
Principal component analysis-based unsupervised feature 

extraction applied to single-cell gene expression analysis1 

Abstract. Due to missed sample labeling, unsupervised feature selection during 

single-cell (sc) RNA-seq can identify critical genes under the experimental 

conditions considered. In this paper, we applied principal component analysis 

(PCA)-based unsupervised feature extraction (FE) to identify biologically rele-

vant genes from mouse and human embryonic brain development expression 

profiles retrieved by scRNA-seq. When evaluating the biological relevance of 

selected genes by various enrichment analyses, the PCA-based unsupervised FE 

outperformed conventional unsupervised approaches that select highly variable 

genes as well as bimodal genes in addition to the recently proposed dpFeature.  

Keywords: principal component analysis, feature selection, embryonic brain 

development 

1 Introduction 

Single-cell analysis is a newly developed high-throughput technology that enables us 

to identify gene expression profiles of individual genes. There is a critical difference 

between single-cell analysis and conventional tissue-specific analysis; tissue samples 

are labeled distinctively (e.g., patients vs healthy controls) while single-cell samples 

are not always. Inevitably, we need an unsupervised methodology, such as highly 

variable genes [1, 2] and bimodal genes [3] or recently proposed dpFeature [4]. High-

ly variable genes are able to select genes that can discriminate the underlying cluster 

structure depicted by unsupervised clustering, namely tSNE [5]. In contrast, bimodal 

genes are selected because unimodal genes are unlikely to be expressed distinctly 

between multiple classes, e.g., healthy controls and patients. While the combination 

of tSNE and highly variable genes or bimodal genes approach is often employed and 

empirically successful, biological validation of selected genes is rarely addressed. 

Generally, very few studies have evaluated multiple gene selection procedures for 
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single-cell RNA-seq. The purpose of this paper is to compare multiple gene selection 

procedures and to identify the best method.  

 Principal component analysis (PCA)-based unsupervised feature extraction (FE) 

has been previously shown to be an effective method to investigate tissue-specific 

gene expression profiles [6–28]. In this paper, PCA-based unsupervised FE was ap-

plied to single-cell gene expression analysis. In addition, its effectiveness was evalu-

ated from the biological point of view and compared to conventional approaches, 

including the highly variable genes approach as well as the bimodal genes approach. 

2 Materials and Methods 

2.1 Gene expression 

Gene expression profiles used in this study were downloaded from the Gene Expres-

sion Omnibus (GEO) database under the GEO ID GSE76381. Specifically, the files 

named “GSE76381_EmbryoMoleculeCounts.cef.txt.gz” (for human) and 

“GSE76381_MouseEmbryoMoleculeCounts.cef.txt.gz” (for mouse) were download-

ed. Gene expression profiles were standardized such that each sample had zero mean 

and unit standard deviation. That is, when 𝑥𝑖𝑗  represented the expression of 𝑖th gene 

in 𝑗th sample, ∑ 𝑥𝑖𝑗𝑖 = 0 and ∑ 𝑥𝑖𝑗
2

𝑖 = 𝑁 where 𝑁 represented the number of genes. 

These two gene expression profiles were generated from single-cell RNA-seq datasets 

that represented the following: human embryo ventral midbrain cells between 6 and 

11 weeks of gestation, mouse ventral midbrain cells at six developmental stages be-

tween E11.5 to E18.5, Th+ neurons at P19–P27, and FACS-sorted putative dopamin-

ergic neurons at P28–P56 from Slc6a3-Cre/tdTomato mice. 

