
Adaptive Partitioning of the tRNA Interaction Interface

by Aminoacyl-tRNA-Synthetases

Andy Collins-Hed
a
, David H. Ardell

a,b

a
Quantitative and Systems Biology Program, 5200 North Lake Road, University of

California, Merced, CA, 95306, United States
b
Molecular Cell Biology Unit, 5200 North Lake Road, University of California, Merced,

CA, 95306, United States

Abstract

We introduce rugged fitness landscapes called match landscapes for the co-
evolution of feature-based assortative interactions between P ≥ 2 cognate
pairs of tRNAs and aminoacyl-tRNA synthetases (aaRSs) in aaRS-tRNA in-
teraction networks. Our genotype-phenotype-fitness maps assume additive
feature-matching energies, a macroscopic theory of aminoacylation kinetics
including proofreading, and selection for translational accuracy in multiple,
perfectly encoded site-types. We compute the stationary genotype distri-
butions of finite panmictic, asexual populations of haploid aaRs-tRNA in-
teraction networks evolving under mutation, genetic drift, and selection for
cognate matching and non-cognate mismatching of aaRS-tRNA pairs. We
compared expected genotype frequencies under different matching rules and
fitness functions, both with and without linked site-specific modifiers of inter-
action. Under selection for translational accuracy alone, our model predicts
no selection on modifiers to eliminate non-cognate interactions, so long as
they are compensated by tighter cognate interactions. Only under combined
selection for both translational accuracy and rate do modifiers adaptively
eliminate cross-matching in non-cognate aaRS/tRNA pairs. We theorize that
the encoding of macromolecular interaction networks is a genetic language
that symbolically maps identifying structural and dynamic features of genes
and gene-products to functions within cells. Our theory helps explain 1)
the remarkable divergence in how aaRSs bind tRNAs, 2) why interaction-
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informative features are phylogenetically informative, 3) why the Statistical
Tree of Life became more tree-like after the Darwinian Transition, and 4)
an approach towards computing the probability of the random origin of an
interaction network.

Keywords: Rugged Landscapes, Darwinian Transition, Reciprocal Sign
Epistasis, Modifier Model, Hamming Code, Karlin-Altschul Theory

1. Introduction1

Carl Woese and his co-authors argue influentially that all Earth’s cells and2

organelles descend not from one universal ancestor cell, but rather a com-3

munally ancestral genetic code — the one operating in ribosomal protein4

synthesis [1–5]. Woese’s theory is that our ancestral genetic code evolved5

collectively in a community of cells that exchanged genes more frequently6

and translated them more ambiguously than we imagine most living cells7

would tolerate today (although increasing the accuracy of protein synthe-8

sis can be costly, for example in bacteria competing to grow [6–9]). Our9

ancestral genetic code evolved as an innovation-sharing protocol [4] in a10

“winner-takes-all” or big bang process [10] analogous to systems competi-11

tion in economics [11]. That is, the ancestral community of cells converged12

on one genetic code in parallel to exploit a convergently encoded pool of13

genes that they shared. Once enough genes came to depend on this code,14

and cellular fitness increasingly depended on interdependent coordination of15

the action of many gene products, an evolutionary phase transition occurred16

that “froze” the genetic code [12, 13]. In parallel, increasingly complex fitness17

interactions among genes, called generally epistasis [14, 15], cooled the rate18

of gene sharing, changing the evolution of cells from a genetically commu-19

nal to a more vertical mode of inheritance in a Statistical Tree of Life [16],20

in what Woese called the Darwinian Transition. Broadly consistent with21

this theory, it was found that complexity of gene interactions (the number22

of pairwise interactions a gene undertakes) constrains “informational” genes23

from transferring horizontally between cells relative to condition-dependent24

“operational” genes [17, 18] and increasing pairwise protein-protein interac-25

tions, as measured in yeast two-hybrid data, reduces substitution rates in26

proteins [19].27

In protein biosynthesis, the translation of sense codons depends directly28

on the identity and distribution of amino acids attached or aminoacylated29
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to the 3
′

ends of tRNAs at their acceptor stems. Aminoacylation of amino30

acids to tRNA acceptor stems is catalyzed in an ATP-dependent two-step31

reaction [20] by amino-acid-specific catalytic core domains in tRNA-binding32

proteins called aminoacyl-tRNA synthetases (aaRSs) [21–23]. The conserved33

and modular domain structure of aaRSs and the ability of some aaRSs to34

specifically aminoacylate model acceptor stem hairpins led to the proposal35

that aaRS-tRNA interactions evolved through a primordial stage of an “oper-36

ational RNA code” depending on a small number of base-pairs in the acceptor37

stem [24, 25].38

However, it is unclear how this theory fully accounts for diversity in39

tRNA-binding by aaRSs. As shown in Figure 1, aaRSs exhibit remarkable40

diversity in how they bind and interact with tRNAs. AaRSs come in two41

conserved and ancient superfamilies called Class I and Class II, with distinct42

folds, distinct mechanistic details of catalysis and — critical for our argument43

— distinct modes of binding to tRNAs, through opposing major or minor44

grooves of tRNA acceptor stems [26]. The two superfamilies may further be45

divided each into three subclasses [27], which pre-date the divergence of bac-46

teria, archaea and eukarotes [23] as exemplified by the consistency with which47

aaRSs can be used to root the statistical Tree of Life [28]. Striking examples48

of aaRS pairs of different classes were found that could be docked simulta-49

neously on tRNAs [29], which led to the hypothesis that aaRSs may have50

originally bound tRNAs in paired complexes to help protect tRNA acceptor51

stems, and subsequently diverged to single aaRS-binding with expansion of52

the code [30].53

Because all tRNAs conform to a universal structure, tRNAs must distin-54

guish themselves to specific aaRSs through interaction-determining features55

called tRNA identity elements, which vary over the major domains of life [34].56

We say that the functional identity of a tRNA determines its assortative in-57

teraction with proteins as mediated by mutually compatible structural and58

dynamical features. Earlier, we applied an information theoretical approach59

to predict tRNA identity elements [35]; we call the features we predict tRNA60

Class-Informative Features (CIFs) (they could perhaps more specifically be61

called Interaction-Informative Features (IIFs)). Through comparative anal-62

ysis of tRNA CIFs and also through our tRNA functional classifier [36], we63

have shown that tRNA CIFs are variable and phylogenetically informative64

within the major domains of life [37–39].65

There is a widely perceived need for genetically explicit models to inves-66

tigate theories about the origin and evolution of the aaRS-tRNA interaction67

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2018. ; https://doi.org/10.1101/312462doi: bioRxiv preprint 

https://doi.org/10.1101/312462
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Diversity in tRNA-binding by Class I and Class II aaRSs and within aaRS
subclasses. Panel A, reproduced from [31] without modification under License CC-By
4.0.: Shown in red are different species of tRNAs, all oriented identically. Aminoacyl-
tRNA synthetases are shown in purple and green. Class I aaRSs, such as IleRS, ValRS
and GlnRS, and class II aaRSs, such as PheRS and ThrRS, bind tRNAs on opposite faces
and catalyze aminoacylation on different carbons of the last tRNA base, A76 (in Sprinzl
standard coordinates [32]). Panel B: Gallery of aaRS structures co-complexed with tRNAs
when available, reprinted (adapted) with permission from [33]. Copyright (2008) American
Chemical Society. Subclasses a, b and c of both Class I and Class II aaRS superfamilies
are indicated by orange, yellow and pink tRNA colors respectively. aaRSs are visualized
with their catalytic domains in the same orientation. (two-column figure)

network. For example, Vetsigian et al. [4] showed that horizontal gene trans-68

fer of protein-coding genes across a structured population of evolving codes69

improves the error-minimizing optimality of genetic codes, but they were70

unable to model the effect of horizontal transfer of components of the trans-71

lational apparatus itself. They write, “a fuller account of the evolution of72

the genetic code requires modeling physical components of the translational73

apparatus, including the dynamics of tRNAs and the aminoacyl-tRNA syn-74

thetases.” Similarly, Koonin and Novozhilov [40] write, “A real understanding75

of the code origin and evolution is likely to be attainable only in conjunction76

with a credible scenario for the evolution of the coding principle itself and77

the translation system.” Having code evolution models with explicit evolu-78
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tionary dynamics for tRNA and aaRS genes would help test other hypotheses79

including the roles of duplication and divergence of tRNA and aaRS genes in80

codon assignments [41], and even the dynamics of antisense-encoded aaRSs81

according to the Rodin-Ohno hypothesis [42–44].82

In this work we introduce a theory for feature-based encoding of aaRS-83

tRNA interactions that helps answer the following questions:84

1. Why are interaction-informative features phylogenetically informative?85

2. How do interaction-determining features evolve and diverge while still86

strongly selected for function and fitness?87

3. Why did more than one superfamily of aaRSs evolve with such different88

modes of binding tRNAs? Why is there such diversity in aaRS-binding89

of tRNAs even within subclasses (Fig. 1)?90

4. What caused the Darwinian Transition to a more tree-like Statistical91

Tree of Life?92

5. What is the probability of random origin of an aaRS-tRNA network of93

a given size?94

At the outset, we considered that divergence in tRNA-binding by aaRSs95

could provide increased robustness [45] in translational accuracy to muta-96

tions in tRNAs and aaRSs (i.e. “survival of the flattest” [46]), or potentially97

could have evolved to increase the evolvability of new aaRS-tRNA interac-98

tions. Yet in the results we report here, we show that neither evolutionary99

robustness nor increased evolveability is necessary to positively select for di-100

vergence in tRNA-binding by aaRSs. Furthermore, selection on translational101

accuracy alone was insufficient to select for divergence in tRNA-binding. We102

found that combined selection on both accuracy and rate was necessary and103

sufficient for aaRS genes to evolve to adaptively partition the tRNA interac-104

tion interface. Our results depend on assumptions and modeling concepts as105

briefly introduced in the remainder of this section.106

1.1. Additivity of macromolecular interaction energies107

We assume that tRNAs and aaRSs interact through sets of paired fea-108

tures that contribute additively to their overall binding energy as manifested109

through dissociation rate constants. This assumption has long featured in110

models of DNA-protein interactions in transcription factor binding sites and111

their evolution [47–52] as well as on the structure and evolution of protein-112

protein interaction networks [53–55]. Such studies have also used the ab-113

straction of working with simplified binary genotypes as we do here.114
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1.2. Kinetic proofreading115

