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Excitable dynamics of NREM sleep: a unifying model for neocortex and hippocampus 
Daniel Levenstein12, György Buzsáki12, John Rinzel13* 
 
ABSTRACT 
During non-rapid eye movement (NREM) sleep, the neocortex and hippocampus alternate 
between periods of neuronal spiking and inactivity. By directly comparing experimental 
observations with a mean field model of an adapting, recurrent neuronal population, we find that 
the neocortical alternations reflect a dynamical regime in which a stable active state is 
interrupted by transient inactive states (slow waves) while the hippocampal alternations reflect a 
stable inactive state interrupted by transient active states (sharp waves). We propose that 
during NREM sleep, hippocampal and neocortical populations are excitable: each in a stable 
state from which internal fluctuations or external perturbation can evoke the stereotyped 
population events that mediate NREM functions. 
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 Sleep function relies on internally-generated dynamics in neuronal populations. In the 

neocortex, non-rapid eye movement (NREM) sleep is dominated by a “slow oscillation”1: 
alternations between periods of spiking (UP states) and periods of hyperpolarization (DOWN 

states) that correspond to large “slow waves” (or “delta waves”) in the local field potential 
(LFP)2,3 (Figure 1A,B, Supplemental Figure 1). In the hippocampus, NREM sleep is dominated 

by sharp wave-ripple dynamics: periods of spiking (SWRs) separated by periods of relative 
inactivity (inter-SWRs)4 (Figure 1E,F). Slow waves and SWRs are bidirectionally and weakly 

coupled, in that each is more likely following the other5-8. The functional importance of these 
dynamics is well established: both slow waves and SWRs have been observed to perform 

homeostatic maintenance of the local synaptic network in the two regions9-11, and their temporal 
coupling has been found to support the consolidation of recently learned memories12-14. 

However, it’s unclear how the state of neuronal populations in the two regions promotes the 

generation of their respective dynamics, or how population state supports the propagation of 
neural activity between structures. 

 To study the state of hippocampal and neocortical populations during NREM sleep, we 
used an idealized model of an adapting recurrent neuronal population (Figure 1C,G). Models 

with recurrence and adaptation have been directly matched to neocortical UP/DOWN 
alternations during anesthesia and in slice preparations15-17. These studies found that the 

UP/DOWN alternations in slice are adaptation-mediated oscillations16, while those in the 
anesthetized animal reflect noise-induced switches between bistable states15. However 

neuronal dynamics during NREM sleep in naturally sleeping rats18 are distinct from those seen 
in anesthesia/slice19. With our adapting recurrent population model we are able to describe how 

effective physiological parameters determine the properties of alternation dynamics in a 

neuronal population. This framework allowed us to identify parameter domains that match the 
NREM data and, further, enabled description and understanding of both neocortical and 

hippocampal alternation dynamics with the same model.  
 We report that neocortical and hippocampal populations are neither endogenously 

oscillatory nor bistable during NREM sleep, but are excitable: each population rests in a stable 
state from which suprathreshold fluctuations can induce a transient population event that is 

terminated by the influence of adaptation. Specifically, the neocortex maintains a stable UP 
state with fluctuation-induced transitions to a transient DOWN state (slow waves), while the 

hippocampus rests in a stable DOWN state with fluctuation-induced transitions to a transient UP 

state (SWRs). Under the influence of noise, each region can generate its respective population 
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event spontaneously (due to internally-generated fluctuations) or in response to an external 

perturbation (such as input from another brain structure). The result is alternations between 
active and inactive states in both structures with the asymmetric duration distributions observed 

during NREM sleep (Figure 1D,H). We further observe that variation in the depth of NREM sleep 
corresponds to variation in the stability of the neocortical UP state. Our findings reveal a unifying 

picture of the state of hippocampal and neocortical populations during NREM sleep, which 
suggests that NREM function relies on excitable dynamics in the two regions. 

 
RESULTS  
UP/DOWN dynamics in an adapting excitatory population model 
 UP/DOWN alternations are produced in models of neural populations with recurrent 

excitation and slow adaptive feedback15-17,20-24  25. In our model, neuronal population activity is 

described in terms of the mean firing rate, ! ! , subject to a slow negative feedback (i.e. 
adaptation), ! !  (Figure 2A, see Supplemental Info for details). 

!!
!"
!" = −! + !! !" − !" + ! + ! !            (1) 

!!
!"
!" = −! + !! !                                              (2) 

Equations 1-2 describe how ! and ! evolve in time as a function of the net input to the 

population: the sum of the recurrent excitation with weight ! and a background level of drive 
with a tonic parameter !, and noisy fluctuations ! ! , minus adaptation weighted by gain 

parameter ! (See Supplemental Info for parameter interpretation). !! !"#$%  is the “cellular-
level” input-output function, which defines the rate of the population given constant net input. 

Similarly, !! !  defines the level of adaptation given a fixed population rate. To enable the 

analytical treatment of model dynamics in the following section, both !! !"#$%  and !! !  are 
taken to be sigmoidal functions.  