2.2 PCA-based unsupervised FE 

Suppose that matrix 𝑋 has element 𝑥ij representing the gene expression of 𝑖th gene 

of 𝑗th sample, then the 𝑘th PC score attributed to ith gene 𝑢𝑘𝑖 can be computed as 𝑖th 

element of 𝑘th eigen vector of Gram matrix 𝑋𝑋𝑇 as 

𝑋𝑋𝑇𝒖𝒌 = 𝜆𝑘𝒖𝒌 

𝑘th PC loading attributed to 𝑗th sample, 𝑣𝑘𝑗 , can be obtained by 𝒗k = 𝑋𝑇𝒖k since 

𝑋𝑇𝑋𝒗k = 𝑋𝑇𝑋𝑋𝑇𝒖k = 𝑋𝑇λk𝒖k = λk𝒗k 

Initially, PC loading attributed to samples were identified, which were coincident 

with distinction between considered class labels attributed to the samples. Since sin-

gle-cell RNA-seq (scRNA-seq) lacks sample labeling, the first 𝑘 PCs were employed. 

Subsequently, assuming multiple Gaussian distribution to PC scores, P-values were 

attributed to gene 𝑖 using χ2 distribution, 
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𝑃i = 𝑃χ2 [> ∑ (
𝑢𝑘𝑖

σ𝑘

)
2

𝐾

𝑘=1

] 

where σk  represented standard deviation and 𝑃χ2[> 𝑥]  represented the cumulative 

probability of χ2distribution that the argument was larger than 𝑥. The summation was 

taken over the selected first 𝑘  PC scores. Obtained P-values were adjusted using 

Benjamini and Hochberg (BH) criterion [29] and genes associated with adjusted P-

values less than 0.01 were selected.  

2.3 Enrichment analysis 

In order to perform enrichment analyses, selected genes were uploaded to Enrichr 

[30], which included various enrichment analysis. 

2.4 Highly variable genes 

The procedure was performed as previously described [1], and a brief description is 

provided below. Suppose that 𝑥ij represented gene expression of 𝑖th gene of 𝑗th sam-

ple, then the mean expression of 𝑖th gene was defined as 

μi =
∑ xiji

𝑀
 

where M represented the number of samples. The standard deviation σi was defined as 

σi
2 = ∑

(xij − μi)
2

𝑀
i

 

Following, the regression relation between σi and μi was assumed as 

log10 (
σi

μi

) =
1

2
log10 (

β

μi

+ α) + ϵ𝑖 

where α  and β  were the regression coefficients. Subsequently, P-value 𝑃i
′  was at-

tributed to ϵ𝑖 assuming χ2distribution as 

Pi
′ = 𝑃χ2 [> (

ϵi

σ′
)

2

] 

where σ′ was the standard deviation. Finally, genes i with an adjusted P-value less 

than 0.01 by BH criterion were selected as highly variable genes. 
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2.5 Bimodal genes 

P-values attributed to genes that reject the null hypothesis (unimodal genes) were 

computed by the dip.test function in R using the default setting. Obtained P-values 

were adjusted by BH criterion, and genes associated with adjusted P-values less than 

0.01 were selected.  

2.6 dpFeature 

dpFeature was performed using monocle package in R. More detailed instruction was 

in Supplementary Document. 

3 Results 

Applying PCA-based unsupervised FE to human and mouse embryonic brain devel-

opmental gene expression profiles, 116 genes for human (𝑘 = 2, i.e, the first two PC 

scores were used for gene selection) and 118 genes for mouse (𝑘 = 3, i.e., the first 

three PC scores were used for gene selection) were selected, respectively. Interesting-

ly, 53 genes of the selected genes were common both in human and mouse samples. 

The large overlap between the two genes sets with highly restricted numbers of genes 

is not plausible to occur by chance; therefore, it is very likely that these selected genes 

play critical roles in embryonic midbrain development.  