Hopfield [56] and Ninio [57] were the first to demonstrate the fundamen-116

tal mechanism of kinetic proofreading now shown to underlie the accuracy of117

information transduction in biopolymerization reactions such as aminoacyl-118

tRNA selection by the ribosome [58], tRNA selection in aminoacylation [59],119

and nucleotide selection in transcription [60], but also cellular signal trans-120

duction [61] (but see e.g. [62]), including T-cell activation [63] and recently,121

morphogenesis [64]. In kinetic prooreading, the dissipation of cellular free122

energy coupled to internal, allosteric non-reactive state transitions amplifies123

the kinetic discrimination of substrates at some combined expense of overall124

reaction rate, energy, and the stochastic discard of partially processed pre-125

ferred substrates [65, 66]. The discovery of proofreading was motivated in126

part by the observation that the amino acid selectivities of aaRSs are greater127

than can be explained by differences in free-energy of binding of different128

amino acids [56]. Ehrenberg and Blomberg [67] first derived the thermo-129

dynamic limits of kinetic proofreading in terms of the displacement from130

thermodynamic equilibrium of high energy cofactors such as ATP or GTP,131

as discussed by Kurland [68]. The kinetics of the two aaRSs classes is dif-132

ferent; In class I aaRSs, product release is rate-limiting, while in Class II133

aaRSs, aminoacyl transfer is rate-limiting [69]. However, a range of different134

regimes of kinetic rates and allosteric state transition networks can exhibit135

proofreading [65, 70]. In this work we use theoretical bounds for proofreading136

over all possible schemes to derive bounds on aminoacylation rates.137

1.3. Rugged landscapes, epistatic gene interactions, and modifier models138

Fitness landscapes, introduced by Sewall Wright [71], map genotypes to139

fitnesses either directly, or via phenotypes, as recently reviewed by Ahnert140

[72]. Interactions between genes can cause double, triple, etc. mutants to141

have greater or lesser fitness than expected from the isolated fitness effects142

of their component mutations, a phenomenon known as epistasis. Epistasis143

can take place across the genotype-phenotype map at multiple scales of bio-144

logical organization simultaneously [73]. Reciprocal sign epistasis (in which145

recombinants of haplotypes have lower fitness than non-recombinants) is a146

necessary (but not sufficient [74]) condition for fitness landscapes to become147

rugged [75], exhibiting potentially many separated local fitness maxima. Ab-148

stract genotype-fitness and genotype-phenotype-fitness models, such as the149

tunably rugged NK model [76, 77] or other regulatory or metabolic network150

evolution models [78–80] typically lack a concrete, mechanistic interpretation151
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for how epistasis actually manifests through the combined actions of genes152

on the basis of sequences.153

In this work, we allow the availability of sites for matching or mis-154

matching between tRNA and aaRS gene products to evolve under direct155

genetic control, making epistasis evolveable at site resolution. As such, our156

work is related to population genetic models that study the genetic modi-157

fication of evolutionary forces such as mutation, recombination or epistasis,158

called modifier models. Modifier models encode evolutionary parameters at159

neutral loci that co-evolve under uniform genetic dynamics as other major160

loci that directly impact fitness. Original applications of modifier models161

were aimed at studying the evolution of recombination [81, 82]. Under very162

general conditions near an equilibrium under viability selection, modifier loci163

evolve to reduce rates of mutation, migration, or recombination [83]. With-164

out recombination, near mutation-selection balance, modifiers that increase165

positive or antagonistic epistasis will evolve, increasing the robustness of hap-166

loid asexual populations to mutations [14, 15], this robustness is an intrinsic167

property of the fitness landscape [84, 85]. An analysis of fitness valley cross-168

ing in asexual haploid populations with reciprocal sign epistasis [86] points169

to the critical role of the high-dimensional structure of fitness landscapes in170

determining evolutionary outcomes [87].171

1.4. Origin-fixation formalism for evolutionary genetics172

We model evolutionary dynamics in finite, haploid asexual populations of173

aaRS-tRNA networks using the statistical mechanical or sequential fixation174

Markov chain [49, 88], a variety of origin-fixation model [89] that assumes a175

maximum of two genotypes segregating in a population at a given time. Thus,176

it is assumed that the mutation rate is much smaller than the reciprocal of the177

square of the population size [89]. These assumptions yield an exact solution178

of the stationary distribution of fixed genotypes in finite populations of con-179

stant size experiencing selection, mutation and genetic drift [88, 90]. Models180

of this kind have been used to highlight the role of compensatory evolution181

on the complex genotype-phenotype-fitness landscapes of transcription-factor182

binding sites [50] and proteins [91]. In an appendix, Sella [90] shows results183

for the stationary genotype distribution of a population of haploid binary184

genomes selected to maximize their weight (in the coding theory sense), that185

is, to become “all ones.” In the Discussion, we return to this model as a186

natural modeling complement to the binary match landscape models that187

we introduce here.188
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Figure 2: Set-up for models comparing fitness landscapes with different aaRS-tRNA net-
works and network encodings. Except in section 2.7, there are always a fixed and equal
number P ≥ 2 species of tRNA, P species of aaRS, P codons, P available amino acids,
and P site-types, the latter two of which are uniformly and maximally distributed within
a one-dimensional amino-acid/site-type space representing differential selection on amino
acid side chain properties such as hydrophobicity [92](labelled as ”coords”). To each site-
type corresponds a unique codon that encodes it perfectly and a unique amino acid that
fits it perfectly. To each codon corresponds a unique tRNA that reads it perfectly. To
each amino acid corresponds a unique aaRS that charges it perfectly. Panel A. The Bi-
nary Interaction Network Channel (P = 2) studied in subsection 2.3. Panel B. The P-ary
Interaction Network Channel studied in subsections 2.8 and 2.9. (one-column figure)

2. Match landscapes: Models and Results189

2.1. General Assumptions of the Current Work190

Unless otherwise noted, genotypes g ∈ BL are haploid binary strings of191

length L that undergo point mutation, selection and genetic drift in panmictic192 8
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Moran [93] populations of constant size — but experiencing neither recombi-193

nation, duplication, deletion, insertion, inversion, conversion, nor drive (nor194

implicitly, horizontal transfer) of genes or genomes. We define here various195

match fitness landscapes that map genotypes g ∈ BL to real-valued fitnesses196

w(g) with 0 ≤ w(g) ≤ 1. The fitness functions we define all have at their roots197

a matching function that maps genotypes to match matrices, which unam-198

biguously predict the intensities at which pairs of tRNA and aaRS species199

interact in a model cell or cytoplasmic volume. Except in subsection 2.7,200

each genotype g ∈ BL expresses an equal number P species of tRNA and P201

species of aaRS.202

Any species of tRNA can potentially match any species of aaRS through203

an interaction interface shared by all. Each species of tRNA or aaRS contains204

the same number of sites in this shared interaction interface. A correspon-205

dence exists that partitions sites in the same way across all species, and206

thereby limits the way in which matches of species can occur. We call the207

union of single sites over all species that can potentially match or mismatch208

within any possible aaRS-tRNA species pair a site-block. Matching occurs209

exclusively within site-blocks, and matching is additive over site-blocks. We210

denote the number of site-blocks n and call it the width of the interaction211

interface.212

2.2. Overview of Models and Results213

A list of symbols and parameter values is given in Table 1. In sub-214

section 2.3 we define a model we call the binary interaction channel with215

one site-block and compute its average fitness, load and epistasis under two216

different matching rules. In section 2.4, we define the P-ary interaction chan-217

nel with multiple site-blocks, while in section 2.5 we present a result about218

its stationary genotype frequency distribution when fitness is multiplicative219

over site-blocks. In section 2.6 we develop an additive interaction model220

for aaRSs and tRNAs. In section 2.7 we re-derive a macroscopic model of221

aminoacylation kinetics in an interaction network with N tRNA species and222

M aaRS species. In section 2.8 we present results on the dependency of223

fitness maxima and fixed drift load on the number of cognate pairs encoded224

in an aaRS-tRNA network. In section 2.9 we compare fitnesses and the sta-225

tionary expected frequency of masking in networks selected for translational226

accuracy alone versus networks selected for both accuracy and rate.227
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2.3. The Binary Interaction Channel with an Interface of One Site-Block228

