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Abstract 

Germline genetic variants such as BRCA1/2 play an important role in tumorigenesis and  

clinical outcomes of cancer patients. However, only a small fraction (i.e., 5-10%) of inherited 

variants has been associated with clinical outcomes (e.g., BRCA1/2, APC, TP53, PTEN and 

so on). The challenge remains in using these inherited germline variants to predict clinical 

outcomes of cancer patient population. In an attempt to solve this issue, we applied our 

recently developed algorithm, eTumorMetastasis, which constructs predictive models, on 

exome sequencing data to ER+ breast (n=755) cancer patients. Gene signatures derived from 

the genes containing functionally germline genetic variants significantly distinguished 

recurred and non-recurred patients in two ER+ breast cancer independent cohorts (n=200 and 

295, P=1.4x10-3). Furthermore, we found that recurred patients possessed a higher rate of 

germline genetic variants. In addition, the inherited germline variants from these gene 

signatures were predominately enriched in T cell function, antigen presentation and cytokine 

interactions, likely impairing the adaptive and innate immune response thus favoring a pro-

tumorigenic environment. Hence, germline genomic information could be used for 

developing non-invasive genomic tests for predicting patients’ outcomes (or drug response) 

in breast cancer, other cancer types and even other complex diseases. 
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Introduction 

Cancer is a process of asexual evolution driven by genomic alterations. A single normal cell 

randomly acquires a series of mutations that allows it to proliferate and to be transformed into 

a cancer cell (i.e., founding clone) that then initiates tumor progression and recurrence. In 

general, cancer recurrence and metastasis are the result of the interactions of multiple mutated 

genes. New somatic mutations arise and are selected if they confer a selective fitness 

advantage (e.g., proliferation, survival, etc.) to a founding clone in the context of a pre-

existing genomic landscape (i.e., germline genetic variants). Hence, pre-existing germline 

genetic variants provide a profound constraint on the evolution of tumor founding clones and 

subclones, and therefore, have a contingent effect on the genetic makeup of tumor and 

presumably patient outcomes. Family history remains one of the major risk factors that 

contribute to cancer and recent studies have identified several genes whose germline 

mutations are associated with cancer. For example, patients suffering from Li-Fraumeni 

syndrome have an almost 100% chance of developing a wide range of malignancies before 

the age of 70. Most patients carry a missing or damaged p53 gene, a tumor suppressor whose 

activity is impaired in almost 50% of all cancers. Other cancer-predisposition genes include 

BRCA1 and BRCA21,2, which are associated with breast and ovarian cancer, PTEN3, whose 

mutation results in Cowden syndrome, APC, which is linked to familial adenomatous 

polyposis4 and the Retinoblastoma gene RB15. Two distinct types of multiple endocrine 

neoplasias are associated with the RET and MEN16 genes while VHL alterations result in 

kidney and other types of cancer7. Finally, Lynch syndrome, a form of colorectal cancer, is 

linked to MSH2, MLH1, MSH6, PMS2, and EPCAM8. Genetic tests based on these highly-

penetrant gene mutations have shown their usefulness, but they can explain only a small 

fraction (5-10%) of patients. Most neoplasms arise and are modulated by the interactions of 

multiple genes and there is a great diversity of genetic alterations even within tumors of the 

same subtypes. 

 

Thus far, it is unclear to what extent germline genetic variants affect tumorigenesis, tumor 

evolution and even clinical outcome. We have previously shown that tumor founding clone 

mutations are able to predict tumor recurrence9. Here, we reasoned that the collective impact 

of germline genetic variants in cancer patients might largely determine tumorigenesis, 

evolution and even clinical outcomes. That is, germline genetic variants act in combination 

with newly acquired somatic mutations to modulate tumorigenesis and tumor recurrence. The 

combination of germline variants and somatic mutations of each patient predispose to the 
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specific activation of biological/signaling pathways (even phenotypes) that directly impact 

clinical outcomes of cancer patients. Therefore, the germline genomic landscape of cancer 

patients might predict disease progression. Yet, thus far, clinical outcome predictions using 

cancer germline genomic information have been limited to only a few cancer types, or to a 

limited number of gene1,2,3,4,5,6,7,8. The increasing availability of genome sequencing data 

provide opportunities to develop predictive models that can translate these complex genomic 

alterations into clinical use. 

