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Abstract

Multimodal imaging enables sensitive measures of the architecture and integrity of the human
brain, but the high-dimensional nature of advanced brain imaging features poses inherent
challenges for the analyses and interpretations. Multivariate age prediction reduces the
dimensionality to one biologically informative summary measure with potential for assessing
deviations from normal lifespan trajectories. A number of studies documented remarkably
accurate age prediction, but the differential age trajectories and the cognitive sensitivity of
distinct brain tissue classes have to a lesser extent been characterized.

Exploring differential brain age models driven by tissue-specific classifiers provides a
hitherto unexplored opportunity to disentangle independent sources of heterogeneity in brain
biology. We trained machine-learning models to estimate brain age using various
combinations of FreeSurfer based morphometry and diffusion tensor imaging based indices of
white matter microstructure in 612 healthy controls aged 18-87 years. To compare the tissue-
specific brain ages and their cognitive sensitivity we applied each of the 11 models in an
independent and cognitively well-characterized sample (n=265, 20-88 years). Correlations
between true and estimated age in our test sample were highest for the most comprehensive
brain morphometry (r=0.83, CI:0.78-0.86) and white matter microstructure (r=0.79, CI:0.74-
0.83) models, confirming sensitivity and generalizability. The deviance from the
chronological age were sensitive to performance on several cognitive tests for various models,
including spatial Stroop and symbol coding, indicating poorer performance in individuals
with an over-estimated age. Tissue-specific brain age models provide sensitive measures of

brain integrity, with implications for the study of a range of brain disorders.
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Introduction

Increasing age is a major risk factor for cognitive decline and neurodegeneration, and
deviating lifespan trajectories in brain structure and function is a sensitive marker in several
common neurological and mental disorders (Cole & Franke 2017). The maturing and aging
brain is highly heterogeneous in term of individual trajectories and in term of brain regions
and mechanisms involved (Fjell et al. 2013; Westlye et al. 2010b). Understanding the
individual determinants and heterogeneity of the developing and aging brain is imperative for
identifying persons at risk for various brain disorders, and for developing and applying
effective and targeted treatments.

Exploring different modalities acquired by magnetic resonance imaging (MRI)
provide a powerful tool to investigate age-related differences in both gray- and white- matter
tissue classes across brain regions. However, the richness and complexity of the information
provided by advanced imaging pipelines challenges its interpretation. Together, the
multifactorial age-related variability and the richness of imaging measures have motivated the
development of biologically informative summary measures based on brain imaging data.
Using machine-learning to estimate the biological age of the brain based on neuroimaging
data is one such approach (Cole & Franke 2017; Cole et al. 2018; Kaufmann et al. 2018).
Deviation from the normative trajectory is a highly relevant biomarker for the integrity of the
brain in healthy and clinical populations (Marquand et al. 2016; Wolfers et al. in press). Brain
age gap is a heritable trait showing regionally specific genetic overlaps with major brain
disorders, including schizophrenia and multiple sclerosis (Kaufmann et al. 2018), and
accumulating evidence supports increased brain age in several clinical groups, including
patients with schizophrenia (Kaufmann et al. 2018; Schnack et al. 2016), Alzheimer’s disease
(Amoroso et al. 2017; Kaufmann et al. 2018), HIV (Cole et al. 2017b; Kuhn et al. 2018)
multiple sclerosis (Kaufmann et al. 2018) and cardiovascular risk factors (Franke et al. 2013;
Habes et al. 2016). Indeed, while individuals with brains estimated as younger than their
chronological age have been shown to be more physically active (Steffener et al. 2016),
augmented brain age has been associated with poor health (Ronan et al. 2016), poor cognitive
performance (Liem et al. 2017), early neurodegenerative diseases (Gaser et al. 2013), and
increased mortality (Cole et al. 2017a). Less is known about the regional heterogeneity, i.e. to
which degree different brain regions, systems or compartments show differential aging
patterns and sensitivity to cognitive performance. Brain gray and white matter compartments,

which can be assessed and quantified using T1-weighted imaging and diffusion tensor
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imaging (DTI), respectively, comprise distinct tissue classes with largely differential
biological and environmental modifiers and age trajectories (Bennett et al. 2010; Cao et al.
2017; Fjell et al. 2013; Salat et al. 2005; Storsve et al. 2014; Westlye et al. 2010a; Westlye et
al. 2010b). Therefore, allowing for differential brain age models for these distinct classes
provides an opportunity to disentangle independent sources of heterogeneity in brain aging.

Thus, to identify common and unique aging patterns with potentially differential
sensitivity to cognitive function, we aimed to test the complementary value of tissue-specific
prediction by comparing brain age estimated using different combinations of FreeSurfer based
morphometric measures (regional cortical thickness, surface area and volume) and white
matter microstructure features (DTI based fractional anisotropy and mean, radial and axial
diffusivity) across the brain. Based on previous studies on brain aging, we expected high
accuracy and generalizability of the age prediction models (Cole & Franke 2017). Since tissue
specific brain age models capture biologically distinct information, we anticipated that the
different FreeSurfer based brain morphometry and white matter microstructure models would
only partly reflect common variance, and therefore provide complementary information with
differential sensitivity to cognitive performance. Given that brain age predictions might be
sensitive to the overall integrity of the brain (Liem et al. 2017), we anticipated that individuals
with an over-estimated brain age would show lower cognitive performance, in particular
among the elderly, and that the tissue-specific brain age models would show partly
differential cognitive sensitivity.

To ensure generalizability, we trained the models in a large publicly available training
set (=612, 18-87 years) and validated their performance using 10-fold cross-validation
before applying to an independent and well characterized test set (n=265, 20-88 years). We
assessed the cognitive sensitivity using linear and non-linear models with performance on a
range of paper-and-pencil and computerized tests comprising different large-scale cognitive
domains (processing speed, executive functioning, working memory, attention, and general
intellectual abilities) and cognitive scores based on computational models as dependent
variables and age, sex and brain age gap (BAG, estimated brain age minus chronological age)
as independent variables. For transparency, we report results both at an uncorrected level and

corrected using false discovery rate (FDR) and Bonferroni methods to control the error rate.
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100  Materials and methods

101  Table 1 summarizes key demographics. We included data from healthy volunteers from two
102  independent cohorts: (1) the Cambridge Centre for Ageing and Neuroscience (Cam-CAN)
103 sample (http://www.mrc-cbu.cam.ac.uk/datasets/camcan/; (Shafto et al. 2014; Taylor et al.
104  2017)) and (2) StrokeMRI, which is an ongoing study on the determinants of stroke recovery,
105  brain health and successful aging (Dorum et al. 2016; Dorum et al. 2017). Figure 1 shows the
106  age distribution for each sample.

107 Volunteers were recruited to Cam-CAN through a large-scale collaborative research
108  project funded by the Biotechnology and Biological Sciences Research Council (BBSRC,
109  grant number BB/H008217/1), the UK Medical Research Council and University of

110  Cambridge. For more information, see www.cam-can.org. Among the 650 datasets made

111  available, 17 were excluded based on missing or poor quality DTI data and 21 due to poor
112 Tl-weighted data quality. Data from the remaining 612 individuals (age 18-87, mean = 54.41,
113  SD =18.26, 314 females) were included.

114 Healthy individuals were recruited to StrokeMRI through advertisement in

115  newspapers, social media and word-of-mouth. All participants completed a comprehensive
116  cognitive assessment, multimodal MRI and blood sampling for clinical biochemical analysis,
117  various biomarkers and genotyping. MRI and cognitive assessments were performed on two
118  subsequent days. Exclusion criteria included history of stroke, dementia, or other neurologic
119  and psychiatric diseases, alcohol- and substance abuse, medications significantly affecting the
120  nervous system and counter indications for MRI. In addition, individuals scoring lower than
121 25 on the Montreal Cognitive Assessment (MoCA; Nasreddine et al. 2005) were assessed for
122 inclusion based on their age, level of education and performance on other cognitive tests. No
123  participants were excluded based on a single low score. A neuroradiologist reviewed all scans
124  and 14 participants with clinically significant abnormalities were excluded. Additional

125  exclusion criteria included missing or incomplete MRI or cognitive data (n=2), or poor

126  quality images (n=20). The remaining 265 participants (age 20-88, mean = 56.95, SD = 14.84,
127 168 females) were included in further analyses. The study was approved by the Regional

128  Committee for Medical and Health Research Ethics (South-East Norway), and conducted in
129  accordance with the Helsinki declaration. All subjects signed an informed consent prior to
130  participating and received a compensation for their participation.