To validate the biological relevance of the selected genes, various enrichment 

analyses were applied using Enrichr. Table 1 shows an Enrichment analysis by Enri-

chr, “MGI Mammalian Phenotype 2017”, of the 118 genes selected in mice. Among 

the top five ranked terms, four were brain-related terms. As all terms described ab-

normal morphology, this is an expected result since fetal gene expression is often 

distinct from adults that lack fetal-specific gene expression. Table 2 and Table 3 show 

another Enrichment analysis by Enrichr, “Allen Brain Atlas down”, of the 116 genes 

selected in humans and 118 genes selected in mice, respectively. All genes were 

downregulated in brain regions. This is again reasonable since fetal genes expressed 

in the embryo is unlikely to be expressed in adult tissue. The lack of fetal brain-

specific gene expression in the selected genes can also be seen in Table 4 and Table 5. 

 

Table 1. Enrichment analysis by Enrichr, “MGI Mammalian Phenotype 2017”, of 

118 selected genes in mice (Top 5 ranked terms) 

Term Overlap P-value Adjusted P-value 

MP:0000788_abnormal_cerebral_cor

tex_morphology 

7/145 2.45 × 10−5 
 

4.55 × 10−5 

MP:0003651_abnormal_axon_extens

ion 

5/48 9.18 × 10−6 
 

4.55 × 10−3 

MP:0000812_abnormal_dentate_gyr

us_morphology 

5/58 2.34 × 10−5 4.55 × 10−3 

MP:0000807_abnormal_hippocampu

s_morphology 

5/86 1.56 × 10−4 2.04 × 10−2 
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MP:0000819_abnormal_olfactory_b

ulb_morphology 

4/48 1.83 × 10−4 2.04 × 10−2 

 

 

Table 2. Enrichment analysis by Enrichr, “Allen Brain Atlas down”, of 116 select-

ed genes in humans (Top 5 ranked terms) 

Term Overlap P-value Adjusted P-value 

periventricular stratum of cerebellar 

vermis 

18/300 1.33 × 10−13 3.72 × 10−11 

Simple lobule 18/300 1.33 × 10−13 3.72 × 10−11 

Simple lobule, molecular layer 18/300 1.33 × 10−13 3.72 × 10−11 

Simple lobule, granular layer 18/300 1.33 × 10−13 3.72 × 10−11 

white matter of cerebellar vermis 18/300 1.33 × 10−13 3.72 × 10−11 

 

Table 3. Enrichment analysis by Enrichr, “Allen Brain Atlas down”, of 118 select-

ed genes in mice (Top 5 ranked terms) 

Term Overlap P-value Adjusted P-value 

Pyramus (VIII), granular layer 18/300 1.81 × 10−13 4.66 × 10−11 

Pyramus (VIII) 18/300 1.81 × 10−13 4.66 × 10−11 

Pyramus (VIII), molecular layer 18/300 1.81 × 10−13 4.66 × 10−11 

Paraflocculus, molecular layer 18/300 1.81 × 10−13 4.66 × 10−11 

Cerebellar cortex 18/300 1.81 × 10−13 4.66 × 10−11 

 

Table 4. Enrichment analysis by Enrichr, “GTEx Tissue Sample Gene Expression 

Profiles down”, of 116 selected genes in humans (Top 5 ranked terms) 

Term Overlap P-value Adjusted P-value 

GTEX-Q2AG-0011-R10A-SM-

2HMLA_brain_female_40-

49_years 

51/1467 1.47 × 10−27 
 

3.29 × 10−24 

GTEX-TSE9-3026-SM-

3DB76_brain_female_60-

69_years 

49/1384 1.06 × 10−26 1.19 × 10−23 

GTEX-S7SE-0011-R10A-SM-

2XCDF_brain_male_50-

59_years 

44/1278 3.20 × 10−23 1.43 × 10−20 

GTEX-QMR6-1426-SM-

32PLA_brain_male_50-

59_years 

41/1066 2.57 × 10−23 1.43 × 10−20 

GTEX-RNOR-2326-SM-

2TF4I_brain_female_50-

59_years 

47/1484 2.02 × 10−23 1.43 × 10−20 

 