 

In this study, we showed that the collective germline genetic variants of breast cancer patients 

predict tumor recurrence by applying a recently developed method, eTumorMetastasis9, to 

755 breast cancer patients. Further statistical analyses showed that the leukocyte gene 

expression levels and tumor-infiltrating leukocytes (TIL) fractions within tumors between the 

two predicted groups were significantly different. Germline mutated variants associated with 

tumor recurrence likely impair the adaptive immune response functions of affected 

individuals, increasing the susceptibility to relapse. These results highlight the important role 

of germline genetic variants in tumor evolution and recurrence. 

 

Results 

 

Germline genetic variants predict breast cancer recurrence 

To examine if germline genetic variants are able to predict tumor recurrence, we used whole-

exome sequencing data (i.e., from the NCI Genomic Data Commons, GDC) of healthy 

tissues from 755 ER+ breast patients by applying our recently developed method, 

eTumorMetastasis9. ER+ subtype represents ~70% of breast cancer patients, thus, in this 

study, we used only patient data from this subtype. The demographic table of the breast 

cancer cohort is represented in Table 1. 

 

We hypothesized that somatic mutations are evolutionary selected to work with the pre-

existing germline genetic variants to initiate tumorigenesis and recurrence. This is the 

underlying concept of eTumorMetastasis. In turn, the model infers that pre-existing germline 

genetic variants of cancer patients have predictive power for recurrence and clinical 

outcomes. eTumorMetastasis contains 3 main components: (1) a network-based approach11,12 

to transform functionally genetic variants information on a cancer type specific signaling 

network; (2) identifying biomarkers via our previously developed method, MSS (Multiple 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/312355doi: bioRxiv preprint 

https://doi.org/10.1101/312355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

Survival Screening)13 and (3) a better predictive power using our previously developed 

method by combining biomarkers14. The detailed procedure of eTumorMetastasis and 

network construction were described previously9. To apply eTumorMetastasis, briefly we 

first annotated the functional variants using the germline whole-exome sequencing data of 

each breast cancer patient (see Methods and Supplementary Methods), constructed an ER+ 

breast cancer-specific molecular network for recurrence (see Methods), and then mapped the 

functional germline-variant genes on the recurrence network. Finally, gene signatures (i.e., 

biomarkers) were obtained using MSS and eTumorMetastasis. 

 

We used the germline genomic information of 200 ER+ breast cancer samples (i.e., training 

samples) to identify gene signatures (i.e., because eTumorMetastasis identifies network-

based gene signatures, we called the gene signatures Network Operational Signatures or 

NOG signatures), which could distinguish recurred and non-recurred breast tumors. By 

applying eTumorMetastasis to the germline genomes of 200 patients, we identified 18 NOG 

signatures (Supplementary Tables 1 and 2) for ER+ breast cancer. Each NOG contains 30 

genes and represents a cancer hallmark such as apoptosis, cell proliferation, metastasis, and 

so on. We have previously shown that multiple gene signatures representing distinct cancer 

hallmarks could be identified from one training cohort13. Furthermore, ensemble-based 

prediction using multiple gene signatures representing distinct cancer hallmarks significantly 

improved prediction performance14. Thus, we used the 18 NOG gene signatures to construct 

a NOG_CSS (i.e., NOG-based Combinatory Signature Set) using a testing set of 60 samples 

based on the method we developed previously14. We then used the NOG_CSS to predict the 

prognosis of ER+ breast cancer patients. As shown in Figure 1 and Table 2, we demonstrated 

that the germline-derived NOG_CSS significantly distinguished recurred and non-recurred 

breast tumors in two validations sets: 200 (ER+ Nature-Set, P=1.4x10-2), 295 (ER+ TCGA-

CPTAC independent set, P=1.4x10-3). These results suggest that germline genetic variants 

are significantly correlated with tumor recurrence and support our hypothesis that the original 

germline genomic landscape of a cancer patient has a significant impact on clinical outcome.  