Suppose that exactly one binary site in a gene for one tRNA species, t0,229

and another site in a gene for one aaRS species, a0, are selected to match each230

other, so that genotypes 11 and 00 have equal and maximal viabilities greater231

than those of genotypes 10 and 01, w00 = w11 > w01 = w10. This landscape is232

an example of “reciprocal sign epistasis.” [74, 86, 87]. In another landscape,233

one genotype, say 11, has higher viability than the other three, with w11 >234

w10 = w01 = w00. This landscape is an example of positive or antagonistic235

epistasis [14], in which the fitness cost of the double mutant is less than either236

the sum or product of the costs of single mutants. The evolution of two-locus,237

two-allele models has been studied under very general settings, in haploid238

and diploid populations with and without recombination and modifiers of239

epistasis, most recently in the haploid setting by Liberman and Feldman [15].240

The minimal setting for a binary feed-forward interaction channel, encoding241

up to two amino acids, is only slightly more complex than the two-locus, two-242

allele model. It is a four-locus, two-allele model representing genes for two243

tRNA species t0 and t1 and two aaRS species a0 and a1, in which either tRNA244

can potentially match either aaRS through a single site-block. Depending on245

the matching rule and the specific genotype, either of the two tRNA species246

may match zero, one or both aaRS species.247

We define two different matching rules in our model through logical op-248

erations on bits. The first we call the XNOR rule and indicate it in Table 2249

and elsewhere with the ⇔ symbol. Using the XNOR rule, the match score250

m
XNOR
i,j of ti and aj, with i, j ∈ {0, 1} is:251

m
XNOR
i,j = ti⇔ aj, (1)

where (a⇔ b) ≡ (a ⊙ b) ≡ ¬(a ⊕ b) is the logical XNOR of a and b.252

The second we call the AND rule and indicate it in Table 2 and elsewhere253

with the ∧ symbol. Using the AND rule, the match score m
AND
i,j of ti and aj,254

with i, j ∈ 0, 1 is:255

m
AND
i,j = ti ∧ aj, (2)

where (a ∧ b) is the logical AND of a and b.256

According to the set-up in Panel A of Fig. 2, we suppose that all sources257

of ambiguity are collected into the network. The interaction of these four258

species of gene products occurs through a single site for each of them. Both259

aaRS species have equal concentration and efficiency, both tRNA species260
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have equal concentration and both amino acids have equal concentration.261

There are two equally frequent site-types s0 and s1 using the terminology262

and assumptions of [37, 92], one at coordinate x0 = 0 and the other at263

coordinate x1 = 1. Amino acids aa0 and aa1 obtain maximal viability 1 in264

their respective site-types s0 and s1. Amino acid aa0 obtains viability φ in265

site-type s1 and vice versa, while the viability of an unencoded amino acid266

(corresponding to when an aaRS species has no tRNA species that matches267

it) is ψ, with 0 < ψ < φ < 1. Only codons of type c0, which are exclusively and268

perfectly read by tRNA species t0, exist in sites of type s0, while only codons269

of type c1, which are exclusively and perfectly read by tRNA species t1, exist270

in sites of type s1. Amino acid aa0 is charged exclusively and perfectly by271

aaRS a0 and amino acid aa1 is charged exclusively and perfectly by aaRS272

a1. If a tRNA matches both aaRSs, the codons it reads achieve a fitness273

δ = (φ + 1)/2, which is the arithmetic average of its translations. Thus,274

ambiguity is more fit than pure missense, δ > φ. The fitness of a genotype is275

the product of its fitness in the two site-types. With these assumptions, we276

write the fitnesses of the 16 possible genotypes under two different matching277

rules in Table 2.278

Table 2 gives all genotype viabilities for the binary interaction channel279

with one site-block under the two different matching rules, XNOR and AND.280

The channel achieves greater maximum fitness using the XNOR rule because281

it can encode two interactions simultaneously with it, but only one with282

the AND rule. Inspecting the fitnesses of genotypes in consideration of the283

assumed inequality 0 < ψ < φ < δ = (φ + 1)/2 < 1, one finds that the284

fitness of every genotype with the XNOR rule is greater than or equal to285

its fitness with the AND rule. From eq. 9 in [90], one may infer directly286

that with these fitnesses under the stationary genotype distribution of the287

“sequential fixations” origin-fixation process [88, 90], the binary interaction288

channel has both a higher average fitness and a smaller fixed-drift load with289

the XNOR rule than it does with the AND rule, for all values of population290

size parameter β and for all 0 < ψ < φ < 1.291

Liberman and Feldman [15] define multiplicative epistasis for the two-292

locus, two-allele model analogously to:293

ε2,2 = w11w00 − w10w01. (3)

A generalization of this expression to four loci and two alleles is:294
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ε(4,2) = (w1100w0000 − w1000w0100)(w1111w0011 − w1011w0111)−
(w1110w0010 − w1010w0110)(w1101w0001 − w1001w0101). (4)

After substituting fitnesses from Table 2and simplification, we find that295

the multiplicative epistasis ε
AND
(4,2) of the AND rule is always positive:296

ε
AND
(4,2) = (1 − φ)/2 > 0, (5)

and that the multiplicative epistasis ε
XNOR
(4,2) of the XNOR rule is also always297

positive:298

ε
XNOR
(4,2) = (δ − φψ)3(δ + φψ) > 0. (6)

2.4. The P-ary Interaction Channel over an Interface of Multiple Site-Blocks299

We now extend the model of section 2.3 by assuming that the interaction300

intensities of P > 2 tRNA species, labeled ti with 1 ≤ i ≤ P , and P aaRS301

species, labeled aj with 1 ≤ j ≤ P , depend directly on their match scores302

m
R
i,j with matching rule R, which are additive over an interaction interface303

of width n > 1 site-blocks. To do so, we introduce two different combina-304

tions of genotype spaces and matching rules to be used in the sequel. We305

first define a genotype space G
(P,P,n,1)

of dimension 2Pn and explain how we306

apply an XNOR matching function m
XNOR
i,j to genotypes from that space to307

obtain the results of section 2.8. We then define a second larger genotype308

space G
(P,P,n,2)

of dimension 4Pn and explain how we apply a more complex309

matching function m
AND-XNOR
i,j on genotypes from that space to obtain the310

results of section 2.9.311

Assuming every species of tRNA or aaRS is produced by only one gene,312

we assign n state-bits to each of the 2P tRNA and aaRS genes and write313

them as follows: ti ≡ ti1ti2 . . . tir . . . tin, and aj ≡ aj1 . . . ajr . . . ajn respectively,314

where multiplication in this case implies string concatenation, 1 ≤ i, j ≤ P ,315

1 ≤ r ≤ n, and tir, ajr ∈ B. We then order and concatenate genes into316

genotypes as follows: g ≡ t1a1t2a2 . . . tPaP . Denote by G
(P,P,n,1)

the set of all317

possible binary genotypes with P tRNA genes and P aaRS genes of width n318

site-blocks and one site per-gene per-site-block, of total length L = 2Pn. For319

any genotype g ∈ G
(P,P,n,1)

the match score m
XNOR
i,j of ti and aj in the XNOR320

matching function is defined as:321
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…

…

Genotypes in G          for matching under the XNOR rule, with tir , ajs  ∈ !:  
t11 … t1n a11 … a1n t21 … t2n a21 … a2n tP1 … tPn aP1 … aPn …

Genotypes in G           for matching under the AND-XNOR rule, with tir , ajs , mkt , nlu  ∈ !:   

Site-blocks and matching under XNOR:           Site-blocks and matching under AND-XNOR:     

t11 t1r t1n

a11 a1r a1n

tP1 tPr tPn

aP1 aPr aPn

… … …
t11 t1r t1n

a11 a1r a1n

m11 m1r m1n

n11 n1r n1n

…

m11 … m1n n11 … n1n m21 … m2n mP1 … mPn nP1 … nPn n21 … n2n 

t11 … t1n a11 … a1n a21 … a2n tP1 … tPn aP1 … aPn…t21 … t2n 

(P,P,n,1)

(P,P,n,2)

tP1 tPr tPn

aP1 aPr aPn

mP1 mPr mPn

nP1 nPr nPn

   ⇔

     ⇔

   ⇔

   ⇔

…

   ⇔

     ⇔

   ⇔

   ⇔

…

   ⇔

     ⇔

   ⇔

   ⇔

…
  

   ∧   ⇔

   ⇔

   ∧

   ∧

…

  

…

  

…

… … …

State bits

Mask bits

…

⇔

∧

⇔

∧

∧

∧

∧

   ⇔

… …
⇔

∧

⇔

∧

∧

∧

∧

   ∧

   ⇔

   ∧

   ∧

⇔

∧

⇔

∧

∧

∧

∧

   ∧

   ⇔

   ∧

   ∧

   ⇔

Figure 3: Genotype spaces, site-blocks and matching with the XNOR and AND-XNOR
matching rules. (one or two-column figure)

m
XNOR
i,j =

n

∑
r=1

tir ⇔ ajr, (7)

where (a⇔ b) ≡ (a⊙ b) ≡ ¬(a⊕ b) is the XNOR of a and b, true when (a⊕ b),322

the XOR of a and b, is false. The XNOR match score m
XNOR
i,j of ti and aj is323

inversely related to their Hamming distance dH(ti, aj):324

m
XNOR
i,j = n − dH(ti, aj). (8)
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We now introduce a third matching rule, which we call the AND-XNOR,325

