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Abstract 

Pharmacoresistant epilepsy is a common neurological disorder in which increased neuronal 

intrinsic excitability and synaptic excitation lead to pathologically synchronous behavior in the 

brain. In the majority of experimental and theoretical epilepsy models, epilepsy is associated 

with reduced inhibition in the pathological neural circuits, yet effects of intrinsic excitability are 

usually not explicitly analyzed. Here we present a novel neural mass model that includes 

intrinsic excitability in the form of spike-frequency adaptation in the excitatory population. We 

validated our model using local field potential data recorded from human 

hippocampal/subicular slices. We found that synaptic conductances and slow adaptation in the 

excitatory population both play essential roles for generating seizures and pre-ictal oscillations. 

Using bifurcation analysis, we found that transitions towards seizure and back to the resting 

state take place via Andronov-Hopf bifurcations. These simulations therefore suggest that single 

neuron adaptation as well as synaptic inhibition are responsible for orchestrating seizure 

dynamics and transition towards the epileptic state. 

 

Significance statement 

Epileptic seizures are commonly thought to arise from a pathology of inhibition in the brain 

circuits. Theoretical models aiming to explain epileptic oscillations usually describe the neural 

activity solely in terms of inhibition and excitation. Single neuron adaptation properties are 

usually assumed to have only a limited contribution to seizure dynamics. To explore this issue, 

we developed a novel neural mass model with adaption in the excitatory population. By 

including adaptation and intrinsic excitability together with inhibition in this model, we were 
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able to account for several experimentally observed properties of seizures, resting state 

dynamics, and pre-ictal oscillations, leading to improved understanding of epileptic seizures. 

 

Introduction 

Epilepsy is the fourth most common neurological disorder, and is responsible for a greater total 

global burden of disease than any neurological conditions except for stroke and migraine (Chin 

et al., 2014; Beghi et al., 2005; Rothstein et al., 2005). Epileptic seizures are characterized by the 

increased excitability/excitation in the brain’s recurrently coupled neuronal networks (Lytton, 

2009). Typically, experimental seizure models assume that seizures occur due to decreased 

inhibition (Karnup et al., 1999; Sivakumaran et al., 2015) or increased excitation in the neural 

networks (Ursino et al., 2006; Hall et al., 2013). 

 

There is also evidence that interneurons increase their firing at seizure initiation (Lillis et al., 

2012) and are active during the time course of the epileptic activity (Ziburkus et al., 2006), 

suggesting that the activity of interneurons contributes importantly to aspects of seizure 

dynamics. The activity-dependent interplay between the pyramidal cells and interneurons could 

play an essential role for seizure generation mechanisms (Buchin et al., 2016; Krishnan et al., 

2011; Naze et al., 2015). In neural mass models, neuron populations are often treated as rate 

units lacking intrinsic adaptation (Touboul et al., 2011). The dynamic behavior of the neural 

populations is determined by the balance between excitation and inhibition. Despite the 

simplicity of these models, they can be successfully used to reproduce resting and interictal 
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states as well as ictal discharges by producing time series comparable with macroscopic 

measurements such as electroencephalogram signals (Demont-Guignard et al., 2009). 

 

However, not all types of epileptic seizures can be explained by looking only at the balance 

between excitation and inhibition (Traub et al., 2005); intrinsic excitability changes on the 

single-neuron level also play an important role (Krishnan et al., 2011). Studies on human 

subiculum tissue showed that the complete blockade of type A GABAergic neurotransmission 

(and thus inactivation of the effects of inhibitory population) precludes seizure emergence 

while, if applied after seizure initiation, it abolishes rather than enhances the seizure activity. 

These manipulations usually bring back the neural network in the slice towards pre-ictal events, 

which have substantially different frequency content than seizure activity (Huberfeld et al., 

2011), and which in this case fail to trigger ictal events. In human epileptic tissues, including 

peri-tumoral neocortex (Pallud et al., 2014), interictal discharges are generated spontaneously. 

These events are triggered by interneurons which depolarize pyramidal cells with impaired 

chloride regulation, leading to depolarizing effects of GABA. Once activated, pyramidal cells 

excite other cells via AMPA-mediated glutamatergic transmission. In these tissues, seizures can 

be produced by increasing local excitability using modified bathing media. The transition to 

seizures is characterized by the emergence of specific pre-ictal events initiated by pyramidal 

cells which synchronize local neurons by AMPA signals. These pre-ictal events cluster before 

seizure initiation which requires functional AMPA, NMDA as well as GABAA signals. The 

conventional neural mass models are unable to explain these pre-ictal oscillations because they 

require the excitatory population to generate periodic oscillations in the absence of inhibition. 
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The second motivation for incorporating intrinsic excitability into neural mass models is that in 

epileptogenic areas, such as human subiculum, there is a substantial proportion of neurons with 

non-trivial intrinsic properties such as spike-frequency adaptation (Huberfeld et al., 2007; 

Jensen et al., 1994). To take these properties into account, neural mass models need to be 

enriched by the addition of components such as slow potassium currents (Pinsky et al., 1994). 

 

In addition, seizures are typically accompanied by high potassium concentrations (Xiong et al., 

1999; Fröhlich et al., 2006; Florence et al., 2009; Dietzel et al., 1986), which in turn activate 

calcium currents (Fröhlich et al., 2008; Bazhenov et al., 2004), which in turn affect spike-

frequency adaptation and intrinsic bursting. These properties are likely to modulate the single 

neuron firing and thus further influence the neuronal dynamics. These findings motivate the 

development of neural mass models that can capture the intrinsic excitability in coupled neural 

populations. 