 

As a proof of concept and to further demonstrate the constraint given by germline variants 

onto the tumor development, we used the NOG_CSS and the gene expression of normal 

tissue of 72 breast cancer patients to predict patients relapse risk (See Methods for details). 

Samples were assigned in the training or validation set previously defined. The results of this 

prediction can be found in Table 3. Accuracy for low-risk samples was similar to germline 
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variants predictions (88.9% compared to 94.9%) suggesting that the impact from germline 

variants is also reflected in gene expression and correlates with our hypothesis that gene 

expression and tumor development are affected directly from germline predispositions. 

Strikingly, the accuracy obtained for high-risk samples with gene expression data was much 

better than what we obtained using germline variants (66.7% compared to 21.0%), 

suggesting that gene expression is a better predictor of recurrence for high-risk patients or 

that high-risk patients might possess a more complex somatic landscape not captured solely 

by germline mutations.  

 

To compare the prediction performance of the NOG_CSS with clinical factors, we conducted 

relapse-free survival analysis of clinical factors using Cox proportional hazards regression 

model. The best p-value (i.e., P=1.0x10-2., log-rank test) using covariate models 

(Supplementary Table 3) was not better than the one derived from the germline NOG_CSS 

(P=1.4x10-3). These results suggest that gene signatures derived from germline genomic 

information have a better predictive performance than clinical factors. 

 

Finally, we also assessed the number of functional germline genetic variants in all genes or 

genes specifically expressed in leukocytes as well as the number of genes harboring germline 

genetic variants for both predicted risk group. Student T-tests revealed a significant 

difference for all the comparisons (1.29x10-13, 8.24x10-16 and 1.14x10-5, respectively) with 

functional germline genetic variants in leukocyte expressed genes being the most indicative 

distinction. All distributions are highlighted in Figure 2. A higher germline functional 

mutation count for high-risk group suggests once again that germline variants have a 

profound impact on tumor development and therefore, recurrence.   

 

Predictive germline genetic variants potentially impair both the innate and adaptive 

immune system of breast cancer patients   

To further understand why germline genomic landscapes of cancer patients are predictive for 

tumor recurrence, we ran enrichment analyses for genes present in the NOG signatures of 

breast cancers using DAVID15. Interestingly,  most genes were enriched in immune- or cell 

proliferation-related biological pathways and Gene Ontology (GO) terms (Supplementary 

Tables 5).  
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Thus, we hypothesized that recurred patients have more functionally inherited variants in 

immune system related genes than non-recurred patients. To test this hypothesis, we 

compared gene expression for leukocytes metagenes between predicted recurred and non-

recurred patients from tumor transcriptomes. The leukocytes metagene list was obtained from 

a recent study16. Student's T-tests between both groups revealed a significant difference for 

myeloid-derived suppressor cells (MDSCs), effector memory CD8 T cells (E-Memory CD8+ 

T cells), activated dendritic cells (DCs+), activated CD8 T cells (CD8 T cells+), T follicular 

helper cells (Tfh), monocytes (Monos), memory B cells and activated B cells (B 

cells+)(P=1.99x10-3, P=4.03x10-3, P=6.67x10-3, P=2.10x10-2, P=2.30x10-2, P=3.78x10-2, 

P=4.37x10-2 and P=4.46x10-2, respectively). To a similar extent, we also analyzed TILs 

fractions to see if these were different between predicted groups (CIBERSORT LM22, see 

Methods)16,17. Student's T-tests revealed a significant difference in TILs fractions for gamma 

delta T cells (γδ T cells) , resting natural killer cells (NK cells-), resting mast cells (MCs-) 

and CD8+ T cells (P=3.14x10-2, P=4.29x10-2, P=4.97x10-2 , P=8.21x10-3, respectively). A 

better representation of leukocytes gene expression and TILs fractions between the predicted 

groups are shown in Figure 3 and the complete abbreviation lists can be found in 

Supplementary Tables 6-7. Overall, these results suggest that germline genetic variants of 

cancer patients could directly influence gene expression and alter immune system functions, 

cell division and the immune tumor microenvironment (TME). Modulation of these pathways 

would then affect recurrence and patient outcome. 