 Model dynamics can be represented as a trajectory in the !-! phase plane26 (Figure 2B, 
Supplemental Info), in which steady states, or fixed points, of activity are found at intersections 

of the !- and !-nullclines: two curves defined by the conditions !"!" = 0 and !"!" = 0. Depending on 

parameter values, the model can show four distinct regimes of UP/DOWN dynamics - 

distinguished by whether UP/DOWN transitions are noise- or adaptation-induced, and thus the 
stability or transient nature of the UP and DOWN states (Figure 2B)15,16.  
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 In the oscillatory regime (Figure 2Ci), activity alternates between transient UP and 

DOWN states at a relatively stable frequency. Adaptation activates during the UP state and 
brings the population to the DOWN state, during which adaptation inactivates and the population 

returns to the UP state. Because ! !  is fast compared to the slow adaptation, the ! !  time 
course and the phase plane trajectory are square-shaped, with rapid transitions between UP 

and DOWN states. 
 If both the UP and the DOWN state are stable, the system is in a bistable regime (Figure 

2Cii). In this regime, adaptation is not strong enough to induce UP/DOWN state transitions. 
However, sufficiently large (suprathreshold) fluctuations can perturb the population activity to 

cross the middle branch of the !-nullcline, resulting in a transition to the opposing branch. Thus, 
the presence of noise induces alternations between stable UP and DOWN states, resulting in 

highly variable UP/DOWN state durations.  

 In the case of a single stable state, the system can still show UP/DOWN alternations in 
one of two excitable regimes. If the DOWN state is stable (Figure 2Ciii), the system is in an 

ExcitableDOWN regime. The population will remain in the stable DOWN state in the absence of 
any external influence. However, a brief suprathreshold activating input to the population can 

trigger a rapid transition to a transient UP state, during which adaptation activates, leading to a 
return to the DOWN branch. In the presence of noise, UP states are triggered spontaneously by 

net activating fluctuations. The time course of the model in the ExcitableDOWN regime shows long 
DOWN states of variable durations punctuated by brief stereotyped UP states.  

 Conversely, if the UP state is stable, the system is in an ExcitableUP regime (Figure 
2Civ). Brief inactivating input can elicit a switch from the UP state to a transient DOWN state, 

during which adaptation deactivates, leading to a return to the UP branch. Thus, in the presence 

of noise, DOWN states are triggered spontaneously by net-inactivating fluctuations. The time 
course will show longer UP states of variable durations with stereotypically brief DOWN states. 

These two regimes (Figure 2Ciii,iv) are excitable because relatively small fluctuations in 
population rate can “excite” the population out of a stable steady state and induce 

disproportionately large, stereotyped, population events: a transient UP state in the case of the 
ExcitableDOWN regime and a transient DOWN state in the case of the ExcitableUP regime, 

followed by a return to the stable steady state. 
 

Recurrence, adaptation, and drive control UP/DOWN regimes 
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 How do properties of a neuronal population determine dynamical regime? We use 

numerical and analytical methods from dynamical systems theory26 to reveal how intrinsic and 
network properties determine the properties of UP/DOWN dynamics in our model. The analysis 

is summarized here; see Supplemental Info and Supplemental Figures 2-4 for further 
description of the response properties and parameter dependencies, as well as a discussion of 

general insights from the mathematical analysis on UP/DOWN dynamics in various 
physiological contexts. 

 We first consider how the population rate at steady state, !!!, depends on the level of 
drive: the effective input/output relation (I/O curve) of the recurrently connected population 

(Figure 3A). If recurrence is weak, the I/O curve increases monotonically with drive and no 
UP/DOWN alternations are possible. At a critical value of recurrent excitation the population is 

able to self-maintain an UP state under conditions of reduced drive (Supplemental Figure 2), 

and UP/DOWN alternations emerge in the I/O curve between a low-rate steady state at weak 
drive and a high-rate steady state at strong drive. Recurrence and adaptation oppositely 

influence the dynamical regime at the I/O curve’s center region (Supplemental Figure 3). By 
solving for parameter values of transitions in the dynamical regime at the half-activation point of 

the I/O curve (Figure 3B, Supplemental Figure 4), we see that the population will have an 
oscillatory-centered I/O curve with stronger adaptation (Figure 3B, blue) and a bistable-centered 

I/O curve with stronger recurrence (Figure 3B, yellow).  
 In the absence of noise or external perturbation, only the oscillatory regime will alternate 

between UP and DOWN states. To illustrate the effects of noise, we consider the effects for the 
case of an oscillatory-centered I/O curve (Figure 3Ci). Within the oscillatory regime the 

simulated population rate alternates regularly between transient UP and DOWN states, and 

UP/DOWN state durations reflect the time scale of adaptation, ~!! (Supplemental Figure 5). For 
!-values above the oscillatory regime, there is a stable UP state fixed point, but noise can evoke 

transitions to a transient DOWN state (an ExcitableUP regime). DOWN state durations still reflect 
the time scale of adaptation, !!, but UP state durations now reflect the waiting time for random 

fluctuations to drop the system out of the UP state attractor, and thus vary with noise amplitude 
(Supplemental Figure 5). For I-values further above the oscillatory regime, the effective stability 

of the UP state increases; DOWN states are less frequent because the larger fluctuations 
needed to end the UP state are less frequent. Thus, UP states become progressively longer as 