 

In this work, we developed a novel neural mass model consisting of an inhibitory neural 

population and an adaptive excitatory neuronal population (Buchin et al., 2010). We calibrated 

the parameters of the model to local field potential (LFP) data recorded in human subiculum 

slices during rest, seizure, and full disinhibition in per-ictal condition. We then analyzed the 

model as calibrated to each of these three regimes. Our results emphasize the role of intrinsic 

excitability such as adaptation in the excitatory population, which help explain the transitions 

between rest, seizure, and full disinhibition states. 
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Materials and Methods 

Epileptic tissue: Temporal lobe tissue blocks containing the hippocampus, subiculum, and part 

of the entorhinal cortex were obtained from 45 people of both sexes with pharmacoresistant 

medial temporal lobe epilepsies associated with hippocampal sclerosis (age, 18–52 years; 

seizures for 3–35 years) undergoing resection of the amygdala, the hippocampus, and the 

anterior parahippocampal gyrus. All of the individuals gave their written informed consent and 

the study was approved by the Comité Consultatif National d’Ethique. 

 

Tissue preparation: The post-surgical tissue was transported in a cold, oxygenated solution 

containing 248 mM d-sucrose, 26 mM NaHCO3, 1 mM KCl, 1 mM CaCl2, 10 mM MgCl2 and 10 

mM d-glucose, equilibrated with 5% CO2 in 95% O2. Hippocampal-subicular-entorhinal cortical 

slices or isolated subicular slices (400 µm thickness, 3x12 mm length and width) were cut with a 

vibratome (HM650 V, Microm). They were maintained at 37 °C, and equilibrated with 5% CO2 in 

95% O2 in an interface chamber perfused with a solution containing 124 mM NaCl, 26 mM 

NaHCO3, 4 mM KCl, 2 mM MgCl2, 2 mM CaCl2 and 10 mM d-glucose. Bicuculline or picrotoxin 

was used to block GABAA receptors. Ictal-like activity was induced by increasing the external K+ 

concentration to 8 mM and reducing the Mg2+ concentration to 0.25 mM to increase the cellular 

excitability (similar to Huberfeld et al., 2011). 

 

Recordings: Up to four tungsten electrodes etched to a tip diameter of ~5 µm were used for the 

extracellular recordings. The signals were amplified 1,000-fold and filtered to pass frequencies 

of 0.1 Hz to 10 kHz (AM systems, 1700). The extracellular signals were digitized at 10 kHz with a 
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12–bit, 16-channel A-D converter (Digidata 1200A, Axon Instruments), and monitored and saved 

to a PC with Axoscope (Axon Instruments). 

 

Data analysis: Records were analyzed using pCLAMP 10 software and scripts written in Matlab 

2016a. Power spectrum estimation was performed using fast Fourier transforms. The major 

frequencies of oscillations were computed via the multitaper method (Thomson 1982). 

 

Simulations and analysis: Neural population model simulations were performed in XPPAUT 8.0 

using the direct Euler method of integration, with a time step of 0.05 ms. Smaller time steps 

were tested and provided substantially similar results. Bifurcation analysis was performed in the 

AUTO package (http://www.math.pitt.edu/~bard/xpp/xpp.html). In all simulations the initial 

conditions were systematically varied to check stability of numerical results. The model code is 

available on GitHub (https://github.com/abuchin/EI-with-adaptation). The data for the model 

was taken from one representative patient in the brain slice demonstrating resting state, seizure 

and pre-ictal oscillations. 

 

Neural mass model: In the model we considered interacting excitatory and inhibitory neural 

populations coupled by AMPA and GABAA synapses. All model variables and parameters are 

presented in Tables 1 and 2. Each population was characterized by the average membrane 

potential of a population of leaky integrate-and-fire (LIF) neurons, similar to (Touboul et al., 

2011, Chizhov et al., 2007) with approximations for adaptive currents taken from (Buchin et al., 

2010): 
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The firing rate of each population is computed based on the interspike interval distribution of 

the neural population (Gerstner et al., 2002): 

 

 

 

where 

 

  

 

and 
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In all simulations  has been approximated by the following sigmoid function: 

 

 

 

The population firing rate determines the adaptive (a), excitatory (e) and inhibitory (i) 

conductances. Their dynamics are computed using the second-order approximation (Wendling 

et al., 2002; Chizhov, 2013): 

 

 

 

 

 

To mimic the afferent excitatory input, the excitatory population also received stochastic 

excitatory input modeled as an Ornstein-Uhlenbeck process (Buchin et al., 2010): 

 

=  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312561doi: bioRxiv preprint 

https://doi.org/10.1101/312561
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

 

To mimic elevated extracellular potassium from epileptogenic slice experiments, in the 

population model, we increased potassium reversal potential in both populations from –90 

mV to –75 mV, i.e. from  mM to  mM. This value of was computed based on 

Nernst equation, , where  mV and  mM (Krishnan et al, 

2011). 

 

All model parameter values and variable names are present in Table 1 and 2. The initial 

parameter set was chosen manually to reproduce the pre-ictal like oscillations due to balance 

between  and , seizure and resting state were fit such that  parameter variations 

would make a transition between seizure and resting state. 

 

Local field potential model: The LFP was calculated based on the activity of the excitatory 

population. We assumed that pyramidal cells activity dominates the extracellular field (Buzsáki 

et al., 2012). The dominant theory is that the LFP component is dominated by the single neuron 

dipole contribution (Buzsáki et al., 2012). Since the neural mass model averages over single 

neurons, the dipole moment cannot be directly modeled. Thus, to approximate the LFP being 

recorded near somas of the excitatory populations, we used the assumption that the average 

membrane potential of the excitatory population is proportional to the LFP, i.e.  