 

To further investigate the predictive power of variants in leukocytes-expressed genes, we re-

ran eTumorMetastasis9 pipeline using only functional germline variants in leukocytes-

expressed genes (Supplementary Methods). Interestingly, we weren't able to obtain enough 

significant gene sets to extract a gene signature proposing that leukocytes variants only 

provides partial information and that the complete germline mutational landscape is more 

representative. 

 

Discussion 

With the recent advances in new generation sequencing, genetic testing and patients 

monitoring has increased drastically. Yet, it remains a challenge to stratify patients in order to 

provide an optimal treatment route. Here, we developed a risk classification method using 

germline genomic variants to predict clinical outcomes and demonstrate that these germline 

variants shape tumor evolution and recurrence. The enrichment analysis of the NOG 
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signatures derived from germline genetic variants suggest that recurred patients differently 

regulate signaling pathways associated with immune responses (such as inflammation and 

cell adhesion).    

 

Breast cancer patients with no lymph node involvement often undergo unnecessary adjuvant 

chemotherapy treatment (70-80% of patients). In fact, toxic therapies are given to most 

women with early-stage breast cancer from which 60–75% will not receive any benefit, but 

instead will experience only side effects19. Therefore, biomarkers identification to accurately 

stratify low-risk breast cancer patients who will not benefit from adjuvant chemotherapy is 

essential. We showed that germline variants enabled to identify low-risk patients with an 

accuracy as high as 94.9%, suggesting that inherited variants of breast cancer patients are 

useful in clinical applications. 

 

Comparison of germline variants and affected genes between the two predicted groups 

indicates that these variants are predisposing to cancer. Potentially, a significantly higher 

number of functional variants could lead to a greater number of impaired proteins which 

would create an imbalance in signaling pathways, favoring tumor development and 

recurrence. As mentioned above, a functionally mutated gene does not always translate into 

an expressed loss-of-function protein but the difference between both groups suggest that 

nonetheless, the greater number of germline variants increases patient susceptibility to 

relapse. Moreover, we found that leukocyte genes harbored a greater number of germline 

genetic variants in the predicted high-risk group. These germline genetic variants likely 

impede the immune system, leading to a more favorable environment for tumor 

developments.  

 

Our study suggests that tumor recurrence is predicted by the germline genomic landscapes of 

cancer patients. We found that germline variants in genes regulating cell division, immune 

cell infiltration and T cell activities are predominately predictive for tumor recurrence. More 

specifically, mutations in the antigen processing and presentation pathway could impair 

neoantigens presentation at the surface of cancer cells so that T cells are no longer able to 

recognize tumor cells, allowing them to evade immune detection. Furthermore, mutations in 

cell division process could introduce a higher number of somatic mutations during cell 

division directly promoting tumor development. Activation of Wnt pathway can also block 

the infiltration of immune cells within tumors20. TILs fractions analyses also reveal strong 
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correlation with germline prediction and differential expression in MDSCs, CD8+ T cells, 

DCs, Tfh cells, monocytes and B cells (Fig. 3A). Aside from memory B cells, all other TILs 

were enriched in the predicted low-risk group. B cells have been shown to secrete pro-

tumorigenic factors (e.g., angiogenesis, tumor growth) and also to inhibit the anti-tumor 

immune response via cytokines21-23. DCs are well known for their role in antigen 

presentations and in initiating an adaptive immune response24. Tfh cells have been shown to 

favor an adaptive immune response via the B cell chemoattractant CXLC13 in breast 

cancer25. Along with E-memory CD4 T cells, E-memory CD8 T cells possess a key role in 

the immune response and tumor infiltration. Patient survival has been directly correlated with 