! is increased, while DOWN states stay approximately the same duration (~!!). The same case 

is seen for values of ! below the oscillatory regime but with UP/DOWN roles reversed (i.e. an 
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ExcitableDOWN regime). Similar response properties are seen for the bistable-centered I/O curve 

(Figure 3Cii). In both cases, the duration distributions plotted vs. drive form a crossed-pair, with 
a center symmetrical portion (i.e. an oscillatory (Figure 3Ci) or bistable (Figure 3Cii) regime) 

flanked by the asymmetrical ExcitableDOWN and ExcitableUP regimes. 
 In sum, the statistics of UP/DOWN state durations reflect the underlying dynamical 

regime as seen for simulations in a representative I-w parameter plane (!=1, Figure 3D) and in 
the !-! space (!=6, Supplemental Figure 5). The mean durations vary continuously over the 

parameter plane as the level of drive brings the population from a DOWN-dominated to an UP-
dominated regime. However, the duration variability (as measured by the coefficient of variation, 

CV) shows sharp transitions at the boundaries between regimes, which reflect the different 
mechanism of transitions out of stable and transient states. In general, the durations of stable 

states are longer and more variable while those of transient states are shorter and less variable, 

effectively distinguishing oscillatory, bistable, and excitable dynamics. 
 

Neocortex is in an ExcitableUP regime during NREM sleep 
  The durations of neocortical UP/DOWN states (Figure 1) are indicative of an ExcitableUP 

regime in our model. Neocortical UP states during NREM are longer (1.7±0.92s) compared to 
DOWN states (0.21±0.05s), and more irregular (CVUP = 1.1±0.27; CVDOWN = 0.38±0.06) (Figure 

4A) suggesting a stable UP and transient DOWN state. We directly compared the simulated and 
experimentally-observed dynamics by matching the statistics of experimental UP/DOWN 

durations to those in Figure 3D and Supplemental Figure 5. We found that the region of 
parameter space in which the CVUP, CVDOWN and ratio of mean durations is within 2 standard 

deviations of the experimental durations is in the ExcitableUP regime (Figure 4B, Supplemental 

Figure 7 red outline). We next compared the shapes of the duration distributions between model 
and experiment. For each model realization (i.e. each point in the !-! parameter plane), we 

calculated the similarity between simulated and experimental duration distributions for each 
recording session in the experimental dataset (Supplemental Figure 6, 7, Methods). The domain 

of high similarity between animal data and the model fell in the ExcitableUP regime, as indicated 
by the 25 best fit points and in the average values of similarity (over all 25 sessions) in !-! 

parameter space (Figure 4B) and in the !-! parameter space (Supplemental Figure 7). The 
simulated time course (Figure 4D) and duration distributions (Figure 4C) using the parameter 

set with highest mean similarity over all sessions revealed a good match between experimental 

and modeled dynamics. The domain of high similarity was degenerate and remained in the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/312587doi: bioRxiv preprint 

https://doi.org/10.1101/312587
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/312587doi: bioRxiv preprint 

https://doi.org/10.1101/312587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

ExcitableUP regime with variation in the “fixed” parameters, !!, !, and the amplitude of the noise 

(Supplemental Figure 7). We thus found that NREM sleep in the rodent neocortex is 
characterized by an ExcitableUP regime: a stable UP state with noise-induced transitions to a 

transient DOWN state. 
 

Hippocampus is in an ExcitableDOWN regime during NREM sleep 
 Since the burst-like dynamics of SWR is reminiscent of the ExcitableDOWN regime of our 

model, we asked whether these patterns could also be explained by the same principles. 
InterSWR durations are much longer (mean = 2.0±0.22s) compared to SWR events (mean = 

0.06±0.005s ),and more variable (CVInterSWR = 1.3±0.10; CVSWR  = 0.33±0.04) (Figure 4E) 
suggesting a stable DOWN and transient UP state (SWR). We applied the duration distribution 

matching procedure to the SWR/inter-SWR duration distributions and confirmed that the !-! 

model can also mimic SWR dynamics, with a band of high data-model similarity in the 
ExcitableDOWN regime (Figure 4G). Interestingly, our idealized model is not able to capture the 

short-interval inter-SWR periods associated with occasional SWR “bursts” (Supplemental Figure 
7), which suggest the presence of separate SWR-burst promoting mechanisms, possibly arising 

from interactions with the entorhinal cortex or spatially traveling patterns of SWRs in the 
hippocampus27,28. Accordingly, while the mean ratio and CVSWR of the best fitting model regime 

were within 2.5 standard deviations of those observed in vivo, the CV of inter-SWR periods was 
larger than expected from the model (i.e. CV>1). This finding suggests that during NREM sleep 

the hippocampus is in a stable DOWN-like state, from which internal ‘noise’ or an external 
perturbation can induce population-wide spiking events.  