(Ursino et al., 2006; Demont-Guignard et al., 2009; Wendling et al., 2012; Ratnadurai-Giridharan 

et al., 2014). 
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Results 

Construction of the population model 

We developed а model of interacting excitatory and inhibitory population inspired by Wilson-

Cowan approach (Wilson et al., 1972). It consists of excitatory and inhibitory populations 

coupled by synaptic connections, as shown in Fig. 1A. The firing rate in each population depends 

on the average membrane potential , which is governed by the subthreshold dynamics of 

leaky integrate-and-fire (LIF) neuron population similar to (Gerstner et al., 2002; Chizhov, 2013), 

as explained in the Materials and Methods. Firing rates of the excitatory and inhibitory 

populations are determined using the values of  put through function  (Gerstner et 

al., 2002; Johannesma, 1968). To make the model numerically stable and amenable to 

bifurcation analysis we used a sigmoid function to estimate the population firing rate provided 

by the  approximation. To justify the choice of sigmoid parameters we used least-

squares to match it with the analytical solution (Johannesma, 1968), as shown in Fig. 1C, D. The 

sigmoid approximation allows one to efficiently take into account zero and linear parts of the 

potential-to-rate transfer functions , and provides saturation due to the single neuron 

refractory period (Renart et al., 2004). The sigmoid functions of excitatory and inhibitory 

populations are shown in Fig. 1C and 1D. The difference between the excitatory and inhibitory 

populations was taken into account by adjusting passive conductances for sodium, potassium, 

and chloride leak currents estimated in (Krishnan et al., 2011) based on dynamic ion 

concentration model. 
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The subthreshold  dynamics determine the synaptic , , , 

 and intrinsic  conductances, shown in Fig. 1A, computed according to the 

population firing-rates . Similar to spiking neural network models (Bazhenov et al., 2004), 

(Ratnadurai-Giridharan et al., 2014), adaption in our population model reduces neural firing in 

the excitatory population after periods of activity. Excitatory population receives external 

random synaptic input to model excitation from the rest of the brain similar to (Touboul et al., 

2011; Jansen et al., 1995). To mimic the experimental epileptogenic conditions of human 

subiculum slice experiments, the potassium reversal potential was elevated from –95 mV to –75 

mV both in the excitatory and inhibitory populations to provide excitatory drive to reproduce 

the experimental conditions. Elevation of extracellular potassium also leads the increase of 

intracellular chloride reducing the efficiency of inhibition due to elevated GABAA reversal 

potential (Huberfeld et al., 2007), Buchin et al., 2016). To generate the model output 

comparable with experimental data, we computed the LFP generated by the excitatory 

population (Buzsáki et al., 2012). This approximation assumes that all pyramidal cells in the 

excitatory population contribute equally to the recorded LFP signal, as shown in Fig. 1B. Thus 

the total LFP near somas depends on the average value of the membrane potential in the 

excitatory population with a certain dimensionality constant, i.e. . 

 

Reproduction of epileptic oscillations 

When the excitatory and inhibitory synaptic currents were dynamically balanced, the activity 

stayed in the low-firing regime, as indicated by LFP power spectrum. The recorded pyramidal 

cell during this period demonstrated sparse firing activity, partially time-locked with the 
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discharges on the LFP. We call this activity in the model the balanced or resting state. In this 

regime the model does not generate epileptic oscillations. To evaluate the model performance 

in this resting state, we compared the synthetic LFP with the experimental LFP recorded 

between seizures, as shown in Fig. 2A. Similar to the experimental data, we found that in the 

resting state, the model generates broadband oscillations, with the highest power in the 1–15 

Hz frequency band. In this regime, the average membrane potential of the excitatory population 

 stays in the range from –60 to –50 mV. 

 

We found that the model was not capable of generating interictal discharges using this 

parameter set. It has been recently suggested that interneurons play the key role in generating 

interictal activity (Cohen et al., 2002; Huberfeld et al., 2011). In the presence of GABAA blockade 

these events were completely blocked, indicating that they depend on combination of 

GABAergic and glutamatergic signaling. In the recent population model (Chizhov at al. 2017) it 

was proposed that interictal discharges could be initiated by the inhibitory population, thus 

explaining interneuron firing prior to pyramidal cell firing (Huberfeld et al., 2011). In our model 

we have not explored this scenario, i.e. when the inhibitory population is also receiving the 

background synaptic input. These mechanisms would likely play an important role for seizure 

initiation; however, incorporating all mechanisms at once would make the model impossible to 

study analytically. Therefore, we have not considered interictal discharges prior to seizure, while 

aiming to specifically describe other types of oscillations. 
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To reproduce the seizure state in the model, we reduced the synaptic inhibition of the 

excitatory population by decreasing the synaptic conductance parameter , as shown in Fig. 

2B (black arrow). All other parameters of the model remained the same. In this case the model 

moved into an oscillatory regime in which the power spectrum of the oscillations changed 

dramatically to include strong oscillations in the 1–4 Hz frequency band, which is typical for ictal 

discharges (Huberfeld et al., 2011). 

 

We compared the model power spectrum with the measured LFP recorded during the initial 

phase of the ictal discharge with the hypersynchronous activity onset. During this activity 

regime the recorded pyramidal cells generated strong bursts of spikes temporally locked to the 

LFP, as shown in Fig. 2B. The population model displayed discharges with the same frequency 

band as in the LFP, indicating large amount of synchrony in the excitatory population (Buzsáki et 

al., 2012). Note that we considered only the initial phase of the seizure; the whole ictal event is 

shown in Fig. 3E. 

 

To further test the validity of our model, we explored its dynamics with inhibitory activity 

completely blocked, as shown in Fig. 2C. In these simulations the initial conditions and 

parameter values of the model were set to the seizure state, but with the conductance  

(from the inhibitory to the excitatory population) set to zero to mimic the experimental 

conditions. In this case the GABAergic effects of the inhibitory population in the slice has been 

fully blocked by bicuculine after seizures have been previously established (Huberfeld et al., 

2011). In response to this change, the activity in the slice became highly synchronized and 
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reduced to regular pre-ictal discharges. During these oscillations the pyramidal cells generated 

large bursts of activity, temporally coupled with the LFP, Fig. 2C. In the model, similarly to the 

experimental preparation, the blockade of the GABAergic signaling mimicked by the abolition of 

the inhibitory population led to the development of a slow oscillatory rhythm with a peak 

frequency around 1 Hz. These events have been previously reported as pre-ictal discharges 

(Huberfeld et al., 2011). This rhythm has much slower frequency than seizures, and is usually 

within 1–4 Hz frequency range (Buchin et al., 2016; Huberfeld et al., 2011). In addition, these 

events recur regularly for long periods with very limited modulation.  