CD8 T cells infiltration. Multiple mechanisms are used by cancer cells to escape immune 

responses such as altering cytokines and chemokines attraction to create a non-inflammatory 

environment which, in turn, inhibits T cells infiltration26,27. Monocytes and MDSCs have 

largely been associated with tumor recurrence in the literature. Monocytes differentiation into 

tumor-associated macrophages (TAMs) promotes anti-immunity signals such as angiogenesis 

and growth factors resulting in a TME favoring cancer cell proliferation. However, there have 

been some reports indicating that a nonclassical monocyte subtype, patrolling monocytes, 

reduces tumor recurrence by recruiting NK cells28,29. Monocytes can also differentiate into 

pro-inflammatory M1 macrophages aiding the adaptive immune response. A recent study has 

also shown that TNFα secreted by T cells induces emergency myelopoiesis resulting in an 

increase in MDSCs in mice30. TNFα secretion by T cells could be a regulation mechanism 

induced by the adaptive immune response once a certain concentration of T cells has 

infiltrated the tumor. This point could explain the higher expression numbers for MDSCs in 

predicted low-risk samples. 

 

A significant difference was also seen in TILs cell fractions of γδ T cells, CD8 T cells, NK 

cells- and MCs (Fig. 3B) between both predicted groups. As mentioned above, CD8 T cell 

tumor infiltration is crucial for an optimal immune response; these cells were present in 

greater numbers in the predicted low-risk group. Gamma delta T cells (γδ T cells) are known 

to have dual effects, capable of exerting both pro- or anti-tumor response depending on their 

subtype31. γδT1, γδT-APC and γδTfh subtypes all possess antitumor activity such as secreting 

chemoattracting chemokines (i.e. CXLC13), antigen presentation and antibody-dependent 

cell-mediated cytotoxicity towards cancer cells32. Tumor-infiltrating mast cells (MCs) can 

either emit pro- or anti-tumor signals. Specifically, in breast cancer, MCs are linked with pro-

angiogenic factors such as inflammation33,34 reflecting a higher MCs count in the predicted 
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high-risk group. Finally, NK cells have cytotoxic abilities and a greater number in tumors is 

indicative of a good prognosis35,36. Overall, germline genetic variants identified in the high-

risk group could directly modulate gene expression in immune cells, resulting in a weakened 

adaptive immune response. 

 

Our understanding of the biology mediating recurrence is limited. Germline variants of 

cancer patients could affect the activity of the immune system in TMEs. For example, 

germline-encoded receptor variants were shown to trigger innate immune response in cancer 

patients37. In addition, lung cancer patients with a germline mutation in Nrf2 have a good 

prognosis because these variants regulate the inflammatory status and redox balance of the 

hematopoietic and immune systems of cancer patients38. In prostate cancer, patients with a 

germline variant of the ASPN D locus are associated with poorer outcomes39. These studies, 

including our own, highlight the impacts of germline variants on tumor recurrence and 

provide a rationale to further study the effect of germline genomic landscapes on clinical 

outcomes of carcinogenesis.  

 

Good accuracy obtained using normal tissue RNA prediction shows that germline variants 

directly influence gene expression and consequently, tumor development.  A higher accuracy 

for the high-risk group also highlights that gene expression holds a better predictive power 

than genome sequencing. These results are not surprising considering that gene expression 

integrates more information than gene-coding mutations alone (e.g, gene regulation). Even 

the most damaging functional mutation in a gene not expressed would have no impact on the 

phenotype. However, gene expression usually requires a biopsy. Therefore, exome-

sequencing of normal tissue provides a much more convenient and less invasive method for 

clinical purposes. We also note that this analysis suffers from a small sample size and should 

be further explored in the future. 