Table 5. Enrichment analysis by Enrichr, “GTEx Tissue Sample Gene Expression 

Profiles down”, of 118 selected genes in mice (Top 5 ranked terms) 

Term Overlap P-value Adjusted P-value 

GTEX-U8XE-0126-SM- 15/376 6.13 × 10−9 3.45 × 10−6 
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4E3I3_testis_male_30-39_years 

GTEX-X4XX-0011-R10B-SM-

46MWO_brain_male_60-69_years 

23/938 5.25 × 10−9 

 

3.45 × 10−6 

GTEX-U4B1-1526-SM-

4DXSL_testis_male_40-49_years 

13/282 1.23 × 10−8 3.71 × 10−6 

GTEX-Q2AG-0011-R10A-SM-

2HMLA_brain_female_40-49_years 

29/1467 5.11 × 10−9 3.45 × 10−6 

GTEX-RNOR-2326-SM-

2TF4I_brain_female_50-59_years 

29/1484 6.62 × 10−9 3.45 × 10−6 

 

While these above results are highly significant, they are also negative results. As 

such, we speculated whether these results could provide enough support and confi-

dence for the selected genes. Therefore, in order to show positive results, gene ex-

pression in the embryonic brain was assessed. Subsequently, it was found that these 

genes were enriched in “Jensen TISSUES” by Enrichr. Table 6 shows that selected 

genes are enriched in the embryonic brains of humans and mice, respectively. Thus, 

confidence of the selected genes is supported by both negative and positive selection. 

We further sought the regulatory elements that can regulate the selected genes, as 

there are likely common regulatory elements if the selected genes are truly co-

expressed. In order to perform this, we investigated “ENCODE and ChEA Consensus 

TFs from ChIP-X” by Enrichr for both human and mouse, respectively. Specifically, 

42 TFs for humans and 23 TFs for mice were associated with adjusted P-values less 

than 0.01 (Table 7). Thus, they are likely co-regulated by these TFs. Moreover, most 

mouse TFs were also identified in humans (bold faces in Table 7). Therefore, it is 

very likely that we successfully identified common (species non-specific or con-

served) TFs that regulate genes expression during embryonic brain development.  

Additionally, we assessed whether the TF constructs functioned cooperatively. 

These TFs were uploaded to regnetwork server [31], and TF networks were identified 

as shown in Fig. 1 . It is evident, even partially, that these TFs interact with each oth-

er. 

We also investigated whether the identified TFs were related to fetal brain devel-

opment. TAF7 was reported to play a critical role in embryonic development [32]. 

KAT2A, ATF2 and TAF1 were also suggested to be included in brain development 

[33]. BRCA1 has been shown to play critical roles in brain development [34]. Addi-

tionally, CEBPD and CREB were reported to be related to brain disease [35, 36]. 

E2F1 was reported to be related to postnatal brain development [37] while functional 

EGR1 was found in the embryonic rat brain [38]. PML and SIN3A were also reported 

to be involved in brain development [39][40]. TCF3 has been shown to play a role in 

zebrafish brain development [41]. YY1 was also reported in brain development [42].  

In conclusion, most of the selected genes in common (bold faces in Table 7) between 

humans and mice are related to brain development. Thus, the selection of genes is 

possibly reasonable.  
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Table 6. Selected gene enrichment in the embryonic brain of “Jensen TISSUES” 

by Enrichr 

Term Overlap P-value Adjusted P-value 

Human 

Embryonic_brain 71/4936 2.52 × 10−16 4.07 × 10−15 

Mouse 

Embryonic_brain 75/4936 8.90 × 10−20 1.06 × 10−18 

 