MASKED-XNOR, or MASKED-MATCH rule. Suppose that every macro-326

molecular species adds one evolveable mask bit that switches on or off the ac-327

cessibility for matching of exactly one of its state bits (Fig. 3). Mask-bits are328

site-specific interaction modifiers. Now, with tir, ajr,mir, njr ∈ B, 1 ≤ i, j ≤ P329

and 1 ≤ r ≤ n, we assign n state-bits to each of the P tRNA genes as before,330

writing the state-bits of tRNA gene ti as ti1 . . . tir . . . tin, and in addition, we331

assign n mask-bits to each of the P tRNA genes, writing the mask-bits of332

tRNA gene ti as mi1 . . .mir . . .min, so that mir is the mask-bit correspond-333

ing to state-bit tir. Similarly, we assign n state-bits to aaRS gene and write334

them as aj1 . . . ajr . . . ajn. In addition, we assign n mask-bits to each of the335

P aaRS genes, and write the mask-bits of aaRS gene aj as nj1 . . . njr . . . njn,336

so that njr is the mask-bit corresponding to state-bit ajr. Finally, we order337

and concatenate genes into genotypes as follows (without loss of generality):338

g ≡ t1a1t2a2 . . . tPaPm1n1m2n2 . . .mPnP . Denote by G
(P,P,n,2)

the set of all339

possible binary genotypes with P tRNA genes and P aaRS genes interact-340

ing over width n site-blocks, with 2 sites per-gene per-site-block, and a total341

length L = 4Pn. For any genotype g ∈ G
(P,P,n,2)

the match score m
AND-XNOR
i,j342

of ti and aj with AND-XNOR matching rule is defined:343

m
AND-XNOR
i,j =

n

∑
r=1

((mir ∧ njr) ∧ (tir ⇔ ajr)), (9)

where (a ∧ b) is the logical AND of a and b.344

2.5. P-ary interaction channels with multiplicative fitness over site-blocks345

Let fitness depend multiplicatively on the match scores of corresponding346

tRNA, aaRS species pairs (i.e. those that share the same index), and in-347

versely on the match scores of non-corresponding tRNA, aaRS species pairs348

(i.e. those with different indices). For example, if the fitness contributions of349

a match between any cognate pair or of mismatch between any non-cognate350

pair, one might define the viability fitness w(g) of genotype g ∈ G
(P,P,n,1)

as:351

w(g) =
∏P

i=1 ∏P

(j=1)≠i φ
m

XNOR
i,j

φ(P−1) ∏P

i=1 φ
mXNOR
i,i

=
∏P

i=1 φ
dH (ti,ai)

∏P

i=1 ∏P

(j=1)≠i φ
dH (ti,aj )

, (10)

where 0 < φ ≤ 1 is a selection intensity parameter. The viabilities of eq. 10 are352

positive and less than or equal to 1, and increase both as tRNAs and aaRSs of353
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the same index match while tRNAs and aaRSs of different indices mismatch.354

In the appendix, we show that the function in eq. 10 is multiplicative over site-355

blocks as previously defined, and that for all fitness functions multiplicative356

over site-blocks, the stationary distribution of fixed genotypes of [90] may357

readily be obtained as a product of the stationary frequencies of site-blocks.358

This result should be compared to Result 2 in [15], which states that in a359

large two-locus, two-allele haploid population in mutation-selection balance,360

a unique polymorphic equilibrium with full linkage equilibrium exists only in361

the absence of multiplicative epistasis.362

2.6. From additive interaction energies to kinetic rate constants363

As simple and tractable as the fitness function in eq. 10 may be, it is more364

realistic to suppose that the fitness of an aaRS-tRNA network is manifested365

through its translation of protein-coding genes. We therefore wish to create a366

decoding function that takes a match matrix as input and outputs a decoding367

matrix that specifies the conditional aminoacylation profile of every tRNA368

species.369

We assume through the sequel that matches mi,j between tRNA species370

ti and aaRS species aj contribute additively to their binding energy in an371

aaRS-tRNA complex (whether activated or not), and that only one kinetic372

rate constant depends on this energy and varies from complex to complex373

with all other kinetic rate constants set equal (see next section). Table 5374

in Schimmel and Söll [94] displays kinetic data for aaRS-tRNA complexes375

with data from [96, 97] of about 220 s
−1

for cognate aaRS-tRNA complexes376

and about 1600 s
−1

for near-cognate interactions. We assumed a cognate377

dissociation rate constant of k
c
d = 220 s

−1
and a non-cognate dissociation rate378

constant of k
nc
d = 10 000 s

−1
representing the background energy of interaction379

between tRNAs and aaRSs, also comparable to data in [98].380

Define k as the number of matches required to diminish dissociation rate381

from k
nc
d to k

c
d, with 1 ≤ k ≤ n. Following Johnson and Hummer [54], we382

calculate non-cognate and cognate equilibrium constants as reciprocals of the383

non-cognate and cognate dissociation rates. The dissociation rate constant384

k
i,j

d
between tRNA ti and aaRS aj with mi,j matches, 0 ≤ mi,j ≤ n then may385

be defined386

k
i,j

d = k
nc
d exp[ιmi,j], (11)

where ι = (log k
nc
d − log k

c
d)/k.387
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Figure 4: Application of kinetic proofreading schemes to compute decoding rates in a
macroscopic interaction network of M ≥ 2 species of tRNAs and N ≥ 2 species of aaRSs,
including kinetic proofreading of tRNAs by aaRSs but presently ignoring errors in amino
acid selection by aaRSs or tRNA selection on ribosomes. A. The single-molecule two-cycle,
two-state kinetic proofreading scheme of [61, fig. 1] for a receptor R that can preferentially
select ligands of type L

′
over ligands of type L, assuming k1 = k

′
1, k−3 = k

′
−3 and k2 =

k
′
2 are all pseudo-first-order rate constants and the concentrations of ligand species are

equal, i.e. [L] = [L′] >> [R]. B. The scheme from panel A redrawn from the perspective
of a single tRNA species t0 alternatively aminoacylated (and instantaneously deacylated)
by two aaRS species a0 and a1 of equal concentrations through catalytic steps with rate
kcat << k3, thus [t0] >> [a0] = [a1] >> 1. C. Generalization of the scheme in B to M
species of tRNAs and N species of aaRSs. All corresponding rate constants are assumed
equal across all interactions except those indicated. (one- or two-column figure)

2.7. Decoding functions for macroscopic, well-mixed proofreading aaRS-tRNA388

networks389

We now assume that matching feature-set-pairs contribute additively to390

interaction energies between species pairs and transform interaction energies391

into kinetic rates of dissociation, or off-rates, of aaRS-tRNA species-pair392

complexes (in this section, k
i,j
−1 is the same as k

i,j

d
in eq. 11). We elab-393

orate on the reaction scheme shown in fig. 4A to compute the decoding394
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rate/aminoacylation probability of one species of tRNA t0 interacting in well-395

mixed volume with two species of aaRSs a0 or a1 at equal concentration as in396

fig. 4B. We then generalize this to calculate the maximal decoding probability397

cmax(ti⟶ aj) that a tRNA of species ti, with 1 ≤ i ≤M was last aminoacy-398

lated by an aaRS of species aj, with 1 ≤ j ≤ N in an aaRS-tRNA network399

of M tRNA species and N aaRS species with variable dissociation rate con-400

stants k
i,j
−1 that vary between complexes of different aaRS-tRNA species pairs401

(fig. 4C). A comparable development was presented in [99], who were partic-402

ularly interested in the energy costs of proofreading.403

Qian [61] re-cast the classic Hopfield kinetic proofreading model as the404

five-state Markov Chain shown in fig. 4A, describing a cell signalling receptor405

R with a two-step activation scheme that discriminates against ligand L406

in favor of ligand L
′

via off-rates (dissociation rates). The error rate per-407

receptor f is the ratio of activated receptor affinities with ligands L and408

L
′
. Qian [61] computed the minimum error rate per-receptor fmin for any409

set of kinetic constants in terms of the dissociation-rate-constant ratio θ =410

k
′
−1/k−1 < 1 and an exponential function of the steady-state free energy of the411

cell γ = e
(∆GDT /RT )

≥ 1, associated with the (deliberately unbalanced) coupled412

reactions T ⇌ D in fig. 4, namely fmin = θ((1+
√
γθ)/(√γ+

√
θ))2. Qian [61] also413

re-derived the absolute lower thermodynamic limit over all possible kinetic-414

proofreading schemes [67], and the classical minimum per-receptor error-rate415

fmin in the two-state kinetic proofreading scheme shown in fig. 4A, with416

θ
2
≤ fmin ≤ θ [56, 57]. These two bounds correspond to perfect proofreading417

(with infinite ATP) on the left and thermodynamic equilibrium/recent death418

on the right.419

These results apply equally well to enzymes as the rate of catalysis (kcat420

in figs. 4B and 4C) vanishes. This is one of three conditions on the kinetic421

rate constants that achieve the minimum error rate fmin [56, 61]. To achieve422

accuracy, enzymes and receptors add states from which they discard cognate423

substrates at appreciable rates so they can give non-cognate substrates more424

time to dissociate.425

If the concentrations of aaRSs are large and equal to each other, the426

treatment of Qian [61] applies to Fig. 4B even though the roles of ligand and427

receptor are reversed. Let us define θ001 ≡ (k00
−1/k01

−1) as the ratio of dissociation428

rate constants of tRNA t0 with aaRS a0 and aaRS a1, and similarly θ011 ≡429

(k01
−1/k01

−1 = 1). Then, at steady state, the relative rate of aminoacylation of430

tRNA t0 by aaRS a1 versus aaRS a0 may be written fmin = [t0a∗1]/[t0a∗0],431
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bounded by θ
2
001 ≤ fmin ≤ θ001, and the time-averaged maximal decoding432