 

In all, these results suggest that germline variants potentially alter the immune system and the 

immune TME which in turn stimulate tumor recurrence and ultimately, affect patient 

outcome. Traditionally, germline variants have been largely ignored in the cancer genomic 

community; for example, most of the cancer genomic studies including the GDC and The 

Cancer Genome Atlas (TCGA) have often focused only on somatic mutations while germline 

mutations were filtered out before formal analysis of tumor genome sequencing data. The 

demonstration that germline exome sequencing data can predict cancer patients’ outcomes 
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suggests that non-invasive genomic tests of cancer patients could be devised to determine 

cancer prognosis and inform treatment decisions. Genome-wide germline genetic variants can 

be easily identified by genome/whole-exome sequencing of liquid biopsies such as blood or 

saliva samples. Prognostic prediction using a patient's germline genomic landscape opens up 

the possibility of assessing cancer patients’ risk of recurrence in a non-invasive manner, 

which allows for a better forecasting of cancer recurrence in a quick, convenient and 

minimally invasive manner. 

 

Methods 

Exome data processing 

We obtained whole-exome sequencing data of breast cancers from the GDC: ER+ breast 

cancer, a training set of 200 samples, a testing set of 60 samples and two independent 

validation sets of 200 and 295 samples (TCGA-Nature and TCGA-CPTAC, respectively, 

Supplementary Table 4). Raw sequence reads from healthy samples of cancer patients were 

processed using GATK40 pipeline and the method described previously9. Variant calling was 

then performed using Varscan241. 

 

Transcriptome data processing 

Normal tissue RNA-seq is less accessible on the GDC than tumor RNA-seq data. Out of 755 

samples in our dataset, we were only able to find 72 samples from which normal tissue RNA-

seq was available. FPKM values for each sample were downloaded and then normalized 

using z-score normalization. Each sample was then assigned to our previously defined 

training and validation set (23 and 49, respectively). 

 

Germline variant identification 

To determine germline variants, we used variant allele frequencies (VAFs) between the 

tumor and healthy samples. We defined homozygous germline variants if the VAF in the 

healthy samples was >=90. For heterozygous germline variants, we used the VAF cutoffs 

between 45 and 65% in healthy samples. Only germline functional variants were retained for 

downstream analysis. 

 

Germline NOG signature identification  
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To identify NOG signatures using the functional mutated genes of breast cancer patients’ 

germline genomes, we followed the eTumorMetastasis9 method. Briefly, we constructed a 

breast-specific recurrence network based on the methods described previously9. For each 

patient, we used its germline functionally mutated genes as seeds on the breast cancer-

specific recurrence network to perform network propagation and then identify NOG 

signatures. 

 

Transcriptomic normal tissue prediction 

Like mentioned above, each sample was assigned to our previously defined training and 

validation set (23 and 49, respectively). Accuracy and recall rate were obtained using a 

similar approach than with the eTumorMetastasis9 method. For all 18 NOG signatures 

previously identified with genome sequencing, we calculated centroids values for each gene 

between both groups (high- and low-risk) in the training set. In this case, centroids values 

were obtained from gene expression values instead of network propagation scores. For each 

sample in our validation set, each sample was classified to its specific group based on 

Pearson correlation with centroids from both groups. We built a NOG_CSS using the same 

cutoffs obtained from genome sequencing. Prediction accuracy and recall rate for validation 

samples can be found in Table 3. 

 

Leukocytes metagene expression and cell fractions 

Leukocytes metagene expression derived from tumor RNA-seq data were obtained from The 

Cancer Immunome Atlas (TCIA)16 and were applied z-score normalization. In total, scores 

for 29 leukocytes metagene were downloaded. Leukocytes cell fractions were also 

downloaded from TCIA for all 755 breast cancer samples. CIBERSORT17 signature of 22 

leukocytes cells was used (LM22). 
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Table 1 Demographic and clinical characteristics for ER+ breast cancer samples  

 

Variable Training Set (n=200) 
Validation Set 1 
TCGA-CPTAC 

(n=295) 

Validation Set 2 
TCGA Nature 

 (n=200) 