131

132
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142  Cognitive assessment in StrokeMRI

143  Cognitive performance was assessed with a set of neuropsychological and computerized tests
144  assumed to be sensitive to cognitive aging, including the MoCA, the vocabulary and matrix
145  subtests of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler 1999), the

146  California Verbal Learning Test (CVLT-II; Delis et al. 2000), and the Delis-Kaplan Executive
147  Function System (D-KEFS) color word interference test (Stroop; Delis et al. 2001). We

148  included several computerized tests from the Cognitive Assessment at Bedside for iPAD
149  (CABPad; Willer et al. 2016), including motor speed, verbal fluency (phonological and

150  semantic), working memory, spatial Stroop (executive control of attention), spatial attention
151  span, and symbol digit coding tests. In addition, in order to assess the specificity of cognitive
152 associations using computation modeling, we included three mathematically independent
153  parameters based on the Theory of Visual Attention (TVA; Bundesen 1990; Bundesen &
154  Habekost 2008), including short-term memory storage (K), processing speed (C), perceptual
155  threshold (#). These parameters based on computational modeling of response patterns have
156  been shown to be sensitive to age, brain structure and function in healthy individuals

157  (Espeseth et al. 2014; Wiegand et al. 2018) and a range of brain disorders (Habekost 2015;
158  Habekost & Starrfelt 2009). Here, we used a TVA-based modeling of a whole report

159  (Sperling 1960), in which six letters were briefly presented for different exposure durations
160 and the participant’s task was to accurately report as many letters as possible. Task error rate
161  was also assessed (i.e. number of incorrect letters out of reported letters).

162

163  MRI acquisition

164  Cam-CAN participants were scanned on a 3T Siemens TIM Trio scanner with a 32-channel

165  head-coil at Medical Research Council (UK) Cognition and Brain Sciences Unit (MRC-
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166  CBSU) in Cambridge, UK. DTI data was acquired using a twice-refocused spin echo

167  sequence with the following parameters a repetition time (TR) of 9100 ms, echo time (TE) of
168 104 ms, field of view (FOV) of 192 x 192 mm, voxel size: 2 mm’, 66 axial slices using 30
169  directions with b= 1000 s/mm?, 30 directions with b= 2000 s/mm?, and 3 b=0 images (Shafto
170  etal. 2014). Only the b=[0,1000] were used in the current analysis. High-resolution 3D T1-
171  weighted data was acquired using a magnetization prepared rapid gradient echo (MPRAGE)
172 sequence with the following parameters: TR: 2250 ms, TE: 2.99 ms, inversion time (TI): 900
173 ms, flip angle (FA): 9°, FOV of 256 x 240 x 192mm; voxel size =1 mm’ isotropic, GRAPPA
174  acceleration factor of 2, scan time 4:32 minutes (Shafto et al. 2014).

175 StrokeMRI participants were scanned on a 3T GE 750 Discovery MRI scanner with a
176  32-channel head coil at Oslo University Hospital. Paddings were used to reduce head motion.
177  DTI data were acquired using an echo planar imaging (EPI) sequence with the following

178  parameters: TR/TE/flip angle: 8150 ms/83.1 ms/90°, FOV: 256 x 256 mm, slice thickness: 2
179  mm, in-plane resolution: 2 mm, 60 directions (b=1000 s/mm?) and 5 b=0 volumes, scan time:
180  8:58 min. In addition, 7 b=0 volumes with reversed phase-encoding direction were acquired.
181  High-resolution T1-weighted data was acquired using a 3D IR-prepared FSPGR (BRAVO)
182  with the following parameters: repetition time: 8.16 ms, echo time: 3.18 ms, flip angle: 12°,
183  wvoxel size: 1 x 1 x 1 mm, field of view: 256 x 256 mm, 188 sagittal slices, scan time: 4:43
184  minutes.

185

186  DTI processing and analysis

187  Diffusion MRI data from both samples were processed locally using the Oxford Center for
188  Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL)

189  (http://www.fmrib.ox.ac.uk/fsl). To correct for geometrical distortions, motion and eddy

190  currents, data were preprocessed using topup (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) and
191  eddy (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) respectively (Andersson et al. 2003; Smith et
192  al. 2004). Topup uses information from the reversed phase-encoded image, resulting in pairs
193  of images (blip-up, blip-down) with distortions going in opposite directions. From these

194  image pairs the susceptibility-induced off-resonance field was estimated and the two images
195  were combined into a single corrected one (Andersson et al. 2003; Smith et al. 2004). This
196  step was performed on StrokeMRI data only. Eddy detects and replaces slices affected by
197  signal loss due to bulk motion during diffusion encoding, which is performed within an

198 integrated framework along with correction for susceptibility induced distortions, eddy
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199  currents and motion (Andersson & Sotiropoulos 2016). Although these processing steps have
200  been shown to strongly increase the temporal signal-to-noise ratio (tSNR) (Doan et al. 2017),
201  we performed additional visual inspection to identify and remove poor quality data.

202 Fractional anisotropy (FA), eigenvector, and eigenvalue maps were calculated using
203  dtifit in FSL. Mean diffusivity (MD) was defined as the mean of all three eigenvalues, radial
204  diffusivity (RD) as the mean of the second and third eigenvalue, and axial diffusivity (AD) as
205  the principal eigenvalue.

206 Voxelwise analysis of FA, MD, AD and RD were carried out using Tract-Based

207  Spatial Statistics (TBSS; Smith et al. 2006), part of FSL (Smith et al. 2004). First, all subjects'
208  FA data were aligned to a common space using the nonlinear registration tool FNIRT

209  (Andersson et al. 2007a; Andersson et al. 2007b). Next, the mean FA image was created and
210  thinned to create a mean FA skeleton, which represents the centers of all tracts common to all
211  participants. Each subject's aligned FA data was then projected onto this skeleton and the
212 resulting data fed into voxelwise cross-subject statistics. The same warping and

213  skeletonization was repeated for MD, AD and RD. We thresholded and binarized the mean
214  FA skeleton at FA>0.2. For each individual, we calculated the mean skeleton FA, MD, AD
215 and RD, as well as mean values within 23 regions of interest (ROIs) based on two

216  probabilistic white matter atlases provided with FSL, i.e. the CBM-DTI-81 white-matter

217  labels atlas and the JHU white-matter tractography atlas (Hua et al. 2008; Mori et al. 2005;
218  Wakana et al. 2007), yielding a total of 96 DTI features per individual.

219

220 Tl processing

221  Tl-weighted images were processed using FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu;
222 (Dale et al. 1999)) including brain extraction, intensity normalization, automated tissue

223  segmentation, generation of white and pial surfaces (Dale et al. 1999). All reconstructions
224  were visually assessed and corrected as appropriate. Cortical parcellation was performed

225  using the Desikan—Killiany atlas (Desikan et al. 2006; Fischl et al. 2004) and subcortical

226  segmentation was performed based on a probabilistic atlas (Fischl et al. 2002). In addition to
227  global features (intracranial volume, total surface area, whole-cortex mean thickness), mean
228  thickness, total surface area, and volume for each cortical ROI, as well as the volume of

229  subcortical structures were computed yielding a set of 251 FreeSurfer based features.

230

231
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232 Age prediction

233  Eleven different models were trained to estimate age based on the feature sets described

234  above (one based on FreeSurfer T1 features, one based on WM DTI features, one including
235 all T1 and DTI features, in addition to eight models based on a smaller subset of features,
236  including models based on FA, MD, AD, RD, sub-cortical volume, volume, area and

237  thickness to further explore the modality specificity of the estimations).