 

We call this regime of activity pre-ictal discharges because similar activity takes place before 

transition towards an ictal state (Huberfeld et al., 2011). In this regime, the dynamics of the 

excitatory population are determined only by the balance between self-excitation, , 

after-hyperpolarization current (AHP) (Buchin et al., 2010; Chizhov et al., 2008), , 

and the afferent synaptic current . Hence these pre-ictal oscillations in the model are 

driven by the synaptic noise and adaptation. The excitatory input to the excitatory population 

 drives the upswings of  due to recurrent excitatory synapses, with activity then being 

terminated by AHP currents. These transitions take place randomly due to stochastic nature of 

the synaptic input. 

For quantitative comparisons between the model and experiment we used the linear fit to the 

power spectrum over frequencies and peak estimation, as shown in Table 3. We found that 

there is substantial intersection between linear fits applied to the power spectrums in resting, 

seizure, and pre-ictal states, as shown in Fig. 2. We found that there is a substantial overlap 
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between these frequencies, providing validation for the model. Note that we compared the 

overall spectral characteristics between the model and experiment by variation of only one 

parameter,  to reproduce transitions between the pre-ictal, resting and seizure states. If 

more parameters are varied at the same time, it would be possible to get a better match 

between the model and experiment. 

 

Overall oscillations in our population model are controlled by the balance between synaptic 

currents, adaptation and external synaptic input. When synaptic and intrinsic conductances are 

balanced, the population demonstrates resting state activity, characterized by a flat power 

spectrum. When there is an imbalance between excitation and inhibition, populations start 

developing oscillatory rhythms associated with ictal discharges with a frequency of 3-4 Hz. 

However, complete loss of inhibition leads to the development of another population rhythm, 

pre-ictal discharges with 1 Hz frequency, controlled by adaptation and recurrent excitation. 

Thus the dynamic state of a neural population depends on the interplay between the intrinsic 

and synaptic excitability within populations as well as external synaptic input. 

 

Analysis of the population model 

In order to delineate the mechanisms giving rise to the different oscillatory modes in the model, 

we used continuation techniques and bifurcation analysis. Since it is impossible to use the 

standard techniques to identify bifurcations in the presence of noise, we analyzed the model in 

the absence of an external input . This allowed us to compute the model behavior in the 

stationary regime and characterize bifurcations happening during transitions between different 
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oscillatory regimes. The initial parameters were chosen to correspond to the resting state. The 

parameter variations were calculated around this point in the parameter space for , ,  

and  bifurcation diagrams, with other parameters held fixed. Analysis of  and  

variations was implemented for another parameter set, where  uS/cm2 and  

uS/cm2; other parameters remained the same. 

 

The frequency of seizure oscillations depends on the strength of the synaptic currents in the 

population model. There is a nonlinear relationship between seizure major frequency and the 

recurrent excitatory conductance , as shown in Fig. 3A. When the  is increased up to 2.8 

mS/cm2, the model responds with an oscillatory frequency near 7.5 Hz. When self-excitation is 

further increased up to 4 mS/cm2, seizure-related oscillations disappear since the system moves 

to the high activity state due to sigmoidal saturation of the transfer function, as shown in Fig. 1C 

and 1D. The amount of stimulation of the inhibitory population also influences the oscillatory 

frequency. When  is in the range from 0 to 0.29 mS/cm2, shown in Fig. 3B, the population 

model generates seizure activity with frequencies from 1.2 to 2.5 Hz. Note that seizure 

oscillations are possible even when  mS/cm2. 

 

Inhibitory synaptic connections also affect the oscillatory frequency of seizure activity. When 

 is as low as ~0.6 mS/cm2, as shown in Fig. 3C, the seizure activity starts around 3 Hz; it 

decreases to approximately 1 Hz when  is close to zero (when  mS/cm2, there is no 

seizure activity in the model). The amount of recurrent inhibition also determines the seizure 

oscillatory frequency, as shown in Fig. 3D. Seizure activity can be initiated by sufficient 
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inhibition, i.e. when  is near 2 mS/cm2, seizures of 2.5 Hz are observed. When  increases, 

the seizure frequency decreases; for example,  at 10 mS/cm2, seizure activity is approximately 

1.8 Hz. 

 

In the previous sections, the population model was calibrated to data for short periods of 

seizure activity, where the frequency was not substantially changing, as shown in Fig. 2B. Yet, 

one can see that in the experiment, seizure activity is not stationary and its frequency changes 

over time. The time course of a typical seizure is shown in Fig. 3E. Before the seizure starts there 

is a resting state, characterized by occasional interictal (Cohen et al., 2002) and pre-ictal 

discharges (Huberfeld et al., 2011). When seizure starts at 22 s, it is characterized by fast 

oscillations of the extracellular field in the range of 5–6 Hz in the initial phase. During the time 

course of seizure activity, it gradually decreases to 1 Hz frequency, and from 52 s it gradually 

stops. 

 

To study the amplitude of pathological oscillations, we performed a bifurcation analysis and 

tracked changes of the average membrane potential in the excitatory population, , as shown 

in Fig. 4. the self-excitation conductance  (Fig. 4A). We found that increasing  leads to 

the development of ictal oscillations when its value increases beyond approximately 2.8 

mS/cm2. During the gradual increase of , the constant steady state loses stability via the 

supercritical Hopf bifurcation (Izhikevich, 2007). After passing this point the neural populations 

start developing seizure oscillations. This activity regime is stable for large  variations, 

implying that seizure dynamics are possible for a large range of recurrent excitation. When  
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becomes higher than a critical value (more than 4.1 mS/cm2) the seizure state goes to the high 

activity state with no oscillations. This happens due to the sigmoid approximation of the 

population rate (Johannesma, 1968), when  reaches the saturation level, as shown in Fig. 

