 o
f 

d
is

ta
n

ce
s

R
M

S
E

R
M

S
E

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312348doi: bioRxiv preprint 

https://doi.org/10.1101/312348
http://creativecommons.org/licenses/by-nc-nd/4.0/


K = 2

K = 4

K = 5
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Supplementary Figure S2. t-SNE plot of scATAC-seq and scRNA-seq data on RA day 4 sample. Each dot

represents one cell and different colors represent different clusters.
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Supplementary Figure S3. Selecting tuning parameters 𝜇 and 𝜂. The values represent the determinant of correlation

matrix R=corr (AW1,W2).
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Supplementary Figure S4. Boxplot of cluster specific markers’, Ebf1, Gata4, and Rfx4, motif activity (left) and

gene expression (right).
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Supplementary Figure S5. Comparison of cluster specific genes with the cluster specific peak nearby gene on each

cluster from RA day 4 data.
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Supplementary Figure S6. (A-C) Cluster specific networks of cluster 1, 2, and 3. Yellow color nodes represent TFs,

red edges represent activation, and green edges represent repression. Circle size is proportional to the out-degree.
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Supplementary Table legends

Supplementary Table 1. List of human and mouse paired gene expression and
chromatin accessibility data used in regression model.
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