probability cmax(t0 ⟶ a1) that tRNA t0 was last aminoacylated by aaRS a1433

is:434

cmax(t0 ⟶ a1) = [t0a∗1]/([t0a∗0] + [t0a∗1]), (12)

with435

H(θ2
001, θ

2
011)/2 ≤ cmax(t0 ⟶ a1) ≤ H(θ001, θ011)/2, (13)

where H(α, β) is the harmonic average of α and β. The maximal decoding436

probability is maximal over all kinetic schemes of aminoacylation; however,437

by the data processing inequality, it is also the maximal accuracy of transla-438

tion over all error-rates in tRNA-selection by ribosomes.439

More generally, let us define θikj as the ratio of dissociation rate constants440

of tRNA ti with aaRS ak and aaRS aj respectively, i.e. θikj ≡ k
ik
−1/kij−1,441

with 1 ≤ i ≤ M and 1 ≤ j, k ≤ N . The maximal decoding probability442

cmax(ti⟶ aj), that a tRNA of species ti was last aminoacylated by an aaRS443

of species aj in an aaRS-tRNA network of M species of tRNA and N species444

of aaRS, is445

cmax(ti⟶ aj) = [tia∗j ]/(
N

∑
k=1

[tia∗k]), (14)

with446

(HN
k=1θ

2
ikj)/N ≤ cmax(t0 ⟶ a1) ≤ (HN

k=1θikj)/N, (15)

where H
N
k=1θikj is the harmonic average over all θikj, 1 ≤ k ≤ N .447

2.8. The Dependence of Load on Number of Encoded Amino Acids448

Drawing on the terminology and concepts of earlier work [37, 92, 100, 101],449

we present a highly simplified translational system to compare fitnesses and450

stationary genotype frequencies of different matching rules. With reference451

to Fig. 2B, we continue to assume P pairs of aaRS and tRNA species, as well452

as P species of codons, amino acids, and site-types, so that tRNA species453

ti, 1 ≤ i ≤ P always reads codon ci, while aaRS ai always charges amino acid454

aai, which has maximal fitness in sites of type si. With these assumptions,455

the decoding probability c(aaj∣ci) of decoding codon ci as amino acid aaj is456

equal to cmax(ti ⟶ aj) of the last section, c(aaj∣ci) ≡ cmax(ti ⟶ aj). The457
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fitness w(aaj∣sl) of amino acid aaj in site-type sl, with 1 ≤ j, l ≤ P is φ
∣xj−xl∣,458

where xi = (i−1)/(P −1). The fitness wl in site-type sl is the expected fitness459

of translations of codons occupying that site-type, here exclusively codon cl,460

i.e. wl = ∑P

j w(aaj∣sl)c(aaj∣cl). The fitness wA(g) of genotype g selected for461

translational accuracy alone is the product of its fitnesses over all site-types:462

wA(g) =
P

∏
l

wl. (16)

We implemented this model in a Python 3 script called “atINFLAT” for463

“aaRS-tRNA Interaction Network Fitness Landscape Topographer,” avail-464

able as supplementary data. It can compute the stationary genotype distri-465

butions of small networks and compute statistics such as fitnesses for indi-466

vidual genotypes from much larger networks.467

It is easy to prove that binary codes with zero matches between any code-468

words have a maximum size of only two codewords [102, 103]. Thus, with the469

XNOR rule, in which tRNAs and aaRSs may potentially match or mismatch470

over their entire shared interface, the interactions of only two aaRS-tRNA471

pairs may be encoded perfectly without cross-matching. As predicted, when472

we used atINFLAT to compute maximum and average fitnesses on landscapes473

with and without proofreading, we found that both the maximum fitness de-474

creased and fixed-drift load increased when more than two cognate pairs were475

overloaded on the same interaction interface, reflecting an increasing cost of476

translational missense as more amino acids get encoded (Fig. 5).477

2.9. Selection on both translational accuracy and rate is necessary to select478

for masking to reduce cross-matching479

The symmetric P-ary interaction channel as we have defined it, selects480

only for translational accuracy and not on rate or energy expenditure. One481

can see this clearly with the help of a well-defined example using the AND-482

XNOR rule, and comparing the fitnesses of two genotypes gH , gM ∈ G
(4,4,8,2)

.483

The first genotype, gH , consists of four codewords from the Hamming [n=8,d=4]484

code [95] repeated twice, followed by all maskbits set:485

gH = (10000111)2(01001011)2(00101101)2(00011110)21
64
. (17)

Since all maskbits are set in gH , all four tRNA species and all four aaRS486

species potentially match over their entire interfaces. The cognate match487

score for all pairs ti, ai is mi,i = 8 and the single non-cognate match score488
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Figure 5: Decreasing average and maximal fitness of aaRS-tRNA networks as a function of
encoded interactions under the XNOR rule, with and without proofreading. Parameters
used here are n = 2, k = 2, φ = 0.9, and β = 100. The fixed-drift loads are the differences
between maximal and average fitnesses, which increase with the number of encoded inter-
actions. Notice the discontinuities between P = 4 and P = 5; this is the transition where
P > 2

n
, the number of pairs exceeds available codewords. (one-column figure)

is mi,j = 4 for all pairs ti, aj with i ≠ j. No binary codes of size n = 8 can489

achieve a larger minimum Hamming distance than four [104, 105].490

A second genotype gM may be constructed from any two tetramers and491
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their complements in the left and right halves of the interface, and using492

masking to eliminate cross-matching. For example,493

gM = (116
0

16)2(14
0

4)2(04
1

4)2, (18)

which achieves cognate matches (mi,i = 4 for all pairs ti, ai) and zero cross-494

matching (mi,j = 0 for all pairs ti, aj with i ≠ j). With the standard fitness495

function that we have been using in which fitness depends only on accu-496

racy and not rate of translation and using k = 4, the fitnesses of these two497

genotypes are exactly equal:498

# atinflat version 0.8499

# execution command:500

# atinflat.py --pairs 4 --width 8 --match 4 --mask --phi 0.9501

# -g hamming-8-4.txt502

genotype:503

1000011110000111010010110100101100101101001011010001111000011110504

1111111111111111111111111111111111111111111111111111111111111111505

| fitness: 0.9996721776752496506

| match: [[8 4 4 4], [4 8 4 4], [4 4 8 4], [4 4 4 8]]507

| proofread code: [[1. 0. 0. 0.], [0. 1. 0. 0.],508

| [0. 0. 1. 0.], [0. 0. 0. 1.]]509

genotype:510

1111111111111111000000000000000011111111111111110000000000000000511

1111000011110000111100001111000000001111000011110000111100001111512

| fitness: 0.9996721776752496513

| match: [[4 0 0 0], [0 4 0 0], [0 0 4 0], [0 0 0 4]]514

| proofread code: [[1. 0. 0. 0.], [0. 1. 0. 0.],515

| [0. 0. 1. 0.], [0. 0. 0. 1.]]516

The example illustrates a key property of our macroscopic kinetic match517

landscape model, which is that accuracy depends on relative dissociation518

rate constants and concentrations, a prediction borne out by experimental519

evidence [34, 94, 106]. We conjecture that these two genotypes have maximal520

fitness because they both achieve the maximal possible distance of four be-521

tween all code words — and they are not alone; many others in their neutral522

network have the same fitness. Other genotypes with equal fitness to gH and523

gM include all those with the structure of gH but substituting any four of the524

16 Hamming [8,4] codewords in any order, in any one of 2 × 8! permutations525
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of codeword columns and codeword symbols (implying a degeneracy of more526

than 3.522 × 10
9

Hamming code genotypes) as well as other non-linear per-527

fect binary codes [107] — all with every mask-bit set — and a much smaller528

number of those with the same structure as gM and half of the mask-bits529

off, using one of only 255 combinations of two tetramer codewords and their530

complements besides those used in gM .531

Even though gH and gM achieve identical accuracy and fitness in the532

match landscape with wA(g), g ∈ G
(4,4,8,2)

, the rates of translation in cells533

with genotype gH would be vastly slower than in cells with genotype gM ,534

because the dissociation (discard) rate of cognate complexes is only between535

1 s
−1

and 2 s
−1

in the former, while in the latter it is the typical cognate rate536

that we assumed, 220 s
−1

. In the classic kinetic proofreading schemes, this537

discard rate must be much greater than the actual rate of product formation538

kcat [56, 61] (but see [65, 66, 70]). For example, in tRNA-Ile of Salmonella539

typhimurium this rate is estimated to be 5 s
−1

[108]. Furthermore, the overall540

rate of protein synthesis, which factors directly into growth rate [109], can541

be limited by the slowest rate of aminoacylation [110, 111]. As a result, both542

the accuracy and rate of translation are expected to factor into fitness [112].543

Because the fitnesses of gH and gM are exactly equal without taking transla-544

tional rate into account, incorporating any rate-dependent fitness factor that545

decreases with the cognate aminoacylation rate in our model will disadvan-546

tage those genotypes that maximize matching between cognate complexes.547

Selection for accuracy should then select for mask bits to turn off to reduce548

cross-matching and maintain the high non-cognate/cognate dissociation rate549

ratios required for accuracy at intermediate levels of cognate matching.550

To test this prediction, we introduce an empirically parametrized fitness551

factor that crudely penalizes cognate aminoacylation rates when they are552

slower than the assumed cognate rate of 220 s
−1

. In accordance with an553

observation of kcat = 5 s
−1

[108] and a cognate dissociation/discard rate of554

220 s
−1

, we define the average aminoacylation rate kcat(g) of genotype g as555

proportional to the harmonic mean of cognate dissociation rates between556

cognate tRNAs and aaRSs:557

kcat(g) =
1

44
H
n
i=1k

i,i

d . (19)