1C, D. 

 

Second, we considered the excitatory to inhibitory conductance  (Fig. 4B). In this case, 

seizure activity is blocked when  is larger than 0.3 mS/cm2. If  is smaller than 0.3 mS/cm2, 

it leads to seizure activity via a subcritical Hopf bifurcation. Similar to the  bifurcation 

diagram, seizure dynamics are possible for a large range of . These results show that a 

decrease in the excitatory conductance from excitatory to inhibitory populations is sufficient to 

provoke seizure activity. Note that even if  mS/cm2, the excitatory population still 

receives the input from the inhibitory one because potassium reversal potential is elevated. 

These changes in potassium reversal potential drive both excitatory and inhibitory population 

even if synaptic drive is not present. For example, when =0 mS/cm2 the increased potassium 

reversal potential still drives the inhibitory population, providing the inhibitory input to the 

excitatory population. It happens because it decreases the leak current thus depolarizing the 

membrane potential of excitatory and inhibitory neurons. Therefore, seizure oscillations are still 

present because inhibition is still present. Seizure frequency in this case is near 1.25 Hz (Fig. 3B) 

and  oscillates between –61 and –25 mV. 

 

Third, we considered inhibitory to excitatory conductance  (Fig. 4C). When , the 

model shows resting state activity. This corresponds to the condition when the inhibitory 
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population does not have any influence on the excitatory one. Experimentally this scenario is 

achieved when inhibitory neurotransmission is completely blocked. Therefore, in the complete 

absence of inhibition, seizure activity could not be generated. In turn, pre-ictal oscillations are 

not possible without the contribution of the external synaptic noise  when  

mS/cm2. When there is stochastic synaptic input, it occasionally brings the system to the 

oscillatory regime associated with seizures (Fig. 2C). Then oscillations are promoted due to 

recurrent excitation and terminated via AHP adaptation mechanism. Thus without participation 

of the inhibitory population, the model is incapable of seizure generation. In turn, pre-ictal 

oscillations do not require inhibition, but strongly depend on the recurrent excitatatory-to-

excitatory connections , adaptation  and the external synaptic input . When 

inhibitory to excitatory conductance  becomes strong enough, around 0.65 mS/cm2, seizure 

oscillations become truncated and the system moves back to the resting state via subcritical 

Andronov-Hopf bifurcation. 

 

Fourth, we evaluated the role of recurrent inhibitory conductance  for seizure dynamics (Fig. 

4D). When there is substantial amount of self-inhibition in the inhibitory population, it leads to 

an increase of excitation in the whole system because of synaptic coupling. If  is above 2.1 

mS/cm2, it leads to the development of seizure oscillations via a supercritical Hopf bifurcation. 

Seizure activity in this case persists for the large variations in  variations, from 2.2 until more 

than 10 mS/cm2. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312561doi: bioRxiv preprint 

https://doi.org/10.1101/312561
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

We then analyzed the effect of adaptation in the excitatory population. We found the regime in 

the parameter space of the model for which  becomes the critical parameter for seizure 

oscillations. To find this regime we slightly modified the parameter set, where =0.5 mS/cm2 

instead of 2 mS/cm2, corresponding to the dynamic regime where  becomes the 

bifurcation parameter. In this case  could substantially affect seizure oscillations. When 

 is in the range from 1 to 3 mS/cm2, there is a large region in the parameter space that 

produces seizure oscillations. If  is larger than 3 mS/cm2, the seizure dynamics becomes 

truncated due to the inhibitory effect of adaptation. Yet when adaptation is not strong enough, 

 is lower, and the model demonstrates seizure oscillations. If  is lower than 1 mS/cm2, 

seizure oscillations become impossible and the model stays in the high activity state without 

oscillations. Additionally, we found that in the complete absence of adaptation, seizure 

oscillations are still possible in the model (results not shown), but pre-ictal oscillations could not 

be generated. To be able to reproduce seizure oscillations together with pre-ictal oscillations 

induced by GABAA blockade, adaptation in the excitatory population is required. 

 

We further studied the critical role of  for seizure generation. It has been recently found 

that changes in  are associated with the rhythm generation in the hippocampus 

(Huberfeld et al., 2007; Cohen et al., 2002). The analysis was performed for slightly modified 

parameter set, where =1 mS/cm2, such that  becomes the bifurcation parameter. The 

other parameters remained the same. We have changed the initial parameter set to find the 

region of the parameter space where  could play the crucial role for oscillations. We found 

that when  is higher than –59mV, it leads to ictal oscillations (Fig. 4F). If  drops below 
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–48mV, the oscillations stop. Thus, there is substantial range of  where its increase leads 

to the development of seizures, which might take place due to chloride accumulation before an 

ictal discharge (Lillis et al., 2012; Huberfeld et al., 2007). 

 

In summary, using bifurcation analysis, we characterized the parameter regions of the model 

where seizure oscillations could take place. We found that transitions from seizure to rest and 

from rest to seizure take place via supercritical and subcritical Andronov-Hopf bifurcations. In all 

studied cases we found that resting and oscillatory solutions exist for large parameter 

variations, implying the stability of found solutions (Prinz et al., 2004; Marder et al., 2011). We 

showed that variations of synaptic , , ,  and intrinsic conductances  could 

bring the system towards seizure and move it back to the resting state. It implies that 

combination of reccurent synaptic currents and spike-frequency adaptation in the excitatory 

population accounts for the transitions between seizure and resting states. 