238 Due to the systematic differences in the brain features across scanners as well as non-
239  linear effects of age, we fit a generalized additive model (GAM; Hastie 2017) for each feature
240 and regressed out the effects of scanning site and age?, accounting all models for age and sex.
241  In addition, we regressed out the estimated total intracranial volume from the area and volume
242  features. Next, for each model, we created a training data matrix by concatenating all the

243  features for all participants in the training sample (Cam-CAN), which were used as input to
244  estimate age. We used the xgboost framework in R (http://xgboost.readthedocs.io/en/latest/R-
245  package/xgboostPresentation.html), an efficient and scalable implementation of gradient

246  boosting machine learning techniques, to build the prediction models. The following

247  parameters were used: learning rate (eta) = 0.1, nround = 5000, gamma = 1, max_depth = 6,
248  subsample=0.5. To estimate the performance of our models, we used a 10-fold cross-

249  validation procedure within the training sample and repeated the cross-validation step 1000
250  times to provide a robust estimate of model predictive accuracy. Next, we tested the

251  performance of our trained models by predicting age in unseen healthy subjects in the test
252 sample (StrokeMRI).

253 For each feature set, we calculated the correlation between the predicted and the

254  chronological age as a measure of the model performance, in addition to the mean absolute
255  error (MAE, in years). For each individual, we calculated the discrepancy between the

256  estimated and the chronological age, i.e. the BAG, for each model. The MAE was calculated
257  from the BAG for each model. Since we were interested in the effect of BAG independently
258  of age, the effect of age was regressed out for each BAG using linear models.

259

260  Statistical analysis

261  Statistical analysis was performed using R (http://www.r-project.org). For cognitive data, we

262  used outlierTest from the car package (Fox & Weisberg 2011) to identify the most extreme
263  observations based on a linear model, including age and sex. Twenty-five observations were

264  identified as outliers and treated as missing values based on a Bonferroni corrected p < 0.05.
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265  To visualize the associations between the cognitive tests and to form cognitive domain scores
266  based on the correlation patterns, we performed hierarchical clustering using the default

267  setting of the heatmap.2 package in gplots (Warnes et al. 2016), which uses hclust (Miillner
268  2013) to form clusters based on the complete linkage method. Briefly, this is a step-wise

269 clustering process that merges the two nearest clusters until only one single cluster remains,
270  maximizing distance between individuals components between two clusters.

271 For each cognitive measure and summary score based on the clusters formed form the
272  clustering step above, we used linear models to test for the effect of age and sex. Since

273  cognitive performance may show non-linear associations with age, we performed an

274  additional analysis including both age and age” in the models. Then, for each test showing a
275  significant association with age, we tested whether adding BAG to the models lead to an

276  improved model fit. More specifically, we tested for differential associations with cognitive
277  function by comparing the parameter estimates for the different BAG models using Fisher z-
278  transformation. To test the assumption that increased BAG is more relevant for cognitive
279  function among the elderly, we tested for age by BAG interactions on cognitive performance.
280  For transparency, we report both uncorrected p-values and p-values adjusted using FDR

281  (Benjamini & Hochberg 1995; Wright 1992) and Bonferroni correction using a factor of 495
282 (11 brain gaps and 45 cognitive features).

283

284  Results

285  Brain age prediction

286  10-fold cross-validation on the training sample revealed high correlations between

287  chronological and predicted age for the DTI based white matter microstructure (r=0.87) and
288  FreeSurfer based morphometric (r=0.88) models. Likewise, the correlations for FA (r=.76),
289 MD (r=.80), AD (r=.83), RD (r=78), sub-volume (r=.84), volume (r=.80), area (r=.70) and
290  thickness (r=.79) based models also confirmed reasonable model performance.

291 Most models accurately predicted age in the independent test set. Figure 2A shows a
292  correlation matrix for the 11 BAGs. Figure 2B shows the correlations between the

293  chronological age and the predicted age in the test sample for each model with their

294  confidence intervals, ranging from (r=.86, CI:.82-.89, MAE= 6.14) for the combined model to
295  r=.58 (CI:..49-.65, MAE=10.24) for the model based on area. Figure 2 (D to F) show the

296  estimated age from the three models that performed best among the 11 feature sets, i.e. the
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297  combined DTI and T1 feature models (r=.86, CI:.82-.89, MAE= 6.14), the 251 FS T1 features
298 (r=.83, CI..78-.86, MAE= 6.76), and the 96 WM DTI features (r=.79, CI..74-.83, MAE=7.28).
299
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301  Fig. 2 Comparison between the 11 BAG models. (a) Heatmap of the correlation between
302 different BAGs. (b) Correlations between the chronological age and the predicted age in the
303 test sample for each model with their confidence intervals. (¢c) Mean and standard error of the
304 45 p-values (-logio(p)) for the cognitive scores and composite scores for each row (i.e.

305 BAGsS), with a higher mean representing a stronger global association across tests. (d)

306  Correlation between the chronological age of each subjects and the combined age, (¢) the
307  brain morphometry age, and (f) the white matter microstructure age.

308

309

310  Cognitive assessments and associations with BAGs

311 Table 1 summarizes descriptive statistics and associations with age and sex for each of the 49
312  cognitive scores, derived features and domain scores. Linear models revealed 45 significant
313  associations with age after correcting for multiple comparisons, with the strongest effect sizes
314  for the symbol coding test, motor speed, spatial Stroop and spatial attention span. Since non-
315 linear models revealed significant associations with age® only with the color word Stroop 3
316  (inhibition) and its derived scores (See supplementary Table S1), the main models presented
317  here are linear in order to keep the model to its simplest form. Figure 3 shows a correlation

318  matrix across all normalized cognitive scores with the variables sorted according to the
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319  hierarchical clustering. Several variables were highly correlated, and the clustering solution
320  generally suggested seven broad cognitive domains including (Cluster 1) memory and

321 learning (CVLT, attention span, MoCA), (Cluster 2) visual processing speed (TVA

322  processing speed and perceptual threshold), (Cluster 3) verbal skills (phonological and

323  semantic flow), (Cluster 4) attentional control and speed (spatial Stroop), (Cluster 5)

324  executive control and speed (color-word Stroop), (Cluster 6) reasoning and psychomotor
325  speed (matrix, symbol coding and motor speed, short-term memory storage (TVA-parameter

326 K)), and (Cluster 7) working memory.
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329  Fig. 3 Hierarchical clustering of the cognitive features. Each cognitive score was normalized
330 and when required the scores were multiplied by -1 to ensure that positive scores represent
331  good performance. The higher panel shows the dendrogram resulting from the hierarchical

332 clustering of the scores in 7 cognitive domains.

333  Table 2 shows summary statistics for the associations between cognitive performance and
334 BAG using linear models, including age and sex as covariates. Figure 4 shows a heatmap of
335 the association between cognitive scores and brain age gaps for which the significant

336  associations have been marked with an asterisk. Supplementary Table S1 and Fig. S1 shows
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the summary statistics and the heatmap of the associations between cognitive performance
and BAG using non-linear models. Figure 2C shows the mean and standard error of the 45 p-
values (-log;o(p)) for the cognitive scores and composite scores for each row (i.e. BAGs),
with a higher mean representing a stronger cumulative association across tests.

Figure 5 shows a scatter plot of the 2 strongest associations, which were found
between the most comprehensive model (all features combined) and spatial Stroop congruent
trials and number of responses, respectively, indicating poorer performance with higher BAG.
Fisher z-transformation revealed no statistically significant differences in the cognitive
associations between linear models using tissue-specific BAG. No significant interactions

were found between BAG and age on cognitive performance.

Associations between cognitive tests and BAG
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Cognitive tests

Fig. 4 Heatmap of the association between cognitive scores and brain age gaps. The color
scale depicts the minus log of the p-values (-log;o(p)) for each association. The association
marked with a small star represents significant associations after FDR correction, and the one

marked with a big star shows significant associations after Bonferroni correction.
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Fig. 5 Scatter plots of the 2 strongest associations between cognitive measures and BAG. The
color gradient represents the age where lighter color is assigned to older individuals, and
darker color to younger individuals. All associations indicate worse performance with higher

brain age gap.