 

Changes in neocortical state correspond to changes in UP state stability 
 For our initial analysis of the neocortical NREM data we assumed that model parameters 

were stationary over the course of a sleep session. However, rodent NREM sleep has been 
classified on a spectrum from light to deep NREM, with higher power in the LFP delta band (1-

4Hz) reflecting deeper NREM sleep29. To investigate the relationship between changes in 
cortical state with NREM depth and UP/DOWN dynamics, we calculated the level of delta power 

in the 8s time window surrounding each UP and DOWN state (Figure 5A). UP state durations 
varied systematically with delta power (Figure 5A,B,C, Supplemental Figure 8): epochs of lower 

delta power contained longer UP states, and epochs of higher delta power were associated with 

shorter UP states (Figure 5A,B,C, Supplemental Figure 8). However, DOWN state durations 
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were invariant with delta power, and the CV of UP state durations was consistently higher than 

DOWN state durations, as would be expected for ExcitableUP dynamics with noise-induced 
transitions from a stable UP to a transient DOWN state. 

 We then grouped the experimental UP/DOWN states by delta power and calculated 
data-model similarity maps for UP/DOWN state durations in each group (Figure 5D, 

Supplemental Figure 8). We found that the vast majority of time in all recording sessions was 
spent in the parameter domain of the ExcitableUP regime (Figure 5B, bottom). However, with 

higher delta power, the best fitting model parameters moved closer to the transition to the 
oscillatory regime, and the epochs of highest delta power were well-matched by oscillatory 

dynamics in a small number of sessions.  
 

Inhibition stabilizes a low-rate UP state and allows perturbation-evoked slow waves 

 Our previous analyses considered a constant (stationary) source of noise that produced 
“spontaneous” transitions out of stable states in our model. We now consider a brief input that 

evokes a transient event. For the hippocampal-like ExcitableDOWN regime, a brief increase in 
drive will evoke a transient UP state, (i.e. a SWR, Supplemental Figure 9). In the absence of 

noise, perturbations must be of sufficient magnitude (i.e. suprathreshold). With noise, the 
probability to evoke a SWR increases with magnitude of the perturbation (Supplemental Figure 

9). A converse situation is apparent for the neocortical-like ExcitableUP regime -- a brief 
decrease in drive is able to evoke a transient DOWN state (i.e. a slow wave, Supplemental 

Figure 9). However, as long-range projections tend to be excitatory, we wondered how an 
excitatory perturbation might evoke a neocortical UP->DOWN transition.  

 Neuronal spike rates during the UP state are generally low18 with balanced excitatory 

and inhibitory synaptic inputs30. Previous work has shown that models with fast inhibition and 
slow adaptation can give UP/DOWN alternations in the same four regimes described above15 

with a low-rate UP state that is stabilized by feedback inhibition31,32. We hypothesized that the 
effect of inhibitory cells may support excitation-induced UP->DOWN transitions, and included an 

inhibitory population (!! ≈ !!) into our model (Figure 6A):  

!!
!!!
!" = −!! + !!,! !!!!! − !!"!! − !" + !! + !!(!)            (3) 

!!
!!!
!" = −!! + !!,! !!"!! − !!!!! + !! + !!(!)                           (4) 

!!
!"
!" = −! + !!(!!)                                                                        (5) 
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where adaptation acts on the excitatory population and !!,! !!"#$  and !!,! !"#$%  are 

threshold power law I/O relations, as seen in the in vivo-like fluctuation-driven regime33 
(Supplemental Info).  

 Given that adaptation is slow we can treat ! as frozen and visualize model dynamics in 
the !!-!! phase plane (Figure 6B). The fixed point value of !! as a function of drive describes the 

effective I/O curve of the network (!!!, Figure 6C). Like the excitation-only model, strong 

recurrent excitation induces bistability at low levels of drive (Supplemental Figure 10). In the 
bistable condition, the !!-!! phase plane shows stable UP and DOWN state fixed points, 

separated by a saddle point (Figure 6B,C). With ! dynamic, the model can have steady state 
fixed points on either the UP or the DOWN branch of the I/O curve, resulting in the same 

regimes as the two-variable model described above15 (Supplemental Figure 10). 
 We investigated ExcitableUP dynamics in the adapting, inhibition-stabilized model33 

(Figure 6D,E,F). Consider a transition from the UP to the DOWN state (Figure 6F). As 
adaptation slowly de-activates, the system drifts along the DOWN branch. Eventually the 

DOWN state loses stability, the trajectory reaches and rounds the lower knee of the I/O curve 

and transitions abruptly to the only remaining stable solution: the UP state. Adaptation then 
builds as the system returns to the stable UP state fixed point.  