 

Discussion 

The objective of this study was to investigate the role of intrinsic excitability and inhibition as 

mechanisms of seizure dynamics. We constructed a novel neural mass model, consisting of 

interacting excitatory and inhibitory neural populations driven by external synaptic input. By 

comparing the model with the LFP data from human hippocampal/subicular slices, we found 

that it could accurately represent resting states, ictal discharges, and pre-ictal oscillations after 

the blockade of inhibition (Huberfeld et al., 2011). Analysis of the model showed that synaptic 

and intrinsic conductances play the most crucial role for transitions between resting and seizure 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312561doi: bioRxiv preprint 

https://doi.org/10.1101/312561
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

activity. By analyzing the parameter space of the model we found the oscillatory regimes 

specific for the resting state and seizure dynamics, and found that transitions between these 

regimes take place via subcritical and supercritical Andronov-Hopf bifurcations. 

 

Starting with the pioneering work of Wilson and Cowan (Wilson et al., 1972), neural mass 

models have traditionally aimed to reduce the complexity of neural dynamics towards 

interactions between excitation and inhibition. This approach has been validated in multiple 

studies for describing the large-scale brain activity patterns (Jirsa et al., 2010). Additionally, it 

has been shown that intrinsic properties of single neurons such as spike-frequency adaptation 

(Fröhlich et al., 2008) substantially change spiking patterns and thus neural dynamics (Buchin et 

al., 2016; Bazhenov et al., 2004; Kager et al. 2000). So far these types of interactions have not 

been explicitly taken into account in neural mass models. 

 

In this work we developed a novel mass model by adding AHP currents (Buchin et al., 2010) to 

the excitatory population. This allowed to efficiently take into account not only seizure and 

resting state dynamics (Wendling et al., 2012), but also pre-ictal oscillations. In our model 

seizure activity takes place due to imbalance between self-excitation, adaptation and inhibition. 

We found that reducing the amount of inhibition to the excitatory population provokes seizure 

activity. Nonetheless, inhibition plays an important role in orchestrating seizures as well (Fig. 

2B). We found that the complete lack of inhibition leads to the development of slow oscillations 

with significantly different frequency content than seizures (Fig. 2C). Thus, we propose that 
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inhibition, together with single neuron intrinsic properties provided by adaptation, plays an 

important role controlling the seizure dynamics. 

 

We have investigated multiple mechanisms responsible for generation of seizure activity. In the 

proposed model, seizure oscillations could be generated by increased recurrent excitation  

, decreased excitation of the inhibitory population , decreased inhibition of the excitatory 

population , increased recurrent inhibition in the inhibitory population . Changes in the 

intrinsic excitability of the excitatory population such as decrease of intrinsic adaptation  

and increase of the GABAA reversal potential  could also lead to seizure oscillations. We 

speculate that various physiological parameters combinations could lead to seizure activity, as 

found by Jirsa et al. (2014). The combination of multiple factors such as increased chloride 

concentration in the pyramidal cells and GABAA reversal (Buchin et al., 2016; Huberfeld et al., 

2011; Lillis et al., 2013), together with an increase in extracellular potassium concentrations 

(Bazhenov et al., 2004; Krishnan et al., 2011) and decreased activity of interneurons (Ziburkus et 

al., 2006), all contribute to seizure initiation. Combination of these factors and their relative 

contribution should be evaluated via further experiments and modeling. 

 

Adaptation on the single neuron level could be achieved by calcium-dependent potassium 

currents (Bazhenov et al., 2004, Jung et al. 2001). In our model, AHP is the key mechanism for 

termination of population bursts during seizure oscillations (Fig. 2B) and pre-ictal discharges 

(Fig. 2C). The alternative potential mechanism of termination of these bursts are GABAB 

currents provided by the inhibitory population (de la Prida et al. 2006). We predict that in the 
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complete absence of the inhibitory neurotransmission including GABAA and GABAB synapses, 

the purely excitatory network in the epileptogenic slice of human subiculum would be capable 

of generating self-sustained pre-ictal oscillations due to negative feedback provided by AHP 

(Ratnadurai-Giridharan et al., 2014) and other intrinsic adaptation currents. Therefore the 

downregulation of excitatory neuronal adaptation currents such as AHP and/or functionally 

similar muscarinic-sensitive potassium currents (Stiefel et al., 2008) could lead to seizure 

initiation. According to the model the pharmacological strategy aiming to increase the amount 

of adaptation in the excitatory population would lead to the decreased susceptibility towards 

seizures. 

 

GABAB inhibition could also participate for the termination of population bursts. As shown by 

(de la Prida et al. 2006), the joint blockade of GABAA receptors by PTX and GABAB receptors by 

CGP led to generation of all-or-none population bursts in CA3 mouse hippocampal slices. In our 

experiments we did not test for the possibility that GABAB could participate for the pre-ictal 

discharge termination. Further experiments are needed to divide the contributions of GABAB 

and AHP for the burst termination. 

 

Note that oscillations in the slice switched from ictal discharges to pre-ictal ones after full 

GABAA blockage. This transition was possible only if seizures were already established in the 

slice (Huberfeld et al., 2011). It implies that there are excitability and synaptic plasticity changes 

in the slice associated with seizures before the pre-ictal discharges could be established using 
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complete GABAA blockade. When GABAA blockers were applied before first seizure being 

generated, the pre-ictal and ictal oscillations were not established (Huberfeld et al., 2011). 

 

Our model has several limitations compared to existing approaches (Wendling et al., 2012; Jirsa 

et al., 2014; Molaee-Ardekani et al., 2010). First, it is unable to describe the pre-ictal discharges 

taking place before seizure. The work of (Buchin et al., 2016) proposes a network explanation of 

pre-ictal discharges that take place before seizure transition (Huberfeld et al., 2011). To describe 

this activity, it was necessary to take into account the heterogeneity in the excitatory population 

caused by depolarizing GABA, while in the current model we did not take it into account. 