Table 7. TF enrichment in “ENCODE and ChEA Consensus TFs from ChIP-X” by 

Enrichr for human and mouse (Bold TFs are common) 

human ATF2, BCL3, BCLAF1, BHLHE40, BRCA1, CEBPB, CEBPD, CHD1, 

CREB1, CTCF, E2F1, E2F4, EGR1, ELF1, ETS1, FLI1, GABPA, 

KAT2A, KLF4, MAX, MYC, NANOG, NELFE, NFYA, NFYB, NR2C2, 

PBX3, PML, RELA, SALL4, SIN3A, SIX5, SOX2, SP1, SPI1, TAF1, 

TAF7, TCF3, USF2, YY1, ZBTB33, ZMIZ1 

mouse ATF2, BCL3, BRCA1, CEBPB, CEBPD, CHD1, CREB1, E2F1, EGR1, 

KAT2A, KLF, MAX, MYC, NELFE, PBX3, PML, RELA, SIN3A, 

TAF1, TAF7, TCF3, YY1, ZMIZ1 

 

In addition to the unconventional PCA-based unsupervised FE, we applied the 

widely used highly variable genes approach to the present data set and determined 

which strategy was more consistent with the enrichment analysis [1]. After applying 

the highly variable genes strategy, we obtained 168 genes for human and 171 genes 

for mouse. The numbers of selected genes were similar to those selected by PCA-

based unsupervised FE. Additionally, there were 44 commonly selected genes be-

tween human and mouse. Thus, the highly variable genes method shows some effica-

cy. 

However, after a detailed investigation, there were very few overlaps between 

genes selected by PCA-based unsupervised FE and highly variable genes (only four 

genes were commonly selected by PCA-based unsupervised FE and highly variable 

genes for both human and mouse). This result did not provide much confidence since 

genes selected by PCA-based unsupervised FE were demonstrated to be biologically 

reliable. However, there was still a possibility that highly variable genes were coinci-

dent to the enrichment analysis without significant overlap with genes selected by 

PCA-based unsupervised FE. 
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Fig. 1. TF network identified by regnetworkweb for TFs in Table 7 (Left: human, 

right: mouse) 

 

For confirmation, genes were uploaded to Enrichr. Accordingly, the results were 

substantially distinct from that given by PCA-based unsupervised FE. Specifically, 

the top five ranked enriched terms in “MGI Mammalian Phenotype 2017” for mouse 

did not include anything related to the brain, which is inferior to the results in Table 1. 

In contrast, no biological terms were significantly enriched in “Allen Brain Atlas 

down” for human, yet substantially large numbers of terms were enriched in mouse. 

This is inconsistent since the highly variable genes were substantially common be-

tween mouse and human; therefore, the inconsistency between human and mouse 

suggests that the selection of highly variable genes might be abiological. Subsequent-

ly, the “GTEx Tissue Sample Gene Expression Profiles down” was considered, and 

the top five ranked terms did not include anything related to brain, instead relations to 

skin and blood were found. This suggests that highly variable genes are not likely 

more biologically reliable than genes selected by PCA-based unsupervised FE. Final-

ly, “Jensen TISSUES” was considered as was completed above (Table 6). Similarly, 

no brain-related terms were found to be significantly enriched in highly variable 

genes. TFs were also investigated to determine whether they could regulate highly 

variable genes. Nevertheless, “ENCODE and ChEA Consensus TFs from ChIP-X” 

only identified one TF whose target genes were significantly enriched in highly varia-

ble genes in human or mouse. As such, one TF identified is significantly less than that 

in Table 7. All of these suggest that highly variable genes are unlikely to be biologi-

cally more reliable than genes selected by PCA-based unsupervised FE.  

In addition, we investigated bimodal genes as an alternative strategy (see Supple-

mentary document). Genes associated with adjusted P-values less than 0.01 were 

11344 and 10849 for human and mouse, respectively. Due to the large volume, it 

suggests that the bimodal genes approach has no ability to select a reasonable (re-

stricted) number of genes. Nevertheless, in order to evaluate bimodal genes further, 

200 top ranked (i.e., associated with smaller P-values) were intentionally selected. 