 Due to the effects of inhibition, small perturbations from the UP state fixed point will 
exhibit damped, resonant, E-I oscillations as the system returns to the fixed point state. The 

damped oscillations arise from transient imbalance of excitation and inhibition, and occur when 
the UP state fixed point is an attracting spiral. As a result, high frequency oscillations (at a time 

scale set by the excitatory and inhibitory time constants) occur at the DOWN->UP transition. A 
further implication is that a sufficiently strong excitatory input to the excitatory population (Figure 

6E) can recruit sufficient inhibition to force the entire network into a DOWN state. This threshold 
effect is seen as a trajectory in the phase plane that separates the basins of attraction of the UP 

and DOWN state (i.e. a separatrix, Figure 6F). The separatrix emerges (in reverse time) from 

the saddle and curves around the UP state fixed point. From this visualization we see that a 
brief excitatory input to either population can push the trajectory out of the UP state basin of 

attraction (Figure 6F). Thus, a transient DOWN state (i.e. a slow wave) can be evoked by an 
excitatory perturbation to either population, as well as due to drops in the excitatory population 

rate.  
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Discussion 

 To account for cortical dynamics during NREM sleep, we used a firing rate model that 
represents a neuronal population with positive feedback (recurrent excitation) and slow negative 

feedback (adaptation). Although the model is idealized, it is amenable to mathematical 
treatment in terms of a few key parameters and allows us to develop intuitions for the repertoire 

of dynamics available to an adapting, recurrent neural population. Our analysis of the model 
revealed how the level of drive and the relative strength of recurrent excitation and adaptation 

create a spectrum of dynamical regimes with UP/DOWN alternations, defined by the stability or 
transience of UP and DOWN states (Figure 7A). We found that both neocortical and 

hippocampal alternations during NREM sleep are well matched by the model in excitable 
regimes of dynamics that produce characteristically asymmetric distributions of UP and DOWN 

state durations. We next discuss biological interpretations of the model and implications of the 

findings for NREM sleep. Additional discussion on general insights of UP/DOWN alternations in 
other physiological contexts can be found in the Supplemental Info. 

 

UP/DOWN dynamics of the neocortical NREM slow oscillation 
 Despite the widely used term slow “oscillation”1, the asymmetric duration distributions 

during NREM predict that the NREM slow oscillation is reflective of ExcitableUP dynamics: an 

aperiodic process in which activity fluctuations during stable UP states can lead to transient 
DOWN states (slow waves). A key feature of the model is the noise responsible for initiating 

spontaneous UP->DOWN transitions. In neuronal network modeling, “noise” often refers to 
unidentified fluctuations in physiological activity. Broadly, biological noise can be divided into 

fluctuations internal to the population and fluctuations from afferent projections. While we do not 
explicitly distinguish them in the model, we assume that both sources play a role in initiating 

cortical UP->DOWN transitions. Population rate fluctuates during the UP state due to finite size 
effects34 and temporal correlations that emerge with strong recurrent connections35. Similarly, 

the level of afferent activity from thalmo- or cortico-cortical projections would be expected to 
fluctuate. We also note that while the isolated cortex can produce UP/DOWN state 

alternations36, we should consider the thalamocortical system for an understanding of slow wave 

dynamics in vivo37. Because the cortex and corresponding thalamic nuclei are highly 
interconnected, cortex and thalamus may transition UP and DOWN together and reflect 

interacting (as opposed to independent) systems. However, it was recently found that cortex 
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tends to lead the thalamus into the DOWN state38. Future work should expand the model to 

include a thalamic population, which would also allow a better understanding of the interaction 
of slow waves with thalamocortical spindle oscillations8,39,40.   

 We found that the depth of NREM sleep reflects an evolution of the stability of the UP 
state in a manner that resembles the stages of NREM/SWS sleep in humans41. In light NREM 

sleep (N1 stage, using the human clinical term), long UP states are occasionally punctuated by 
neuronal silence-associated positive delta or slow waves, which can be localized at one or few 

recording sites across the cortical mantle8. As sleep deepens, the incidence of DOWN states 
increase and they become synchronous over larger cortical areas42 (N2 stage). The DOWN-UP 

transitions occasionally become strongly synchronous, producing a sharp LFP wave, known as 
the K complex43. With further deepening of sleep, DOWN states become more frequent and 

short episodes of repeating DOWN states may become rhythmic (N3 stage). While direct 

comparison between rodent and human sleep data was not performed, we found a similar 
evolution in rodent NREM. Quantifying the time spent in these sub-states revealed that the N3-

like oscillatory state in the rat occupies only a small fraction of NREM sleep, whereas in humans 
this stage is more prominent. Our model predicts that the stages of sleep reflect different 

stability of the UP state, which may be due to 1) decreased recurrent strength, 2) decreased 
neuronal excitability or 3) increased strength of adaptation44. 

 While the model is ambiguous to the biophysical substrate of adaptation, we can make 
some predictions: first, the adaptive process responsible for neocortical UP/DOWN alternations 

should be constitutively active during the UP state and deactivate during the hyperpolarized 
DOWN state. Subthreshold adaptation conductances are a feasible candidate, given that most 

neurons are silent or fire at a very low rate during any given UP state. Adaptation in our model 

could also include effects of hyperpolarization-activated excitatory processes, such as the h-
current. Second, the neocortical adaptive process should recover at a time scale reflective of the 

DOWN state duration (~200ms). Our model can be used to predict how changing properties of 
the relevant adaptive mechanisms experimentally or in disease should change the duration 

statistics of the slow oscillation, which can guide for future experiments to uncover the 
biophysical substrates of the neocortical slow oscillation. 