Therefore, pre-ictal discharges in our model could be generated only in the absence of 

inhibitory population. Second, particular features such as high frequency oscillations (Engel et 

al., 2009) relevant for seizure initiation (Quilichini et al., 2012) are not captured in our model. 

We speculate that this property could be taken into account by incorporating fast somatic and 

slow dendritic inhibition (Wendling et al., 2012). Third, our model is also unable to describe the 

interictal discharges, which have been explained in the other population models (Wendling et 

al., 2012; Chizhov et al., 2017). It has been found that interictal discharges in human subiculum 

require initial interneuron activation. Since in our model we impose the background synaptic 

input onto the excitatory population, the pyramidal cells are always activated before 

interneurons. It has been recently proposed in (Chizhov et al., 2017) that the interneuron 

population should receive background synaptic input, which would allow the reproduction of 

interictal discharges in neural mass models. 
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Pre-ictal discharges are generated before seizure initiation and in the absence of inhibition 

when seizures have been established in the slice (Huberfeld et al., 2011). These oscillations are 

still generated in the absence of inhibitory population (Fig. 2C). Using the model, we show that 

in this case the background synaptic input to the excitatory population  is necessary to 

generate the periodic pre-ictal oscillations. When  is absent, there are no pre-ictal 

discharges in the model, Fig. 3C. We speculate that before seizure initiation the interneurons 

are becoming non-functional because of depolarization block (Ziburkus et al., 2006) and GABAA 

reversal (Lillis et al., 2013) thus allowing the pre-ictal discharges to be generated before seizure 

initiation (Huberfeld et al., 2011). The proposed model could explain the presence of pre-ictal 

discharges only in the complete absence of inhibition, Fig. 2C. The possibility of pre-ictal 

discharge generation before seizure due to non-functional inhibition could be investigated in 

the future studies. 

 

During seizures or ictal discharges, the frequency content of spiking activity might substantially 

change (Fig. 3E). This can be explained using the current model as due to the gradual increase of 

recurrent excitation  (Fig. 3A) or the increase of recurrent inhibition . Note that the 

frequency content of seizure oscillations in the end of it might be similar to the pre-ictal 

discharges (Fig. 2C.). However, pre-ictal oscillations are possible in the model only in the 

absence of inhibition (Fig. 2B), as in the experimental data when the GABAA synaptic activity is 

completely blocked. 
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The primary advantage of our model compared to more abstract ones such as Jirsa et al. (2014) 

is that it provides more firm biophysical explanations linking single neuron properties to 

population dynamics (Gerstner et al., 2002; Johannesma, 1968; Chizhov et al., 2007). Our 

approach could be extended to take into account the shunting effect of inhibition by adjusting 

the firing rate transfer function (Chizhov et al., 2013). To describe the additional mechanisms of 

seizure transition, the present model could include slow activity-dependent parameter changes 

similar to (Proix et al., 2014, Bartolomei et al., 2014; Ullah et al., 2009; Cressman et al., 2009). 

There are multiple biophysical mechanisms that could play the role of slow variable bringing the 

network towards seizure (Naze et al., 2015), including dynamic ion concentration of 

extracellular potassium (Bazhenov et al., 2004), intracellular chloride (Buchin et al., 2016, 

Jedlicka et al., 2011), and intracellular sodium (Krishnan et al., 2011, Karus et al., 2015) in 

pyramidal cells. The population model could be further modified to incorporate these slow 

mechanisms to describe seizure initiation. 

 

A common problem with neural mass models in general is their limited ability to generate the 

experimentally measurable signals (Lytton, 2009). In this work we used the average voltage of 

the excitatory neural population as the approximation of the LFP signal near the neurons’ somas 

(Ratnadurai-Giridharan et al., 2014). Given the distant-dependence of the LFP signal, this model 

should be considered only as a first approximation (Buzsáki et al., 2012). More detailed 

approaches describing populations of two-compartmental neurons (Chizhov, 2013, Chizhov et 

al., 2015) could also provide better approximation for the LFP. 
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Epilepsy is a complex phenomenon involving the dynamic interactions between multiple 

components of the nervous system (Lytton, 2008, Bartolomei et al., 2014). In this work we have 

investigated the particular role of inhibition and adaptation and their implications for seizure 

dynamics. Reconciling modeling results with experimental data, we have shown that seizure 

activity cannot be generated in the complete absence of the inhibitory population and adaption 

in the excitatory population. Further development of theoretical and experimental approaches 

in epilepsy research may lead to a better understanding of its mechanisms and the development 

of new therapeutic targets. 
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Figure 1. Structure of the population model. 

(A) Scheme of interacting neural populations. E, I – excitatory and inhibitory populations. , 

 – excitatory to excitatory and excitatory to inhibitory maximal conductances. ,  – 

inhibitory-to-inhibitory and inhibitory-to-excitatory maximal conductances.  – synaptic 

noise input to the excitatory population. AHP – after hyperpolarization current (Buchin et al., 

2010). (B) LFP model: - contribution of a single excitatory cell, N – the number of neurons,  

- the average membrane potential in the excitatory population. (C, D) Sigmoid approximation of 

potential-to-rate function (Johannesma, 1968) of the excitatory (C) and inhibitory population 

(D).
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Figure 2. Neural mass model in various excitatory regimes. 

(A) Activity of a neural population in the resting state. (B) Seizure state. (C) Disinhibited state. 

LFP is present together with intracellular recording from the pyramidal cell. Each plot contains 

the model scheme, power spectrum and time traces provided by the excitatory population  

as well as experimental LFP. Red traces correspond to the model, blue traces to the experiment. 

Green traces are the intracellular recordings from the pyramidal cells. Corresponding model 

parameters (A): =1.5 uS/cm2; =1 uS/cm2; =2 uS/cm2; =0.2 uS/cm2; =1.6 

uS/cm2; (B): =1.5 uS/cm2; =1 uS/cm2; =0.5 uS/cm2; =0.2 uS/cm2; =1.6 uS/cm2; 

(C): =1.5 uS/cm2; =1 uS/cm2; =0 uS/cm2; =0.2 uS/cm2; =1.6 uS/cm2. 
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Figure 3. Oscillatory frequencies of the population model. 