Controlled measurements with wild-type and mutant enzymes showed that558

only kcat correlated with growth rate and the following measurements of559

(kcat, w) were observed, where w is growth rate in Luria Broth, written rela-560
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tive to wild-type [108, Table 3]: {(0.19, 0.24), (0.6, 0.6), (5, 1)}.561

Using GNUPLOT 5.2 to fit two exponential viability functions w1(kcat) =562

A+B exp(C1kcat) and w2(kcat) = 1−exp(C2kcat) to these data and also through563

the origin, we obtained the following fits:564

w1(kcat) = 1.00127 − 1.005 exp(−1.51245kcat) (20)

w2(kcat) = 1 − exp(−1.50576kcat), (21)

both with a root mean square residual of less than 1%.565

We defined a new fitness function wAR(g) to select for both translational566

accuracy and rate as the product of two fitness factors:567

wAR(g) = wA(g)w2(kcat(g)). (22)

Using this new fitness function wAR(g) and k = 4, we obtained the follow-568

ing results:569

# atinflat version 0.8570

# execution command:571

# atinflat.py --pairs 4 --width 8 --match 4 --mask --phi 0.9572

# --rate -g hamming-8-4.txt573

#574

genotype:575

1000011110000111010010110100101100101101001011010001111000011110576

1111111111111111111111111111111111111111111111111111111111111111577

| fitness: 0.0036361253612561006578

| match: [[8 4 4 4], [4 8 4 4], [4 4 8 4], [4 4 4 8]]579

| proofread code: [[1. 0. 0. 0.], [0. 1. 0. 0.],580

| [0. 0. 1. 0.], [0. 0. 0. 1.]]581

genotype:582

1111111111111111000000000000000011111111111111110000000000000000583

1111000011110000111100001111000000001111000011110000111100001111584

| fitness: 0.9991349818561294585

| match: [[4 0 0 0], [0 4 0 0], [0 0 4 0], [0 0 0 4]]586

| proofread code: [[1. 0. 0. 0.], [0. 1. 0. 0.],587

[0. 0. 1. 0.], [0. 0. 0. 1.]]588

Even with k = 8, so the assumed cognate dissociation rate is only reached589

with a full eight matches, the masked genotype still has higher fitness:590
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# atinflat version 0.8591

# execution command:592

# atinflat.py --pairs 4 --width 8 --match 8 --mask --phi 0.9593

# --rate -g hamming-8-4.txt594

#595

genotype:596

1000011110000111010010110100101100101101001011010001111000011110597

1111111111111111111111111111111111111111111111111111111111111111598

| fitness: 0.9855421043520338599

| match: [[8 4 4 4], [4 8 4 4], [4 4 8 4], [4 4 4 8]]600

| proofread code: [[0.94 0.02 0.02 0.02], [0.02 0.94 0.02 0.02],601

[0.02 0.02 0.94 0.02], [0.02 0.02 0.02 0.94]]602

genotype:603

1111111111111111000000000000000011111111111111110000000000000000604

1111000011110000111100001111000000001111000011110000111100001111605

| fitness: 0.9860719918123261606

| match: [[4 0 0 0], [0 4 0 0], [0 0 4 0], [0 0 0 4]]607

| proofread code: [[0.94 0.02 0.02 0.02], [0.02 0.94 0.02 0.02],608

| [0.02 0.02 0.94 0.02], [0.02 0.02 0.02 0.94]]609

Hamming codes are efficient with respect to codeword length [95]. In this610

work, codewords are transmitted in parallel, so selection on code-word length611

gM occurs through selection to avoid overly tight binding. Our results show612

that genetic match codes can be selected to sacrifice code-words to achieve613

shorter codeword length without cross-matching.614

Our results are general. In Fig. 6, we show the full stationary genotype615

distributions under two fitness functions wA(g) and wAR(g) on the smaller616

genotype space G
(4,4,2,2)

and k = 1, showing that masking is systematically617

favored over the entire match landscape and increasingly so with genotype618

fitness, under combined selection on translational accuracy and rate. Thus,619

selection on both the specificity of association and rate of dissociation can620

partition macromolecular interaction interfaces to reduce cross-matching.621

Natural selection increases and maintains information in genomes [113–622

116]. A useful measure of this information is the reduction in entropy of the623

stationary distribution of genotypes with that selection, relative to without624

it. For example, the maximum entropy of genotypes in G
(4,4,2,2)

occurs on625

a perfectly flat fitness landscape in which all genotypes have equal fitness,626

and its value is the genome length in bits, 32. For the data in Fig. 6 with627
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Figure 6: Expected fractions of masked sites in the steady-state fitness equivalence classes

of 2
32

genotypes in G
(4,4,2,2)

(points), expected fractions of masked sites (red lines) and
expected fitnesses (blue lines) as functions of the stationary cumulative densities of fitness
in match landscapes with perfect one-step kinetic proofreading, P = 4, n = 2, k = 1,
φ = 0.9, and β = 100. A. Match landscape with selection for translational accuracy alone
(fitness function wA(g)) with expected fitness 0.9501304 and expected fraction of masked
sites 0.4428638. B. Match landscape with combined selection for translational accuracy
and rate (fitness function wAR(g)), with expected fitness is 0.9498575 and expected fraction
of masked sites 0.4780706. Machine error in these data, as judged by the integration of
cumulative density functions, is less than 10

−11
. (two-column figure)

perfect kinetic proofreading and β = 100, we found that the entropy of the628

stationary genotype distribution under selection for accuracy alone, through629

the fitness function wA(g), is about 7.82 bits for a maximum information gain630
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of about 24.18 bits. The entropy of the stationary genotype distribution631

under combined selection for both accuracy and rate, through the fitness632

function wAR(g), is about 6.22 bits for a larger maximum information gain of633

about 25.78 bits. Thus, in a population of fixed size 101, about 1.6 more bits634

of information are gained under combined selection for rate and accuracy635

than under selection for accuracy alone. Without proofreading, the results636

are not very different: the maximum information gained under selection for637

accuracy alone is close to 23.5 bits, while under combined selection for both638

accuracy and rate, the maximum information gain is close to 25.26 bits.639

3. Discussion640

We have shown that combined selection on translational accuracy and rate641

is sufficient to select for divergence in tRNA-interaction interfaces by aaRSs.642

Our results do not contradict other hypotheses about this phenomenon [30].643

We used mask bits as interaction modifiers to demonstrate our main re-644

sult. When they mask or diminish interactions, these modifier bits may be645

interpreted as the presence of structural features such as identity antideter-646

minants that prevent or weaken interactions at specific locations, possibly by647

guiding and orienting interactions away from other interaction-determining648

features [34].649

The notion of “matching” used in this work should not be taken literally.650

The essential feature of the XNOR rule is its provision of two ways to match651

(0/0 and 1/1), corresponding to the availability of alternative paired sets652

of features in biomacromolecules that promote assortative interactions. As-653

sortative interactions occur by means of both complementarity in the shapes654

and motions of cognate pairs of tRNA and aaRS species, and identifiability or655

distinctiveness in the shapes and motions of cognate and non-cognate pairs.656

Because of the symmetry of mutation that we assumed in this work, we could657

have equivalently named our landscape a “complementarity landscape” and658

obtained identical results using an XOR matching rule instead of the XNOR659

rule. It would then be simple, although vague and misleading, to interpret660

matching features as complementarily charged amino acid side-chains or com-661

plementary RNA nucleobases that interact directly. However, this would be662

oversimplified on multiple levels: first, because identifying features in tRNAs663

can depend only indirectly on underlying bases and residues through the664

overall shape and motion in what is called indirect read-out [117]; second,665

tRNAs are extensively post-transcriptionally modified, which also biochem-666
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ically integrates information from multiple sites in ways crucial for tRNA667

identity [118]; third, feature matching and mis-matching occurs in general668

through different sequence alphabets in RNA and proteins; and fourth, aaRS669

proteins are autocatalytically synthesized through the aaRS-tRNA network670

itself [119].671

Thus, in the present work we analyzed only the simplest one of four672

increasingly complex variations on the general problem of evolution of a self-673

encoded aaRS-tRNA network. We define four connected notions to make674

our arguments: description, self-description, self-encoded description, and675

self-encoded self-description. By description we mean that when a mature,676

folded gene product evolves to complement the shape and motion of a fixed677

and unevolving ligand like a metabolite in order to specifically bind it, it “de-678

scribes” that metabolite. This notion of “description” depends on the com-679

plex genotype-phenotype maps of RNA and protein folding, and therefore can680

attain complex and emergent evolutionary dynamics [91, 120]. Nonetheless,681

by definition, descriptions are of evolutionarily fixed targets and therefore in-682

trinsically less rugged, with smaller neutral network size or degeneracy, than683