Clinical 
Characteristic 

Number 
of 

patients 
% Number of 

patients % Number of patients % 

Age, years       

 Median       59            60                58 

 <=59 102 51 149 50.5 105 52.5 

 >59 98 49 146 49.5 95 47.5 

Death       

 Yes 29 14.5 33 11.2 26 13 

No 171 85.5 262 88.8 174 87 

Localization       

 Left 102 51 146 49.5 113 56.5 

 Right 98 49 149 50.5 87 43.5 

Stage       

I 37 18.5 53 17.9 30 15 

II 108 54 164 55.6 113 56.5 

III 40 20 72 24.4 49 24.5 

IV 8 4 2 0.7 4 2 
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X 5 2.5 2 0.7 3 1.5 

NA 2 1 2 0.7 1 0.5 

Subtype       

 Luminal A 95 47.5 38 12.9 58 29 

 Luminal B 42 21 18 6.1 46 23 

 Unknown 10 5 11 3.7 21 10.5 

 NA 53 26.5 228 77.3 75 37.5 

Relapse       

Yes 30 15 34 11.5 20 10 

No 170 85 261 88.5 180 90 

 
 

Table 2 Prediction accuracy and recall rate for validation sets for breast cancer using 
the NOG_CSS sets derived from germline mutations 

 

Dataset Number of samples 

Low-Risk High-risk 

Accuracy (%)* Recall (%)† Accuracy (%)** Recall (%)†† 

Training Set 200 93.8 26.5 27.5 36.7 

TCGA-Nature 200 94.9 31.1 10.4 65.0 

TCGA-CPTAC 295 93.5 38.7 21.0 50.0 

 

Notes: 
*Percentage of non-recurred (i.e., non-metastatic) samples in the predicted low-risk group. 
†Percentage of the predicted low-risk samples from the non-recurred group. 
**Percentage of recurred (i.e., metastatic) samples in the predicted high-risk group.     
††Percentage of the predicted high-risk samples from the recurred group. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/312355doi: bioRxiv preprint 

https://doi.org/10.1101/312355
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

 
Table 3 Prediction accuracy and recall rate for validation samples for breast cancer 
using the NOG_CSS sets derived from gene expression of normal tissue 

 

Dataset Number of samples 

Low-Risk High-risk 

Accuracy (%)* Recall (%)† Accuracy (%)** Recall (%)†† 

TCGA-
Validation 

49 88.9 48.5 66.7 62.5 

 

Notes: 
*Percentage of non-recurred (i.e., non-metastatic) samples in the predicted low-risk group. 
†Percentage of the predicted low-risk samples from the non-recurred group. 
**Percentage of recurred (i.e., metastatic) samples in the predicted high-risk group.     
††Percentage of the predicted high-risk samples from the recurred group. 
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Figure 1 Kaplan–Meier curves of the risk groups for breast cancer patients with 10-
year disease-free survival predicted by the NOG_CSS sets. Samples without DFS time 
or who couldn't be predicted were removed.  NOG_CSS sets derived from germline 
mutations in (A) the training set, (B) the validation set, TCGA-Nature and (C) the validation 
set, TCGA-CPTAC. Blue and red curves represent low- and high-risk groups, respectively. P-
values were obtained from the χ2-test. 
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Figure 2 Boxplots comparison of functional germline mutated variants and genes for 
predicted risk groups. Samples who couldn't be predicted were removed. (A) Functional 
germline variants (B) Functionally mutated genes (C) Germline mutated immune genes. P-
Values were obtained from Student's t-test. P-Value significance: **** < 0.0001. 
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Figure 3 Boxplots comparison of leukocytes metagenes and cell fractions for predicted 
risk groups. Samples who couldn't be predicted were removed. For a complete analysis, 
see Supplementary Figure 1. (A) Leukocytes gene expression (B) Leukocytes cell fraction. 
P-Values were obtained from Student's t-test. P-Value significance: * < 0.05, ** < 0.01. 
 
Fig 3A 
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Fig 3B 
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