(A–D) Oscillatory frequencies of the population model in the absence of the synaptic noise 

( =0) as a function of the synaptic gain, . (E) Simultaneous intracellular 
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recording from the pyramidal cell and LFP during transition between the resting states and 

seizure, marked by dotted lines. 
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Figure 4. Analysis of the population model. 

(A–D) Bifurcation diagrams for the variations of the maximal synaptic conductances, including 

recurrent excitation  , excitation from excitatory to inhibitory population , inhibition from 

inhibitory to excitatory population , and the recurrent inhibition in the inhibitory population 
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, respectively. (E, F) Bifurcation diagrams for adaptation in the excitatory population  

and GABA reversal potential  from the inhibitory-to-excitatory connection, 

. Diagrams A–D were calculated for =2 S/cm2; E, 0.5 S/cm2; and F, 

1 S/cm2. The value of  characterizes the average membrane potential in the resting state 

and maximal/minimal values of  during the oscillations. Dots correspond to the Andronov-

Hopf bifurcations. Solid and dotted lines depict to the stable and unstable solutions. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312561doi: bioRxiv preprint 

https://doi.org/10.1101/312561
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

Table 1. Population model parameters 

Excitatory population 

Parameter Value Interpretation 

 1 μF/cm2 Membrane capacitance (Buchin et al., 

2010) 

 0.02 μS/cm2 Sodium leak conductance (Krishnan et 

al., 2011) 

 0.044 μS/cm2 Potassium leak conductance (Krishnan 

et al., 2011) 

 0.01 μS/cm2 Chloride leak conductance (Krishnan 

& Bazhenov, 2011) 

 1.6 μS/cm2 AHP-current conductance (Buchin et 

al., 2010) 

 1.5 μS/cm2 Excitatory-to-excitatory conductance 

 1 μS/cm2 Excitatory-to-inhibitory conductance 

 2; 0.5; 1 μS/cm2 Inhibitory-to-excitatory conductance 

 0.2 μS/cm2 Inhibitory-to-inhibitory conductance 

 –65 mV Reset membrane potential (Buchin et 

al., 2010; Chizhov et al., 2007) 

 –55 mV Threshold membrane potential 

(Buchin et al., 2010; Chizhov et al., 
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2007) 

 2.84×104 Sigmoid fit parameter 

 0.19 mV-1 Sigmoid fit parameter 

 1.23×104 Sigmoid fit parameter 

 –10 mV Sigmoid fit parameter 

 3 μA/cm2 Input current variance 

 5.4 ms AMPA current correlation time 

(Buchin et al., 2016) 

 4 mV Membrane potential dispersion 

 50 mV Sodium reversal potential (Krishnan et 

al., 2011) 

 –75 mV Potassium reversal potential (Krishnan 

et al., 2011) 

 –93 mV Chloride reversal potential (Krishnan 

et al., 2011) 

 –75 mV GABA reversal potential (Huberfeld et 

al., 2007) 

 0 mV AMPA reversal potential (Brunel et al., 

2001) 

 –70 mV AHP reversal potential (Brunel et al., 

2001) 
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 1 ms AHP rise time (Brunel et al., 2001) 

 320 ms AHP decay time (Brunel et al., 2001) 

 1 ms AMPA rise time (Chizhov 2002) 

 5.4 ms AMPA decay time (Chizhov 2002) 

 

Inhibitory population 

Parameter Value Interpretation 

 1 μF/cm2 Membrane capacitance (Buchin et al., 

2010) 

 0.02 μF/cm2 Sodium leak conductance (Krishnan et 

al., 2011) 

 0.04 μF/cm2 Potassium leak conductance (Krishnan 

et al., 2011) 

 0.03 μF/cm2 Chloride leak conductance (Krishnan 

et al., 2011) 

 2 μF/cm2 Inhibitory-excitatory synaptic 

conuctance 

 0.2 μF/cm2 Excitatory-inhibitory synaptic 

conductance 

 –65 mV Reset membrane potential 

 –55 mV Threshold membrane potential 
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 2.84×104 Sigmoid fit parameter 

 0.19 mV-1 Sigmoid fit parameter 

 1.23x104 Sigmoid fit parameter 

 –10 mV Sigmoid fit parameter 

 4 mV Membrane potential dispersion 

 50 mV Sodium reversal potential (Krishnan et 

al., 2011) 

 –75 mV Potassium reversal potential 

(Krishnanet al., 2011) 

 –82 mV Chloride reversal potential (Krishnan 

et al., 2011) 

 8.3 ms GABA-A decay time (Chizhov et al., 

2002) 

 0.2 ms GABA-A rise time (Chizhov, 2002) 
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Table 2. Population model variables 

Variable Interpretation 

, mV Average membrane potential of the excitatory 

population 

, mV Average membrane potential of the inhibitory 

population 

 Excitatory population synaptic gating variable 

 Inhibitory population synaptic gating variable 

 Excitatory population adaptation gating 

variable 

, μA/cm2 Random excitatory input 

, Hz Firing-rate of the excitatory population 

, Hz Firing-rate of the inhibitory population 
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Table 3. Power spectrum analysis 

 Model, peak 

amplitude, Hz 

Experiment, peak 

amplitude, Hz 

Model, 

spectrum 

linear fit, 1/Hz 

Experiment, 

spectrum 

linear fit, 1/Hz 

Rest - - -0.005; -0.002 -0.005; -0.002 

Seizure 3.01; 3.52 2.95; 3.75 -0.005; -0.002 -0.003; -0.002 

Pre-ictal state 1.33; 1.43 1.21; 1.79 -0.007; -0.003 -0.01; -0.008 
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