Discussion

Brain aging is highly heterogeneous, and expanding our understanding of the biological
determinants of human aging is imperative for reducing the burden of age-related cognitive
decline and neurodegenerative disorders. An estimate of an individual’s deviation from the
expected lifespan trajectory in brain structure and function may provide a sensitive measure
of individual brain integrity and health, both in presumably healthy individuals and in patients
suffering from various brain disorders.

The biological heterogeneity of the brain strongly suggests that the concept of a single
brain age is too simple, and that tissue-specific brain age models may provide increased
sensitivity and specificity in relation to cognitive and mental functions. In line with this view,
our main findings demonstrate that different combinations of FreeSurfer based brain
morphometry and DTI based white matter microstructural indices can be used to accurately
predict the age of individuals, but that the shared variance from the different models suggest
that they reflect partly non-overlapping processes of brain aging. Further, the results revealed
partly differential sensitivity to cognitive performance; with the strongest cumulative
associations across cognitive tests for brain age gaps estimated using RD. Even though our
data provide no strong evidence of independent associations with cognitive performance in

the current sample of healthy individuals, tissue specific age prediction models might better
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379  inform us about the individual determinants and heterogeneity of the aging brain compared to
380 models collapsing several brain compartments by potentially capturing distinct measures of
381  brain aging.

382

383  Brain age prediction

384  For the age prediction models, our results demonstrated that the 11 different combinations of
385  FreeSurfer based morphometric measures (regional cortical thickness, surface area and

386  volume) and white matter microstructure features (diffusion tensor imaging (DTT) based

387  fractional anisotropy and mean, radial and axial diffusivity) across the brain age models

388  accurately predicted the age of an individual with a mean absolute error between 6.14 and
389  10.23 years. Brain morphometry and white matter microstructure models had a MAE of 6.76
390 and 7.28 respectively, which correspond with previous publications (Cole et al. 2016; Han et
391  al. 2014; Valizadeh et al. 2017). In general, combining features and modalities increased the
392  performance, and the highest performing model included a combination of both brain

393  morphometry and white matter microstructure (mean absolute error of 6.14 years). Moreover,
394 the correlations between the different brain age gaps suggested a relatively low level of shared
395  variance (mean correlation = 0.51, SD=0.13). Together these findings support the notion that
396 tissue specific brain age models capture biologically distinct information. This is in line with
397 the characteristic lifespan patterns of global linear decreases in gray matter volume and the
398 nonlinear trajectories of total white matter volume and DTI based metrics of white matter
399  microstructure (Cox et al. 2016; Fjell et al. 2013; Ge et al. 2002; Liu et al. 2017; Raz et al.
400  2010; Westlye et al. 2010b), highlighting that the different compartments carry unique

401 biological information and that combining different modalities lead to a better estimation the
402  age of individuals (Cherubini et al. 2016; Liem et al. 2017; Madan & Kensinger 2018).

403

404  Cognitive associations

405  We performed a comprehensive cognitive assessment of the test sample, confirming previous
406  evidence of substantial age-related differences in cognitive performance across a range of
407  tests and domains. Hierarchical clustering of the cognitive features indicated a characteristic
408  pattern of covariance, largely reflecting broad cognitive domains, including memory and
409 learning, visual processing speed, verbal skills, attentional and executive control, reasoning
410  and psychomotor speed, and working memory. Ninety percent of the included cognitive

411  features showed age-differences, with the largest effect sizes observed for speed-based
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412  measures, such as symbol coding test, which measures mental and visuo-motor speed (Willer
413  etal. 2016). This is in line with the well-established literature on age-related decline in

414  information processing speed in healthy aging (Bennett et al. 2010; Craik & Salthouse 2008;
415  Harada et al. 2013). Importantly, not only tasks measuring reaction time, but also various
416  TVA measures based on computational modeling, such as short-term memory storage (K),
417  processing speed (C), and perceptual threshold (zy) showed strong associations with age, in
418 line with previous studies (Espeseth et al. 2014; Habekost 2015; Habekost et al. 2013;

419  McAvinue et al. 2012; Wiegand et al. 2018).

420 Based on the assumption that brain age captures variance related to the integrity of the
421  brain, we anticipated that individuals with an over-estimated age would show lower cognitive
422  performance, and that the tissue-specific brain age models would show partly differential

423  sensitivity. To test these hypotheses, we used linear models to explore the associations

424  between cognitive performance and BAG, with age and sex as covariates, and directly

425  compared the parameter estimates from the different brain age models. We found a significant
426  association between performance on several tests and BAG beyond the age associations,

427  indicating lower performance in individuals with higher BAG. Briefly, one significant

428  association was found for WM DTI, five for combined BAG, two for the sub-volume, one for
429  the RD and one for the MD BAG. The strongest associations were found with the spatial

430  Stroop congruent trials, and number of responses. These findings support that the deviance
431  between the estimated age and the chronological age captures relevant biological information
432  regarding the cognitive performance of an individual. Whereas we found no significantly

433  different associations between brain age models, the association with symbol digit coding test
434  was only seen for WM DTI BAG, while associations with Stroop 3 and 4 were observed only
435  for sub-volume BAG, suggesting some specificity that should be investigated in future studies
436  including larger samples and a broader spectrum of mental health, cognitive and brain

437  phenotypes, both across healthy and clinical samples. We speculate that the contributions of
438 the different modalities in predicting age and the associations with both cognitive

439  performance, but also age-related illnesses vary across the age-span, as it does during

440  maturational age (Brown et al. 2012). Thus, future studies might benefit from investigating
441  modality specific brain-age estimation using specific age range.

442

443

444
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Limitations
The present findings do not come without limitations. First, although reducing the
dimensionality of complex brain imaging data to a biologically informative brain age is a
powerful method to assess deviations from normal lifespan trajectories in brain health,
findings from this data reduction method are limited in specificity. Here, we attempted to both
reduce the complexity of the information while keeping some modality specificity measured
by different MRI parameters. Finding a balance between specificity and precision represents
an interesting challenge for future studies. Moreover, causality and individual level
trajectories cannot be established based on cross-sectional data. Therefore, future longitudinal
studies are needed to inform us about the relevance of the differential trajectories of the
tissue-specific brain age prediction with implications for the study of a range of brain
disorders. Next, although the age distribution of the test sample is irrelevant to the individual
prediction accuracy, the relative overrepresentation of older individuals in the test sample is a
limitation when investigating interactions between BAG and age. Thus, although the lack of
brain by BAG interactions on cognitive function did not support our hypothesis that increased
BAG is more relevant for cognitive function among the elderly, future studies including
individuals across a broader range of function are needed to characterize the lifespan
dynamics in the associations between brain and behavior. Although we covered a relatively
broad spectrum of structural brain features, the link between imaging based indices of brain
structure and brain function is elusive, and brain age models including other brain imaging
features, including functional measures, might provide a sensitive supplement to the current
models. Lastly, whereas the results showed some numerical differences in the cognitive
sensitivity of the different combinations of FreeSurfer based morphometry and white matter
microstructure models, these differences were not statistically significant, and the hypothesis
that tissue specific models provide increased specificity in terms of cognitive associations
remains to be further explored in future studies.

In conclusion, we have demonstrated that models based on different combinations of
brain morphometry and white matter microstructural indices provide partly differential
information about the aging brain, emphasizing the relevance of tissue-specific brain age

models in the study of brain and mental function in health and disease.
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770  Figure legends

771  Fig. 1 Histogram of the age distribution for each sample.

772

773  Fig. 2 Comparison between the 11 BAG models. (a) Heatmap of the correlation between
774  different BAGs. (b) Correlations between the chronological age and the predicted age in the
775  test sample for each model with their confidence intervals. (¢) Mean and standard error of the
776 45 p-values (-logio(p)) for the cognitive scores and composite scores for each row (i.e.

777  BAGs), with a higher mean representing a stronger global association across tests. (d)

778  Correlation between the chronological age of each subjects and the combined age, (e) the
779  brain morphometry age, and (f) the white matter microstructure age.