the match landscapes studied in the present work. We contend that evolving684

a description of an unevolvable metabolite ligand corresponds to discovering685

what might be called an Easter egg in sequence space. Under the assump-686

tion of symmetric mutation, the “all-ones” genotype studied in the Appendix687

of Sella [90] corresponds to selection to match any equivalent evolutionarily688

static Easter Egg in sequence space, of any arbitrary sequence neighborhood.689

In the present work on the other hand, we analyzed the problem of self-690

description: specifically, we evolved co-inherited cognate tRNA-aaRS gene691

pairs to describe one another, so that their expressed products obtain com-692

plementary and identifying shapes and motions with one another. More693

generally, the notion of self-description represents the information acquired694

in genes by natural selection about the shapes and motions of the prod-695

ucts (or regulatory regions) of other genes (which correspond to “self” with696

respect to the cell they are co-inherited in). During the evolutionary collec-697

tivization of genes and gene products into genomes and cells hypothesized698

by Woese and co-authors, genes acquired information via natural selection699

about the shapes and motions of other gene products, in order to interact700

specifically and/or conditionally with them. This self-description (or equiv-701

alently self-information) is the epistatic “biological glue” that binds folded702

macromolecules, cells and organisms together, enabling them to convert en-703

ergy into work and execute complex emergent functions. Self-description704
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applies equally well to epistatic interactions within genes and gene-products,705

where it programs their folds, major modes of motion, and allosteric changes706

in shape and motion in response to changes in cellular state. The reason707

that these notions of self-description are all consistent is precisely because708

the self-descriptions of biological entities at multiple scales become integrated709

through major evolutionary transitions.710

Bedian [119] also called what he modeled “self-description,” but he meant711

something entirely different: the mutual self-compatible encoding of a set of712

aaRS catalytic active sites capable of aminoacylating different amino acids713

onto distinct tRNAs, so that the collection of self-encoded aaRSs active sites714

can autocatalytically resynthesize themselves and each other. In our ter-715

minological framework, this is self-encoded description, because tRNAs are716

treated as fixed and unevolving targets, like amino acids. Bedian’s model,717

and subsequent extensions by Wills and co-workers, consider that these dif-718

ferent selectivities of different aaRSs depend on distinct sets of critical sites in719

each aaRS (where each critical site corresponds to one of our site-types). The720

distinct sets of critical sites of aaRSs may be thought of as multiple distinct721

Easter eggs in sequence space that all must be simultaneously discovered and722

compatibly mutually encoded for the network of aaRS active sites to nucleate.723

But aaRSs have both catalytic and tRNA-binding domains. Bedian, Wills724

and co-workers have so far not considered the problem of tRNA recognition725

by autocatalytically encoded aaRSs in their work, which generalizes what we726

studied here in what might be called self-encoded self-description. Full treat-727

ment of the problem, involving autocatalytically-encoded Easter eggs and728

Match Landscapes, is reserved for future investigations. Progress will allow729

a fuller investigation of even larger models to investigate the coevolution of730

genetic code and metabolism [121, 122].731

We conjecture that our present results will hold for these more com-732

plex models. We offer an interpretation of “matching” for our present re-733

sults which applies to all of these more complex biological settings; namely,734

matching represents the self-information contained in self-descriptions, or the735

information contained in genes about the identifying shapes and motions of736

other co-inherited genes and gene products. Commensurately informative737

self-descriptions are expected to be nearly neutral with one another in the738

sense of [90] and references therein, and as shown for interaction interfaces739

previously [123]. The nearly-neutral evolution of interaction-determining fea-740

tures within a high-dimensional sequence space of equally fit solutions makes741

compensatory mutations much more likely than reversals. This explains both742
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why interaction-informative features can evolve and diverge even while under743

strong selection, and why interaction-determining features are phylogeneti-744

cally informative.745

Our theory that macromolecular interactions are encoded through sets746

of complementary and identifying features extends the universal principle747

of heredity clarified by Watson and Crick, through which all possible ge-748

netic sequences may be replicated by virtue of complementarity [124]. The749

relativity of the notions of complementarity and identity in the definition750

of self-description implies that macromolecular interactions are governed by751

symbolic representations, as discussed by Maynard Smith [115]. That is,752

within the context of a specific cell, arbitrary molecular shapes and motions753

are symbolically associated with specific functions. The notion of symbolic754

association is defined not only by the absence of relationship between the755

form and meaning of signals [115], but also by its cryptographic nature, in756

that it requires coordinated information to decode signals correctly within a757

large space of equally unambiguously expressive alternatives.758

The statistical Tree of Life became more tree-like after the Darwinian759

Transition precisely because through this transition, cells evolved languages760

of self-encoded descriptions and self-descriptions critical to their fitness as761

cells. These genetic and cellular languages are symbolic, crytographic, open-762

endedly expressive, and increasingly constrained from changing by the in-763

creasingly complex corpus of descriptions and self-descriptions they encode.764

Since languages evolve in a statistically tree-like manner [125, 126], so did765

the advent of these cellular and genetic languages caused cells to evolve in a766

statistically tree-like manner. Furthermore, the large degeneracy of equiva-767

lent self-descriptions implies that such a language may be surprisingly easy768

to originate spontaneously, yet once originated, will be heavily constrained769

to change only in ancestrally compatible ways [12].770

It is easy to imagine that macromolecular interaction codes, like lan-771

guages, evolve to be both expressive and unambiguous, that is, to encode772

more and more interactions in robust and error-tolerant (and ambiguity-773

reducing) ways. The coding theory analogy to the universality of replication774

by complementarity lies in the notion of non-trivial perfect codes. Perfect775

codes uniquely cover all of a finite sequence space with a maximum number776

of code-words spaced a minimum distance apart, so that every single pos-777

sible code-word can be received unambiguously and decoded correctly even778

after one or more symbols in the code-word were altered. While we expect779

biological codes to be generally far from perfect, the theory of perfect codes780
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may be a useful reference point from which to relax assumptions, and seems781

relevant to the stochastic setting of gene expression. In this context, it is782

of interest to note that surprisingly few varieties of small non-trivial perfect783

codes exist (where non-trivial means a code with more than one code word,784

not using every possible sequence as a codeword, nor the P -ary repetition785

code) [102]. For symbolic alphabets of prime power size, all non-trivial per-786

fect codes have codeword sizes, lengths, and minimum distance parameters787

equal to those of either Hamming Codes or Golay Codes [102, 127]. However,788

the Golay codes are too large to be relevant to the problem of perfect coding789

of 20 or fewer aaRS-tRNA cognate interactions. The RNA alphabet is of790

prime power size, namely four. The Hamming code Hr(h) over an alphabet791

of size r with positive integer index parameter h has M = r
n−h

codewords of792

length n = (rh − 1)/(r − 1) and minimum Hamming distance between code-793

words of 3, allowing correction of single-symbol errors. It is of interest to794

note that H4(2) contains four codewords of size 5, H4(3) contains 16 code-795

words of size 21, and H4(4) contains 64 codewords of size 85. The H4(3)796

perfect codeword length of 21 is surprisingly close to the size of a postulated797

primordial tRNA hairpin [24, 128, 129] with acceptor stem length of 7 and798

anticodon loop of length 7, while the H4(4) perfect codeword length of 85 is799

surprisingly close to the typical lengths of tRNAs today.800

We can use our theory to roughly calculate the probability p(n, P, d,H)801

that an aaRS-tRNA network will evolve P matching codewords of minimum802

distance d over an interface of length n in a system with M mutually dissim-803

ilar tRNA replicators and N mutually dissimilar aaRS ribozyme replicators804

(with P ≤ M,N), and aaRS-tRNA per-site background and target symbol-805

pair frequencies defined by the expected relative entropy H. Counting all806

possible pairs between tRNA and aaRS genes, and assuming that tRNAs807

have evolveable anticodons, this probability is808

p(n, P, d,H) = (MP )(NP )N2(n, P, d)(1 − exp(−E(n, P ))), (23)

where N2(n, P, d) is the number of binary codes of length n, size P and mini-809

mum Hamming distance d, E(n, P ) = kMNn
2
2
−nPH

is the expected number810

of random sequences achieving normalized score nPH in a search space of811

size nM × nN , from Karlin-Altschul theory (and in which k is a correction812

factor for edge effects) [130], and where the expected relative entropy per-site813

H may be computed by enumerating over all pairs of RNA bases, assuming814
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a specific base composition common to all genes, and an expected target815

similarity corresponding to one or fewer errors per n symbols. Although816

a unique finite number of codes N2(n, P, d) exists over any finite sequence817

space, no expression for its value is known [127]. However this number must818

be much larger than the number of ways to choose P codewords from any819

Hamming-code of length n and size Q ≥ P , provided Hamming codes of820

that length and size exist, because of the existence of a potentially large, yet821

unknown number of non-linear codes with Hamming parameters [127]. The822

number of distinct Hamming codes of length n over an alphabet of size q is823

q!n! [127]. Further investigation is needed, but we believe that p(n, P, d,H)824

may be surprisingly large.825

The theory by which we computed stationary genotype distributions can826

incorporate up to three kinds of mutational asymmetry [88] such as GC-bias,827

transition bias, or transcription- or strand-dependent mutation, all relevant828

to problems in the evolution of the genetic code. It should be expected829

that incorporating asymmetric mutation will break symmetries in the fit-830

ness of genotypes and will change the expected composition of interaction-831

determining features.832

An importantly unrealistic assumption in the present work is that of large833

aaRS concentrations in our macroscopic model of aminoacylation. The sto-834

chastic dynamics of cellular-scale aminoacylation coupled to the sink of trans-835

lating ribosomes is complex, exhibiting phenomena such as ultra-sensitivity [111].836