 
On differential neocortical and hippocampal dynamics 

 Neocortical slow oscillations and hippocampal SWRs are present simultaneously during 

NREM sleep. Although they appear fundamentally different, our model with just a few 
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parameters can quantitatively account for both by using different parameter values. In the 

hippocampus, the inter-SWR period is not entirely inactive, but maintains a low rate of activity. 
SWR-initiating noise could be fluctuations in ongoing low-rate activity during the iSWR period or 

fluctuations in drive from the entorhinal cortex. The different durations of the transient 
neocortical DOWN state and hippocampal SWR indicate that alternation dynamics in the two 

regions are most likely mediated by different adaptive processes, and that the hippocampal 
adaptive process should activate on a time scale that reflects the SWR durations (~60ms). 

Previous work has revealed threshold behavior in the generation of SWRs, indicative of 
ExcitableDOWN dynamics, with a GABAB-mediated adaptation mechanism46,47. Our model 

suggests that a stronger adaptive process in the hippocampus would favor ExcitableDOWN 
dynamics. 

 As the relevant parameter is the relative strength of adaptation and recurrence, the 

different nature of recurrent connectivity in the two regions may also be responsible for their 
differing dynamics. Strongly recurrent pyramidal cell populations are found in neocortical layer 5 

and the hippocampal CA2 and CA3a subregions 48, the loci of UP state and sharp wave 
initiation, respectively49,50. However, crucial differences exist between connectivity of neocortical 

layer 5 and hippocampal CA2-3 regions. The neocortex is a modularly organized structure. In 
contrast, the hippocampus can be conceived as a single expanded cortical module51. Excitatory 

connectivity in layer 5 is local (200 µm), dense (up to 80% connection probability), and follows a 
‘Mexican hat’ excitatory-inhibitory spatial structure with strong local excitatory connections and 

spatially extensive inhibition52. In contrast, excitatory connectivity in the hippocampus is sparse 
and spatially extensive48, with local inhibitory connections53,54. While layer 5 excitatory synapses 

are relatively strong, the transmitter release probability of synapses between hippocampal 

pyramidal neurons is very low, resulting in comparatively weak synapses55. Together, these 
factors indicate that the effective strength of recurrence in the hippocampus is lower than that in 

neocortex, which would result in DOWN-dominated as opposed to UP-dominated dynamics, as 
are observed. To further understand the physiological factors responsible for the distinct NREM 

dynamics in the two regions will require experimental manipulations that independently 
manipulate adaptation, recurrent excitation, and excitability. 

 
NREM function through stochastic coordination of excitable dynamics 

 According to the two-stage model of memory consolidation56,57, the hippocampus acts as 

a fast, but unstable, learning system. In contrast, the neocortex acts as a slow learning system 
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that forms long-lasting memories after many presentations of a stimulus. The two-stage model 

proposes that recently-learned patterns of activity are reactivated in the hippocampus during 
SWRs, which act as a “training” signal for the neocortex, and that the neocortical consolidation 

of those patterns relies on SWR-slow wave coupling5,58. Excitable dynamics provide a 
mechanism for coordination of slow waves and SWRs (Figure 7B): the excitatory kick of a 

hippocampal SWR can induce a neocortical UP->DOWN transition by briefly disrupting the 
neocortical excitatory/inhibitory balance, while the population burst at the neocortical DOWN-

>UP transition can induce a hippocampal SWR.  
 Extensive experimental evidence points towards temporal coordination between slow 

waves and SWRs. Slow waves in higher-order neocortical regions are more likely following 
SWRs5,6, and SWR->slow wave coupling is associated with reactivation in the neocortex5,58,59. 

As is observed in vivo, the ability of a transient input to evoke a slow wave in our model is 

probabilistic, due to an interaction between the magnitude of perturbation, local noise, and the 
stability of the UP state. The probability of SWR->slow wave induction likely varies by brain 

state, cortical region, and even SWR spiking content. Further work to investigate how these 
factors shape SWR->slow wave coupling will likely shed light on the brain-wide mechanisms of 

memory consolidation. 
 How then, does a SWR-induced neocortical slow wave induce changes in the 

neocortex? Recent work has found that SWR->slow wave coupling alters spiking dynamics at 
the subsequent neocortical DOWN->UP transition58 (aka the k complex), which acts a window of 

opportunity for synaptic plasticity that supports NREM functions10,60-62. Interestingly, the 
interaction between excitation and inhibition produces a transient (gamma-like) oscillation at the 

DOWN->UP transition in our model. This brief oscillation is reminiscent of the gamma (~60-

150Hz) activity following slow waves in vivo18 and may act to coordinate and promote plasticity 
between cell assemblies63. 