780

781  Fig. 3 Hierarchical clustering of the cognitive features. Each cognitive score was normalized
782  and when required the scores were multiplied by -1 to ensure that positive scores represent
783  good performance. The higher panel shows the dendrogram resulting from the hierarchical

784  clustering of the scores in 7 cognitive domains.

785
786  Fig. 4 Heatmap of the association between cognitive scores and brain age gaps. The color

787  scale depicts the minus log of the p-values (-log;o(p)) for each association. The association
788  marked with a small star represents significant associations after FDR correction, and the one
789  marked with a big star shows significant associations after Bonferroni correction.

790

791  Fig. S Scatter plots of the 2 strongest associations between cognitive measures and BAG. The
792  color gradient represents the age where lighter color is assigned to older individuals, and

793  darker color to younger individuals. All associations indicate worse performance with higher

794  brain age gap.
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802  Table legends

803  Table 1. Demographics and cognitive information. * significant associations between

804  cognitive measures with age after FDR correction, ** significant associations between

805  cognitive measures with age after Bonferroni correction

806

807  Table 2. Cognitive associations with Brain Age Gap (BAG) — statistics. * FDR significant **
808  Bonferroni significant

809

810

811

812  Supplementary Materials

813  Fig. S1. Heatmap of the association between cognitive scores and brain age gaps using non-
814  linear models, including age, age® and sex as covariates. The color scale depicts the minus log
815  of the p-values (-logio(p)) for each association. The association marked with a small star
816  represents significant associations after FDR correction, and the one marked with a big star
817  shows significant associations after Bonferroni correction.

818

819  Table S1. Cognitive associations with Brain Age Gap (BAG) using non-linear models,
820 including age, age” and sex as covariates — statistics. * FDR significant ** Bonferroni

821  significant.
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835 Tables

836  Demographics and cognitive information

Cam-CAN StrokeMRI Range (IQR) Main effect Age Main effect Sex
Mean (SD) t(p) t(p)

Total N (% females) 612 (51.3%) 265 (63.4%)
Mean age (SD) 54.41 (18.26) 56.95 (14.84)
Age range 18-87 20-88
MoCA - 27.60 (1.72) 21-30(2) -4.57 (<0.001)** -2.32(0.021)
WASI words - 65.27 (6.60) 44 -179 (10) 4.72 (<0.001)** 0.10 (0.920)
WASI matrix - 25.39 (5.64) 7-35(6) -7.60 (<0.001)** -0.28 (0.776)
CVLT learning 1-5 - 48.92 (11.37) 17 -73 (15.5) -5.05 (<0.001)** -5.26 (<0.001)
CVLT interference - 5.53 (2.15) 0-13(3) -4.33 (<0.001)** -0.41 (0.681)
CVLT recall - 10.83 (3.42) 0-16(5) -6.50 (<0.001)** 5.94 (<0.001)
CVLT delayed recall - 11.39 (3.44) 0-16(5) -4.97 (<0.001)** -5.51 (<0.001)
CVLT recognition hit - 14.70 (1.50) 8-16(2) -2.62 (0.0093)* -2.68 (0.008)
CVLT recognition errors - 3.79 (3.92) 0-18(4) 5.22 (<0.001)** 4.18 (<0.001)
CVLT recog misses - 1.30 (1.49) 0-8(2) 2.62 (0.0093)* 2.68 (0.008)
CVLT recog false alarm - 2.46 (3.48) 0-18(3) 4.45 (<0.001)** 3.59 (0.0004)
CVLT recog correct rejection - 44.20 (3.92) 30-48 (4) -5.22 (<0.001)** -4.18 (<0.001)
CVLT &’ - 2.97(0.72) 0.97-3.90 (1.11) -5.01 (<0.001)** -4.50 (<0.001)
STROOP 1 - 31.14 (5.66) 21-50(7) 5.05 (<0.001)** 2.44 (0.015)
STROOP 2 - 22.12 (3.49) 14-35(4) 2.89 (0.004)* 2.27(0.024)
STROOP 3 - 55.86 (14.13) 10— 108 (15) 7.55 (<0.001)** 2.97 (0.003)
STROOP 4 - 61.74 (14.85) 33-117(19) 7.51 (<0.001)** 1.77 (0.078)
STROOP mean 1 and 2 - 26.54 (4.16) 18.5-42(5) 4.47 (<0.001)** 2.47(0.014)
STROOP 3 minus mean 1 and 2 - 81.94 (16.51) 34.5-145(18.5) 7.31 (<0.001)** 3.02 (0.003)
STROOP 4 minus mean 1 and 2 - 87.64 (16.73) 53.5-142 (24) 7.52 (<0.001)** 1.85 (0.066)
CP — Right motor speed - 79.56 (23.34) 34-153(32) -12.25 (<0.001)**  -0.36 (0.716)
CP — Left motor speed - 81.36 (17.80) 39-131(26) -12.07 (<0.001)**  0.20 (0.842)
CP — FAS Phonological flow - 54.70 (14.53) 14 - 95 (19.75) -0.61 (0.541) -2.58 (0.011)

CP — FAS Semantic flow

51.00 (10.14)

27-81(13)

-2.93 (0.004)*

-3.93 (<0.001)
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CP — Visual WM forward Is

CP — Visual WM forward ss

CP — Visual WM backward Is

CP — Visual WM backward ss

CP — Visual WM ss

CP — Spatial stroop congruent (ms)

CP — Spatial stroop incongruent (ms)

CP — Spatial stroop Errors

CP — Spatial stroop numb of reps

CP — Spatial stroop incong — cong (ms)

CP — Spatspan Is

CP — Spatspan tot

CP — Coding corr

CP — Coding error

TVA — Short-term memory storage (K)

TVA — Processing speed (C)

- 423 (1.01)

- 5.45(1.87)

- 3.80 (1.28)

- 4.56 (2.08)

- 9.96 (3.57)

- 674.42 (132.77)

- 929.52 (198.01)

- 2.17 (2.41)

- 119.63 (16.64)

- 252 (110)

- 5.37(1.78)

- 29.87 (12.43)

- 54.50 (12.11)

- 0.67 (0.99)

- 3.38(0.77)

- 31.55 (14.07)

2-7(Q2)
1-10(3)
0-8(1)
0-12(3)
1-21(4)
410-1159 (181)
462 — 1827 (269)
0-11(3)
55166 (22)
20— 678 (134.5)
1-10(2)
3-55(18)
24— 88 (16)
0-5(1)
1.46 — 5.53 (1.09)

5.99 — 89.67 (14.75)

-5.31 (<0.001)**

-6.59 (<0.001)**

-4.60 (<0.001)%*

-5.48 (<0.001)**

-7.04 (<0.001)%*

8.52 (<0.001)**

9.41 (<0.001)**

0.73 (0.463)

-9.67 (<0.001)**

5.73 (<0.001)**

-9.12 (<0.001)%*

-9.28 (<0.001)**

-16.69 (<0.001)**

-1.10 (0.271)

-7.75 (<0.001)%*

-4.69 (<0.001)%*

0.29 (0.774)

-0.25 (0.803)

-1.85 (0.065)

-1.02 (0.309)

-0.95 (0.342)

-1.03 (0.304)

-0.75 (0.451)

1.59(0.113)

1.23(0.219)

-0.68 (0.498)

-4.88 (<0.001)

-4.66 (<0.001)

246 (0.015)

1.56 (0.121)

-1.52 (0.129)

0.41 (0.6847)

TVA — Perceptual threshold (7o) - 23.01 (14.05) 0-79.75 (17.59) 5.72 (<0.001)%*  -1.94 (0.053)
TVA — Error rate - 0.10 (0.06) 0.0035 - 03316 (0.0983)  -1.35(0.177) 0.67 (0.502)
Cluster 1 - - - -7.19 (<0.001)**  -5.16 (<0.001)
Cluster 2 - - - -728 (<0.001)** 161 (0.110)
Cluster 3 - - - -2.01 (0.045)* -3.99 (<0.001)
Cluster 4 - - - -9.98 (<0.001)** 125 (0.212)
Cluster 5 - - - -6.86 (<0.001)**  -2.56 (0.011)
Cluster 6 - - - -15.79 (<0.001)**  -1.08 (0.282)
Cluster 7 - - - -6.50 (<0.001)**  -0.77 (0.440)