We have implemented a mesoscopic version of aminoacylation kinetics using837

Gillespie’s direct method [131], results with which will be published else-838

where. Although our results do not depend on how translational rate is839

implemented, our model can fruitfully be integrated into a fully stochastic840

model of translation such as in Shah et al. [132]. In future work we will in-841

corporate these and other extensions into new models for the coevolution of842

genetically encoded descriptions and self-descriptions with codon meanings843

and metabolism in structured populations, to better understand evolution844

through the Darwinian Transition.845
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Appendix A. Decomposition of the steady state solution of fixed855

genotypes with multiplicative fitness components856

Remark 1. Define V to be the set of possible values in a site. V could be857

the set of nucleotides, the set of amino acids, etc. In this particular study,858

V = {0, 1}859

Remark 2. Define G
(M,N,n,p)

(M not necessarily unequal to N) to be the set860

of all possible genotypes of width n ∈ N and pn sites per-gene, with p ∈ N.861

If ∀g ∈ G(M,N,n,p)
have length L, then ∣G(M,N,n,p)∣ = ∣V∣L.862

Remark 3. Consider a genotype, g ∈ G
(M,N,n,p)

. Let T be the set of tRNA863

genes in g with ∣T∣ = M , 2 ≤ M < ∞ and let A be the set of aaRS genes in864

g with ∣A∣ = N , 2 ≤ N < ∞. The lengths of genes t ∈ T and a ∈ A are all865

equal to np ∀t, a. Let p(M +N ) = Lb. Define block b
g

i ∈ VLb , i ∈ {1, 2, ..., n}866

to be the sequence of p ordered values starting at the j
th

site across all t and867

a genes in genotype g, with j = (i − 1)p. For a genotype g ∈ G
(M,N,n,p)

, there868

will be n blocks b
g

i , and each will be Lb long, it is possible for b
g

i = b
g

j for869

1 ≤ i ≠ j ≤ n, and G
(M,N,1,p)

= VLb is the set of all possible types of blocks.870

Theorem 1. Let wg be the viability of genotype g ∈ G
(M,N,1,p)

, N be the871

population size, and β = N − 1 for the Moran process, β = 2(N − 1) for872

the haploid Wright-Fisher process, and β = 2N − 1 for the diploid Wright-873

Fisher process. Given that the stationary frequency P
∗
g of genotype g is P

∗
g =874

w
β
g

∑h∈G(M,N,1,p)wβ
h

, and that the viability Wκ is multiplicative across blocks in a875

genotype κ ∈ G
(M,N,n>1,p)

(i.e. Wκ =

n

∏
i=1

wbκ
i
), then the stationary frequency876

P
∗
κ of genotype κ is877

P
∗
κ =

n

∏
i=1

P
∗
bκ
i

(A.1)
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Proof (Proof of A.1). P
∗
κ =

n

∏
i=1

P
∗
bκ
i

878

By definition,879

P
∗
κ =

W
β
κ

∑ξ∈G(M,N,n,p)Wβ

ξ

(A.2)

By the multiplicativity property this becomes880

P
∗
κ =

∏n

i=1 w
β

bκ
i

∑ξ∈G(M,N,n,p) ∏n

j=1w
β

b
ξ
j

. (A.3)

It needs to be shown that
∏n

i=1 w
β

bκ
i

∑ξ∈G(M,N,n,p) ∏n

j=1w
β

b
ξ
j

=

n

∏
i=1

w
β

bκ
i

∑g∈G(M,N,1,p) w
β
g

. Essen-881

tially, the proof breaks down to whether ∑
ξ∈G(M,N,n,p)

n

∏
j=1

w
β

b
ξ
j

= ( ∑
g∈G(M,N,1,p)

w
β
g )
n

882

Start with,883

∑
ξ∈G(M,N,n,p)

n

∏
j=1

w
β

b
ξ
j

= ∑
ξ∈G(M,N,n,p)

w
β

b
ξ
1

⋅ w
β

b
ξ
2

⋅ . . . ⋅ w
β

b
ξ
n

. (A.4)

Since G
(M,N,1,p)

is the set of all possible blocks, b
ξ

j , and no combination of Lb884

length genotypes across blocks is impossible, there are B
n

possible sequences885

for genotypes ξ ∈ G
(M,N,n,p)

, where B = ∣G(M,N,1,p)∣. This is consistent with886

the cardinality of G
(M,N,n,p)

since L = Lbn and thus B
n
= ∣V∣L = ∣V∣Lbn =887

∣G(M,N,1,p)∣n. Since we are summing over all possible genotypes ξ ∈ G
(M,N,n,p)

,888

and since different genotypes in G
(M,N,n,p)

with the same blocks but in differ-889

ent orders will have the same viability, then every viability term will be of890

the form ( n

ng1 ,ng2 ,...,ngB
)wng1βg1 w

ng2β
g2 . . . w

ngBβ
gB where each gi ∈ G

(M,N,1,p)
is (pos-891

sibly arbitrarily) ordered from 1 to B and ngi ∈ W is the number of blocks892

of genotype ξ that are gi. Since every genotype is represented, (A.4) is a893

multinomial and can be rewritten ( ∑
g∈G(M,N,1,p)

w
β
g )
n

. If this were not the case894

and one of the viability coefficients was less than the expected multinomial895
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coefficient, then that could only mean that at least one genotype was not896

being counted. If one had a coefficient larger than expected it would have to897

mean that at least one genotype was being counted more than once. There-898

fore to prove (A.1), plug this multinomial representation into (A.3),899

P
∗
κ =

∏n

i=1 w
β

bκ
i

(∑g∈G(M,N,1,p) w
β
g )n

=

n

∏
i=1

w
β

bκ
i

∑g∈G(M,N,1,p) w
β
g

=

n

∏
i=1

P
∗
bκ
i

900

∴P
∗
κ =

n

∏
i=1

P
∗
bκ
i
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[102] A. Tietäväinen, On the Nonexistence of Perfect Codes over Finite1206

Fields, SIAM Journal on Applied Mathematics 24 (1973) 88–96.1207

[103] F. I. Solov’eva, Perfect binary codes: bounds and properties, Discrete1208

Mathematics 213 (2000) 283–290.1209

[104] H. Helgert, R. Stinaff, Minimum-distance bounds for binary linear1210

codes, IEEE Transactions on Information Theory 19 (1973) 344–356.1211

[105] M. Best, A. Brouwer, F. MacWilliams, A. Odlyzko, N. Sloane, Bounds1212

for binary codes of length less than 25, IEEE Transactions on Infor-1213

mation Theory 24 (1978) 81–93.1214
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Table 1: Symbols, parameter values and references for the present work.

Symbol Meaning Value (Reference)
P # of cognate tRNA-aaRS gene/species pairs
M # tRNA genes/species when M ≠ N
N # aaRS genes/species when M ≠ N
n width of interaction interface in site-blocks

k
nc
d dissociation rate constant with 0 matches 10 000 s

−1

k
c
d dissociation rate constant with k matches 220 s

−1
[94]

k # matches to diminish from k
nc
d to k

c
d, 1 ≤ k ≤ n

G
(M,N,n,p)

genotype space with p sites per-gene per-site-block

g, gH , gM genomes g ∈ G
(P,P,n,p)

ti tRNA gene/species, 1 ≤ i ≤ P or i ∈ {0, 1}
aj aaRS gene/species, 1 ≤ j ≤ P or j ∈ {0, 1}
tir, ajr state-bits of ti and aj, 1 ≤ r ≤ n
mir, njr mask-bits of tir and ajr
L genome length, L ∈ {2Pn, 4Pn}
R matching rule, R ∈ {XNOR,AND,AND-XNOR}
mi,j, m

R
i,j number of matches between ti and aj with rule R

k
i,j

d
dissociation rate constant of ti and aj

cmax(ti⟶ aj) maximal decoding probability
ci codons, 1 ≤ i ≤ P or i ∈ {0, 1}
aaj amino acids, 1 ≤ j ≤ P or j ∈ {0, 1}
sl site-types, 1 ≤ l ≤ P or l ∈ {0, 1}
c(aaj∣ci) decoding probability
γ steady-state free energy of the cell [61]
ι free energy of a match (viz. ε in [47, 54])
θ dissociation rate constant ratio
φ max. missense fitness cost per site-type [37]
ψ nonsense fitness cost per site-type
δ ambiguity fitness cost per site-type
w viability fitness factor or term
ε multiplicative epistasis per site-block [15]
β size of a haploid Moran population minus 1 [90, 93]
dh(⋅, ⋅) Hamming distance [95]

H(⋅, ⋅),HN
k=1⋅ harmonic average
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Table 2: Viabilities of the symmetric multiplica-
tive binary interaction channel with one site-
block under two different matching rules.

Genotype XNOR
a

AND
a

Viabilities
b

(t0a0t1a1) (⇔) (∧) w⇔ w∧

0000 ∷ δ
2

ψ
2

0001 ∷ φ ψ
2

0010 ∷ ψδ ψ
2

0011 1 ψ

0100 ∷ φ ψ
2

0101 ∷ ∷ ψ
2

ψ
2

0110 ∖ φ
2

ψφ
0111 ψδ ψδ

1000 ∷ ψδ ψ
2

1001 ∕ φ
2

ψδ

1010 ∷ ∷ ψ
2

ψ
2

1011 φ φ
1100 1 ψ
1101 ψδ ψδ
1110 φ φ

1111 δ
2

δ
2

a
Iconic representation of network phenotypes
expressed for each genotype with each rule.

b
0 < ψ < φ < δ = (φ + 1)/2 < 1.
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