Specifically, of the 200 selected genes, only 21 genes were commonly selected be-

tween human and mouse, as compared to 53 and 44 commonly selected genes be-
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tween human and mouse by PCA-based unsupervised FE and highly variable genes, 

respectively. Furthermore, there were no commonly selected genes between bimodal 

genes and PCA-based unsupervised FE. Enrichment analyses by Enricher for bimodal 

genes were also inferior to that of PCA-based unsupervised FE. “MGI Mammalian 

Phenotype 2017” of 200 bimodal genes selected for mouse included no terms associ-

ated with adjusted P-values less than 0.01 (Table S1). Top five ranked terms by “Al-

len Brain Atlas down” (Tables S2 and S3) were less significant than PCA-based un-

supervised FE (Tables 2 and 3) as P-values were generally larger for bimodal genes. 

In addition, top five ranked terms by “GTEx Tissue Sample Gene Expression Profiles 

down” included no brain-related terms (Tables S4 and S5). Taken together, all of 

these suggests that bimodal genes are unlikely to be biologically more reliable than 

genes selected by PCA-based unsupervised FE.  

Nevertheless, bimodal genes are slightly better than highly variable genes. Specifi-

cally, “Jensen TISSUES” by Enrichr included Embryonic_brain as a significant term 

(Table S6). In addition, “GTEx Tissue Sample Gene Expression Profiles down” iden-

tified 40 TFs associated with adjusted P-values less than 0.01 for human and mouse, 

among which as many as 30 TFs were commonly selected (Table S7). These TFs 

were also highly connected in the regnetworkweb (Figure S1).  

Interestingly, among the 30 commonly selected TFs between human and mouse in 

Table S7, 11 TFs were also commonly selected between human and mouse in Table 

7. When considering that no genes were commonly selected between top ranked 200 

bimodal genes and genes selected by PCA-based unsupervised FE, the high number 

of commonly selected TFs between PCA-based unsupervised FE and bimodal genes 

suggests the robustness of TFs selected. Thus, as an overall evaluation PCA-based 

unsupervised FE is better than the other two. 

Although we have also compared with the newly proposed approach, dpFeature, 

because of lack of space, it was included in Supplementary document. dpFeature 

could not select biologically more reliable genes than PCA based unsupervised FE, 

either. 

While PCA is not a new technology and highly variable genes and bimodal genes 

are also not new concepts, the application to scRNA-seq is innovative and valuable. 

Therefore, even if methods themselves applied are not new, their application to new 

technology, scRNA-seq, can be innovative, especially if they have never been applied 

to scRNA-seq or were successful. Especially if PCA is more successful than even 

newly proposed approach, e.g., dpFeature. 

4 Conclusions 

We applied PCA-based unsupervised FE to gene expression profiles retrieved by 

scRNA-seq analysis. Since scRNA-seq primarily lacks the labeling of sample (each 

cell), an unsupervised approach is necessary. Genes selected by PCA-based unsuper-

vised FE for human and mouse embryonic brain development were not only associat-

ed with numerous significant biological terms enrichment but also highly coincident 

between mice and humans. In contrast, the frequently employed highly variable genes 
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approach as well as the bimodal genes approach or recently proposed dpFeature could 

not identify as many genes associated with significant biological terms enrichment as 

the PCA-based unsupervised FE achieved. Thus, PCA-based unsupervised FE is more 

favorable than the highly variable genes approach, the bimodal genes approach or 

dpFeature from the biological point of view. 

5 Supplementary materials 

Supplementary materials are available at https://github.com/tagtag/SC.  

Full list of genes, enrichment analyses for genes selected by PCA-based unsuper-

vised FE, bimodal genes and dpFeature, supplementary document that includes sup-

plementary tables and figure for bimodal gene analyses and dpFeature, R codes that 

identify genes selected by PCA-based unsupervised FE, highly variable genes, bi-

modal genes and dpFeature. 
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