837  Table 1. Demographics and cognitive information. * significant associations between

838  cognitive measures with age after FDR correction, ** significant associations between

839  cognitive measures with age after Bonferroni correction

840

841

842
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Cognitive associations with Brain Age Gap (BAG) — statistics
Test AdjR’>no-BAG  BAG Main effect Age Main effect Sex Main effect BAG Adj R*
t(p) t(p) t(p)
MoCA 0.0907 T1 -4.5596 (<0.001)  -2.3145(0.021)  -0.124 (0.901) 0.0878
DTI -4.5599 (<0.001)  -2.3155(0.021)  1.5914 (0.113) 0.0966
Combined -4.5653 (<0.001)  -2.3176 (0.021)  -0.4626 (0.644) 0.0885
WASI words 0.0731 Tl 47118 (<0.001)  0.1020 (0.919) -0.2169 (0.828) 0.0704
DTI 47056 (<0.001)  0.1121 (0.911) -0.8126 (0.417) 0.0727
Combined  4.7091 (<0.001)  0.1041 (0.917) -0.4827 (0.630) 0.0711
WASI matrix 0.1791 Tl -7.6061 (<0.001)  -0.2785 (0.781)  -0.9158 (0.361) 0.1793
DTI -7.6610 (<0.001)  -0.2624(0.793)  -1.6546 (0.099) 0.1854
Combined -7.6128 (<0.001)  -0.2726 (0.785)  -1.1102 (0.268) 0.1806
CVLT learning 1-5 0.1810 T1 -5.0373 (<0.001)  -5.2514(<0.001)  -0.2505 (0.802) 0.1750
DTI -5.0418 (<0.001)  -5.2533 (<0.001)  -0.3608 (0.719) 0.1753
Combined -5.0387 (<0.001)  -5.2522 (<0.001)  -0.2492 (0.803) 0.1750
CVLT interference 0.0664 T1 -4.3256 (<0.001)  -0.4062 (0.685)  -0.9588 (0.339) 0.0626
DTI 43218 (<0.001)  -0.4104(0.682)  -0.2391 (0.811) 0.0594
Combined -4.3202 (<0.001)  -0.4101 (0.682)  -0.1875 (0.851) 0.0594
CVLT recall 0.2438 T1 -6.4897 (<0.001)  -5.9257 (<0.001)  -0.4868 (0.627) 0.2397
DTI -6.4885 (<0.001)  -5.9257 (<0.001)  -0.1245 (0.901) 0.2391
Combined -6.5080 (<0.001)  -5.9373 (<0.001)  -1.1114 (0.268) 0.2427
CVLT delayed recall 0.1850 Tl 49636 (<0.001)  -5.4973 (<0.001)  0.1421 (0.887) 0.1808
DTI 49611 (<0.001)  -5.4969 (<0.001)  0.224 (0.823) 0.1809
Combined -4.9655 (<0.001)  -5.4954 (<0.001)  -0.3038 (0.762) 0.1810
CVLT recognition hits 0.0494 Tl 2.6125(0.010)  -2.6822(0.008)  -0.8586 (0.391) 0.0486
DTI 2.6144 (0.010)  -2.6786(0.008)  0.0946 (0.925) 0.0459
Combined -2.6212(0.009)  -2.6854 (0.008)  -1.0724 (0.285) 0.0501
CVLT recognition errors 0.1526 Tl 52227 (<0.001)  4.1850 (<0.001)  -0.8471 (0.398) 0.1528
DTI 52115 (<0.001)  4.1755 (<0.001)  -0.5651 (0.573) 0.1514
Combined 52139 (<0.001)  4.1740 (<0.001)  -0.2537 (0.800) 0.1506
CVLT recog misses 0.0494 Tl 2.6125(0.010)  2.6822 (0.008) 0.8586 (0.391) 0.0486
DTI 2.6144(0.010)  2.6786 (0.008) -0.0946 (0.925) 0.0459
Combined 2.6212 (0.009)  2.6854 (0.008) 1.0724 (0.285) 0.0501
CVLT recog false alarm 0.1150 Tl 44519 (<0.001)  3.5827 (<0.001)  -0.776 (0.439) 0.1146
DTI 44378 (<0.001)  3.5803 (<0.001)  -0.5207 (0.603) 0.1134
Combined 4.4418 (<0.001)  3.5788 (<0.001)  -0.3488 (0.728) 0.1129
CVLT recog correct rejection 0.1526 Tl -5.2227 (<0.001)  -4.1850 (<0.001)  0.8471 (0.398) 0.1528
DTI 52115 (<0.001)  -4.1755 (<0.001)  0.5651 (0.573) 0.1514
Combined -5.2139 (<0.001)  -4.1740 (<0.001)  0.2537 (0.800) 0.1506
CVLT & 0.1566 T1 -5.0074 (<0.001)  -4.4914 (<0.001)  0.3628 (0.717) 0.1536
DTI -5.0021 (<0.001)  -4.4969 (<0.001)  0.8538 (0.394) 0.1556
Combined -5.0038 (<0.001)  -4.4902 (<0.001)  0.1699 (0.865) 0.1533
STROOP 1 0.1118 T1 5.1466 (<0.001)  2.4999 (0.013) 2.6939 (0.008) 0.1299
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STROOP 2

STROOP 3

STROOP 4

STROOP mean 1 and 2

STROOP 3 minus mean 1 and 2

STROOP 4 minus mean 1 and 2

CP — Right motor speed

CP — Left motor speed

CP — FAS Semantic flow

CP — Visual WM forward Is

CP — Visual WM forward ss

CP - Visual WM backward Is

CP - Visual WM backward ss

CP — Visual WM ss
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0.0477

0.2104

0.1887

0.0949

0.2051

0.1936

0.3695

0.3630

0.0840

0.0936

0.1416

0.0852

0.1022

0.1607

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI

5.0968 (<0.001)
52111 (<0.001)
2.8868 (0.004)

2.8768 (0.004)

2.8949 (0.004)

7.5930 (<0.001)
7.6511 (<0.001)
7.6793 (<0.001)
7.5403 (<0.001)
7.5847 (<0.001)
7.6387 (<0.001)
4.5089 (<0.001)
4.4750 (<0.001)
4.5432 (<0.001)
7.3383 (<0.001)
7.3613 (<0.001)
7.4197 (<0.001)
7.5360 (<0.001)
7.5297 (<0.001)
7.6081 (<0.001)

-12.2893 (<0.001)
-12.2318 (<0.001)
-12.3125 (<0.001)
-12.1437 (<0.001)
-12.0669 (<0.001)
-12.2516 (<0.001)

-2.9562 (0.003)

-2.9607 (0.003)

-2.9513 (0.004)

-5.3071 (<0.001)
-5.3392 (<0.001)
253059 (<0.001)
-6.5795 (<0.001)
-6.6000 (<0.001)
-6.5786 (<0.001)
-4.5941 (<0.001)
-4.6170 (<0.001)
-4.6051 (<0.001)
-5.4741 (<0.001)
-5.4971 (<0.001)
-5.4898 (<0.001)
-7.0322 (<0.001)
70622 (<0.001)

2.4769 (0.014)
2.5317(0.012)
2.2619 (0.025)
2.2489 (0.025)
2.2713 (0.024)
2.9898 (0.003)
3.0224 (0.003)
3.0233 (0.003)
1.7884 (0.075)
1.8121 (0.071)
1.8247 (0.069)
2.5033 (0.013)
2.4760 (0.014)
2.5399 (0.012)
3.0427 (0.003)
3.0703 (0.002)
3.1063 (0.002)
1.8671 (0.063)
1.8697 (0.063)
1.9215 (0.056)
-0.3592 (0.720)
-0.3612 (0.718)
-0.3587 (0.720)
0.2100 (0.834)
0.2081 (0.835)
0.2149 (0.830)
-3.9454 (<0.001)
-3.9388 (<0.001)
-3.9389 (<0.001)
0.2850 (0.776)
0.2963 (0.767)
0.2853 (0.776)
-0.2502 (0.803)
-0.2448 (0.807)
-0.2496 (0.803)
-1.8511 (0.065)
-1.8545 (0.065)
-1.8550 (0.065)
-1.0181 (0.310)
-1.0179 (0.310)
-1.0215 (0.308)
-0.9515 (0.342)
-0.9511 (0.342)