 In turn, the burst of neocortical activity during the k complex could induce a SWR in the 
hippocampus. The functional role of slow wave->SWR coupling is less well understood, but 

hippocampal SWRs are more likely immediately following slow waves in some neocortical 
regions - including the entorhinal cortex5,7. Slow wave->SWR coupling could provide a 

mechanism by which neocortical activity is able to bias SWR content, or another mechanism by 
which the SWR could bias neocortical activity at the DOWN->UP transition. Further, a SWR-

slow wave-SWR loop could produce the occasional SWR bursts not captured by our model of 

hippocampal SWR activity in isolation. Future work on regional or state-dependent differences in 
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the directionality of slow wave-SWR coupling could provide insight into the physiological 

mechanisms that support memory consolidation. 
 

Conclusions 
 Our results reveal that NREM sleep is characterized by structure-specific excitable 

dynamics in the mammalian forebrain. We found that a model of an adapting recurrent neural 
population is sufficient to capture a variety of UP/DOWN alternation dynamics comparable to 

those observed in vivo. The neocortical “slow oscillation” is well-matched by the model in an 
ExcitableUP regime in which a stable UP state is punctuated by transient DOWN states, while 

the hippocampal sharp waves are well-matched by the model in an ExcitableDOWN regime in 
which a stable DOWN state is punctuated by transient UP states (Figure 7A). These 

complementary regimes of excitable dynamics allow each region to produce characteristic slow 

wave/SWR events spontaneously or in response to external perturbation. Our results offer a 
unifying picture of hippocampal and neocortical dynamics during NREM sleep, and suggest a 

mechanism for hippocampal-neocortical communication during NREM sleep. 
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METHODS 
Datasets 
 The datasets used were reported in Watson et al 2016 (neocortex) and Grosmark and 

Buzsaki 2016 (hippocampus), and are briefly summarized here. 
 For the cortical dataset, silicon probes were implanted in frontal cortical areas of 11 male 

Long Evans rats. Recording sites included medial prefrontal cortex, anterior cingulate cortex, 
premotor cortex/M2, and orbitofrontal cortex. Neural activity during natural sleep-wake behavior 

was recorded using high-density silicon probes during light hours in the animals’ home cage. 25 
recordings of mean duration 4.8+/-2.2hrs were recorded. The raw 20kHz data was low-pass 

filtered and resampled at 1250Hz to extract local field potential information. To extract spike 
times, the raw data high-pass filtering at 800Hz, and then threshold-crossings were detected. 

KlustaKwik software was used to cluster spike waveforms occurring simultaneously on nearby 

recording sites, and Klusters software was used for manual inspection of waveforms consistent 
with a single neuronal source. Units were classified into putative excitatory (pE) and putative 

inhibitory (pI) based on the spike waveform metrics. Each animal had 35+/-12 detected pE units 
and 5+/-3 detected pI units on average. 

 For the hippocampal dataset, silicon probes were implanted in the dorsal hippocampus of 
4 male Long Evans rats (7 recordings total). Neural activity during sleep was recorded before 

and after behavior on a linear track. LFP and spikes were extracted similar to the cortical 
dataset. Sharp-wave ripple events were detected as described in Grosmark and Buzsaki 2016, 

with 3134-11898 SWRs detected per recording and used for subsequent analysis. 
 

NREM Detection 

 Sleep state was detected using an automated scoring algorithm as described previously 
(Watson et al 2016), with some modifications. As only the NREM state was used in this study, 

we describe here the process for NREM detection. However, the code for full state detection is 
available at https://github.com/buzsakilab/buzcode. NREM sleep was detected using the FFT 

spectrogram of a neocortical LFP channel, calculated in overlapping 10s windows at 1s 
intervals. Power in each time window was calculated for frequencies that were logarithmically 

spaced from 1 to 100Hz. The spectral power was then log transformed, and z-scored over time 
for each frequency. The slow wave power (signature of NREM sleep) was calculated by 

weighting each frequency by a weight determined from the mean of the weights for the first 

principal components from the dataset in Watson et al 2016, which was found to distinguish 
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NREM and non-NREM in all recordings. While the same dataset was used here, using the filter 

(i.e. weighted frequency)-based approach as opposed to PCA makes the algorithm robust for a 
wider range of recording conditions, especially those in which there is less time spent asleep 

(and thus NREM may not be expected to account for the largest portion of variance). Like the 
first principal component, the slow wave filtered signal was found to be bimodal in all recordings, 

and the lowest point between modes of the distribution was used to divide NREM and non-
NREM epochs. 

 In the hippocampal dataset, manual NREM scoring as reported in Grosmark and Buzsaki 
2016 was used for this study. 

 
Slow Wave Detection 

 Slow waves were detected using the coincidence of a two-stage threshold crossing in two 

signals (Supplemental Figure 1A,B): a drop in high gamma power (100-400Hz, representative of 
spiking (Watson et al 2017)) and a peak in the delta-band filtered signal (0.5-8Hz). The gamma 

power signal was smoothed using a sliding 80ms window, and locally normalized using a 
modified (non-parametric) Z-score in the surrounding 20s window, to account for non-

stationaries in the data (for example due to changes in brain state and noise), that could result 
in local fluctuations in gamma power. The channel used for detection was determined as the 

channel for which delta was most negatively correlated with spiking activity, while gamma was 
most positively correlated with spiking activity.  