1.6664 (0.097)
3.3767 (<0.001)*
0.1557 (0.876)
-0.4639 (0.643)
0.4976 (0.619)
1.5092 (0.133)
2.231(0.027)
2.5768 (0.011)
1.2397 (0.216)
1.7368 (0.084)
2.3662 (0.019)
1.5875 (0.114)
0.3927 (0.695)
2.0254 (0.044)
1.1397 (0.256)
1.3546 (0.177)
2.1881 (0.030)
0.8763 (0.382)
0.6331 (0.527)
1.7531 (0.081)
-1.5504 (0.122)
-0.3435 (0.732)
-1.8139 (0.071)
-1.9945 (0.047)
-0.8704 (0.385)
-2.9047 (0.004)
-2.0826 (0.038)
-2.0997 (0.037)
-1.8308 (0.068)
-0.5838 (0.560)
-1.7204 (0.087)
-0.3127 (0.755)
-0.2158 (0.829)
-1.1695 (0.243)
-0.02 (0.984)
-0.1047 (0.917)
-1.3334 (0.184)
-0.8013 (0.424)
-0.2721 (0.786)
-1.3043 (0.193)
-1.0074 (0.315)
-0.3013 (0.763)
-1.3634 (0.174)

0.1147
0.1434
0.0433
0.0440
0.0442
0.2109
0.2190
0.2240
0.1906
0.1953
0.2033
0.0978
0.0894
0.1034
0.2021
0.2038
0.2130
0.1919
0.1907
0.1993
0.3676
0.3620
0.3697
0.3634
0.3555
0.3740
0.0960
0.0963
0.0926
0.0906
0.0999
0.0897
0.1375
0.1420
0.1373
0.0820
0.0884
0.0843
0.1015
0.1072
0.1048
0.1591

0.1649
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CP — Spatial stroop congruent

CP — Spatial stroop incongruent

CP — Spatial stroop numb of reps

CP — Spatial stroop incong — cong

CP — Spatspan Is

CP — Spatspan total

CP — Coding corr

TVA - Short-term memory storage (K)

TVA - Perceptual threshold (7,)

TVA - Processing speed (C)

Cluster 1

Cluster 2

Cluster 3

Cluster 4
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0.2288

0.2548

0.2731

0.1012

0.3055

0.3057

0.5387

0.2013

0.0764

0.1304

0.2470

0.1720

0.0698

0.2783

Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined

-7.0399 (<0.001)
8.6156 (<0.001)
8.6687 (<0.001)
8.8278 (<0.001)
9.5489 (<0.001)
9.5931 (<0.001)
9.7197 (<0.001)
29.7755 (<0.001)
-9.8507 (<0.001)
-9.9891 (<0.001)
5.7663 (<0.001)
5.7466 (<0.001)
5.7568 (<0.001)
29.1038 (<0.001)
-9.1746 (<0.001)
29.1043 (<0.001)
-9.2664 (<0.001)
29.3260 (<0.001)
-9.2686 (<0.001)

-16.7647 (<0.001)
-17.0893 (<0.001)
-17.0071 (<0.001)

77691 (<0.001)
-7.8117 (<0.001)
77525 (<0.001)
5.7303 (<0.001)
5.7333 (<0.001)
5.7523 (<0.001)
-4.6692 (<0.001)
-4.6800 (<0.001)
-4.6827 (<0.001)
7.1741 (<0.001)
7.1623 (<0.001)
-7.1805 (<0.001)
7.2680 (<0.001)
7.2785 (<0.001)
7.2740 (<0.001)
-2.0177 (0.045)

-2.0337 (0.043)

-2.0185 (0.045)

-10.1319 (<0.001)
-10.1479 (<0.001)
-10.3013 (<0.001)

-0.9528 (0.342)
-1.0080 (0.314)
-1.0021 (0.317)
-0.9828 (0.327)
-0.7429 (0.458)
-0.7587 (0.449)
-0.7378 (0.461)
12211 (0.223)
1.2328 (0.219)
1.2198 (0.224)
-0.6595 (0.510)
-0.6678 (0.505)
-0.6584 (0.511)
-4.8656 (<0.001)
-4.9104 (<0.001)
-4.8663 (<0.001)
-4.6439 (<0.001)
-4.6815 (<0.001)
-4.6461 (<0.001)
-2.5004 (0.013)
-2.5467 (0.012)
-2.5604 (0.011)
-1.5196 (0.130)
-1.5383 (0.125)
-1.5195 (0.130)
-1.9470 (0.053)
-1.9444 (0.053)
-1.9587 (0.051)
0.3969 (0.692)
0.4053 (0.686)
0.3944 (0.694)
-5.1567 (<0.001)
-5.1410 (<0.001)
-5.1641 (<0.001)
1.6030 (0.110)
1.6062 (0.110)
1.6104 (0.109)
-3.9824 (<0.001)
-3.9969 (<0.001)
-3.9877 (<0.001)
1.2314(0.219)
1.2377 (0.217)
1.2196 (0.224)

-0.6665 (0.506)
2.1921 (0.029)
2.6995 (0.007)
3.9007 (<0.001)**
2.6569 (0.008)
2.8817 (0.004)
3.8071 (<0.001)**
22212 (0.027)
-2.9614 (0.003)
-3.8816 (<0.001)**
1.5611 (0.120)
0.9705 (0.333)
1.2056 (0.229)
-0.032 (0.975)
-1.5749 (0.117)
-0.075 (0.940)
0.1074 (0.915)
-1.3773 (0.170)
-0.0612 (0.951)
-1.6149 (0.108)
-3.3998 (<0.001)*
-3.0056 (0.003)
-1.1179 (0.265)
-2.0302 (0.043)
-0.9537 (0.341)
0.9617 (0.337)
1.1066 (0.270)
1.8346 (0.068)
0.8093 (0.419)
0.1402 (0.889)
0.8916 (0.374)
-0.1927 (0.847)
0.3683 (0.713)
-0.3879 (0.699)
-0.1013 (0.919)
-0.6549 (0.513)
-0.6382 (0.524)
-0.8103 (0.419)
-1.84 (0.067)
-0.9765 (0.330)
-2.5436 (0.012)
-2.5207 (0.012)
-3.6163 (<0.001)*

0.1603
0.2288
0.2362
0.2588
0.2700
0.2735
0.2903
0.2753
0.2859
0.3027
0.1134
0.1081
0.1099
0.3009
0.3077
0.3009
0.3024
0.3076
0.3024
0.5352
0.5510
0.5467
0.1981
0.2070
0.1970
0.1141
0.1152
0.1226
0.0723
0.0699
0.0728
0.2440
0.2443
0.2443
0.1687
0.1701
0.1700
0.0686
0.0783
0.0697
0.2937
0.2933
0.3113
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844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

Cluster 5

Cluster 6

Cluster 7

0.1772

0.5092

0.1399

T1

DTI
Combined
T1

DTI
Combined
T1

DTI
Combined

-6.8872 (<0.001)
-6.8667 (<0.001)
-6.9577 (<0.001)

-15.9345 (<0.001)
-15.9719 (<0.001)
-16.0156 (<0.001)

-6.4852 (<0.001)
-6.5210 (<0.001)
-6.4926 (<0.001)

-2.5902 (0.010)
-2.5805 (0.010)
-2.6481 (0.009)
-1.1148 (0.266)
-1.1080 (0.269)
-1.1196 (0.264)
-0.7736 (0.440)
-0.7689 (0.443)
-0.7759 (0.439)

-1.1084 (0.269)
-0.5825 (0.561)
-1.9103 (0.057)
-1.8971 (0.059)
-2.0875 (0.038)
2459 (0.015)
-0.3433 (0.732)
-1.6007 (0.111)
-0.63 (0.529)

0.1779
0.1750
0.1858
0.5145
0.5160
0.5193
0.1369
0.1452
0.1379

Table 2. Cognitive associations with BAG — statistics. * FDR significant ** Bonferroni

significant.
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870  Supplementary Figures

Associations between cognitive tests and BAG
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872 Cognitive tests

873  Fig. S1. Heatmap of the association between cognitive scores and brain age gaps using non-
874  linear models, including age, age® and sex as covariates. The color scale depicts the minus log
875  of the p-values (-logio(p)) for each association. The association marked with a small star
876  represents significant associations after FDR correction, and the one marked with a big star
877  shows significant associations after Bonferroni correction.
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890  Cognitive associations with Brain Age Gap (BAG) using non-linear models, including age,

891  age’ and sex as covariates — statistics.