 Two thresholds were used for event detection in each LFP-derived signal, a “peak 
threshold” and a “window threshold”. Time epochs in which the delta-filtered signal crossed the 

peak threshold were taken as putative slow wave events, with start and end times at the nearest 

crossing of the window threshold. Peak/window thresholds were determined for each recording 
individually to best give separation between spiking (UP states) and non-spiking (DOWN states) 

(Supplemental Figure 1C). To determine the delta thresholds, all peaks in the delta-filtered 
signal greater than 0.25 standard deviations were detected as candidate delta peaks and 

binned by peak magnitude. The peri-event time histogram (PETH) for spikes from all cells was 
calculated around delta peaks in each magnitude bin, and normalized by the mean rate in all 

bins. The smallest magnitude bin at which spiking (i.e. the PETH at time = 0) was lower than a 
set rate threshold (the “sensitivity” parameter, Supplemental Figure 1D) was taken to be the 

peak threshold. For example, a sensitivity of 0.5 means that the delta peak threshold is set to 

the smallest threshold for which spiking drops below 50% of mean spiking activity. The window 
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threshold was set to the average delta value at which the rate crosses this threshold in all peak 

magnitude bins. The gamma thresholds were calculated similarly, but using drops below a 
gamma power magnitude instead of peaks above a delta magnitude. 

 Once the thresholds were calculated, candidate events were then detected in the delta 
and gamma power signals, and further limited to a minimum duration of 40ms.  Slow wave 

events were then taken to be overlapping intervals of both the gamma and delta events. DOWN 
states with spiking above the sensitivity threshold were thrown out. 

 Detection quality was checked using a random sampling and visual inspection protocol. 
LFP and spike rasters for random 10s windows of NREM sleep were presented to a manual 

scorer, who marked correct SW detections, false alarms, and missed SWs. This protocol was 
used to estimate the detection quality (miss %, FA %) for each recording (Supplemental Figure 

1E), and to optimize the detection algorithm. 1,085 - 21,147 slow waves (i.e. UP/DOWN states) 

were detected per recording and used for subsequent analysis. 
 

Model Implementation 
 Phase plane and bifurcation analysis of the model in the absence of noise was 

implemented in XPP, and a similar code was implemented in MATLAB for simulations of the 
model with noisy input, for the analysis of UP/DOWN state durations. Noise was implemented 

using Ornstein-Uhlenbeck noise. 

!" = −!!"# + ! 2!"#!"! 
where !! is a Weiner process . Time scale ! = 0.05 and standard deviation ! = 0.25 were used 
unless otherwise specified. 

 Simulations of equations [1-2] and [3-5] were performed in Matlab using the ode45 solver, 
with input noise ! !  pre-computed independently for each simulation using forward Euler 

method with time step dt=0.1. Accuracy was assessed by comparing results for time steps 

dt=0.1 and dt=0.05 for a subset of simulations. Statistics for simulations with noise were 
determined by simulations of duration 60,000 (AU). 

 A simulated time course was determined to have UP/DOWN states if the distribution of r(t) 
was bimodal, as determined using a hartigans dip test (Hartigan and Hartigan 1985, 

implementation at http://www.nicprice.net/diptest/). UP/DOWN state transitions were detected 
as threshold crossings between high and low rate states. To avoid spurious transition detection 

due to noise, a “sticky” threshold was used: the threshold for DOWN->UP transitions was taken 
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to be the midpoint between positive crossings of a threshold between the high rate peak of the 

rate distribution and the inter-peak trough, while the threshold for UP->DOWN transitions was 
the midpoint between the low rate peak of the rate distribution and the inter-peak trough.  

 All simulation and analysis code is available at 
https://github.com/dlevenstein/Levensteinetal2018. 

 
UP/DOWN State Duration Matching 

 In vivo and simulated UP/DOWN state durations were compared using a non-parametric 
distribution matching procedure (Supplemental Figure 6). Similarity was calculated as 

! = 1 − !"!" ∗ 1 − !"!"#$  
where 

!"!"/!"#$ = sup!|!! ! − !! ! | 
is the Kolmogorov-Smirnov (KS) statistic, in which sup! is the supremum function and !!/! !  

are the empirical cumulative distributions of simulated and in vivo durations. In short, KS 

measures the largest difference between the observed cumulative distributions for simulated 
and in vivo durations, where !"!" = 0 indicates that the in vivo/simulated UP state durations 

distributions are identical and !"!" = 1 indicates that the in vivo/simulated DOWN state 
durations distributions are non-overlapping. Similarity is thus bounded between 0 and 1, where 

! = 1 indicates that both UP and DOWN state distributions are identical between simulation and 
the experimental observation, and ! = 0 indicates that either the observed UP or DOWN state 

distributions are non-overlapping with the modeled durations. 

 There is one free parameter in the fitting procedure, which is !, the population time 
constant, or equivalently, the time scale factor from non-dimensionalized model time and 

seconds. For each simulation, we tested time scale factors from 1ms to 25ms with increments of 
0.1ms and used the time scale parameter that gave the highest value for !, thus preserving the 

shapes of the distributions and the relative values of UP/DOWN state durations. 
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