Test

Adj R’ no-BAG

BAG

Main effect Age
t(p)

Main effect Age2
t(p)

Main effect Sex
t(p)

Main effect BAG
t(p)

Adj R’

MoCA

WASI| words

WASI matrix

CVLT learning 1-5

CVLT interference

CVLT recall

CVLT delayed recall

CVLT recognition hits

CVLT recognition errors

CVLT recog misses

CVLT recog false alarm

CVLT recog correct rejection

CVLT d’

0.088

0.0792

0.1825

0.1757

0.0593

0.2401

0.1822

0.0464

0.1567

0.0464

0.1191

0.1567

0.1548

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

-4.5563 (<0.001)
-4.5575 (<0.001)
-4.561 (<0.001)

4.7079 (<0.001)
4.7017 (<0.001)
4.7058 (<0.001)
-7.6085 (<0.001)
-7.6627 (<0.001)
-7.6132 (<0.001)
-5.0181 (<0.001)
-5.0228 (<0.001)
-5.0196 (<0.001)
-4.3175 (<0.001)
-4.3143 (<0.001)
-4.3124 (<0.001)
-6.4676 (<0.001)
-6.4667 (<0.001)
-6.4859 (<0.001)
-4.9433 (<0.001)
-4.9411 (<0.001)
-4.9454 (<0.001)
-2.615 (0.0095)

-2.6175 (0.0094)
-2.622 (0.0093)

5.2609 (<0.001)
5.2485 (<0.001)
5.2514 (<0.001)
2.615 (0.0095)

2.6175 (0.0094)
2.622 (0.0093)

4.4883 (<0.001)
4.4728 (<0.001)
4.4784 (<0.001)
-5.2609 (<0.001)
-5.2485 (<0.001)
-5.2514 (<0.001)

-5.0157 (<0.001)

-0.2752 (0.7834)
-0.3078 (0.7585)
-0.2413 (0.8095)
-1.5614 (0.1197)
-1.5532 (0.1216)
-1.5325 (0.1266)
-1.3223 (0.1873)
-1.311(0.1911)

-1.2678 (0.206)

0.5198 (0.6036)
0.5204 (0.6032)
0.5363 (0.5922)
-0.062 (0.9506)

-0.086 (0.9316)

-0.075 (0.9403)

0.6091 (0.543)

0.5965 (0.5514)
0.6973 (0.4863)
0.6624 (0.5083)
0.6618 (0.5087)
0.6981 (0.4857)
-0.3694 (0.7121)
-0.3994 (0.6899)
-0.3004 (0.7641)
1.4118 (0.1592)
1.3947 (0.1643)
1.4099 (0.1598)
0.3694 (0.7121)
0.3994 (0.6899)
0.3004 (0.7641)
1.4053 (0.1612)
1.3906 (0.1656)
1.4159 (0.158)

-1.4118 (0.1592)
-1.3947 (0.1643)
-1.4099 (0.1598)

-0.7018 (0.4835)

-2.1792 (0.0302)
-2.1727 (0.0307)
-2.1894 (0.0295)
0.4698 (0.6389)
0.4775 (0.6334)
0.4655 (0.642)

0.048 (0.9618)

0.0606 (0.9517)
0.0407 (0.9676)
-5.2162 (<0.001)
-5.2181 (<0.001)
-5.2205 (<0.001)
-0.3788 (0.7051)
-0.3772 (0.7064)
-0.3794 (0.7047)
-5.8925 (<0.001)
-5.8892 (<0.001)
-5.9255 (<0.001)
-5.4919 (<0.001)
-5.4912 (<0.001)
-5.4986 (<0.001)
-2.5144 (0.0125)
-2.504 (0.0129)

-2.5328 (0.0119)
3.7395 (<0.001)
3.7336 (<0.001)
3.7277 (<0.001)
2.5144 (0.0125)
2.504 (0.0129)

2.5328 (0.0119)
3.1557 (0.0018)
3.1567 (0.0018)
3.1475 (0.0018)
-3.7395 (<0.001)
-3.7336 (<0.001)
-3.7277 (<0.001)

-4.1938 (<0.001)

-0.1146 (0.9088)
1.5937 (0.1122)
-0.4399 (0.6604)
-0.1719 (0.8637)
-0.7843 (0.4336)
-0.3554 (0.7226)
-0.8787 (0.3804)
-1.6227 (0.1059)
-1.0117 (0.3126)
-0.2662 (0.7903)
-0.3723 (0.71)
-0.2959 (0.7675)
-0.9545 (0.3407)
-0.2366 (0.8132)
-0.1796 (0.8576)
-0.5048 (0.6141)
-0.1381 (0.8902)
-1.1682 (0.2438)
0.1193 (0.9052)
0.2079 (0.8354)
-0.3668 (0.7141)
-0.8444 (0.3992)
0.1039 (0.9173)
-1.0382 (0.3002)
-0.8964 (0.3709)
-0.5993 (0.5495)
-0.3837 (0.7015)
0.8444 (0.3992)
-0.1039 (0.9173)
1.0382 (0.3002)
-0.8236 (0.411)
-0.5544 (0.5798)
-0.4786 (0.6326)
0.8964 (0.3709)
0.5993 (0.5495)
0.3837 (0.7015)

0.3855 (0.7002)

0.0845

0.0934

0.0851

0.0756

0.0778

0.076

0.1817

0.1876

0.1825

0.1727

0.1729

0.1727

0.0589

0.0558

0.0557

0.2379

0.2371

0.2412

0.179

0.1791

0.1794

0.0453

0.0427

0.0467

0.1561

0.1546

0.1539

0.0453

0.0427

0.0467

0.1179

0.1167

0.1164

0.1561

0.1546

0.1539

0.1519
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STROOP 1

STROOP 2

STROOP 3

STROOP 4

STROOP mean 1 and 2

STROOP 3 minus mean 1 and 2

STROOP 4 minus mean 1 and 2

CP - Right motor speed

CP - Left motor speed

CP - FAS semantic flow

CP - Visual WM forward Is

CP - Visual WM forward ss

CP - Visual WM backward Is

CP - Visual WM backward ss

0.1181

0.0565

0.2519

0.2092

0.1065

0.2486

0.2225

0.3621

0.3586

0.1047

0.0897

0.1388

0.0852

0.1026
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DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1
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-5.0104 (<0.001)
-5.0122 (<0.001)
5.2178 (<0.001)
5.1698 (<0.001)
5.2707 (<0.001)
2.955 (0.0034)
2.9455 (0.0035)
2.9595 (0.0034)
7.9387 (<0.001)
8.0033 (<0.001)
8.0064 (<0.001)
7.727 (<0.001)
7.7745 (<0.001)
7.8094 (<0.001)
4.6014 (<0.001)
4.5693 (<0.001)
4.6255 (<0.001)
7.6928 (<0.001)
7.7161 (<0.001)
7.7517 (<0.001)
7.7912 (<0.001)
7.7853 (<0.001)
7.8437 (<0.001)
-12.2583 (<0.001)
-12.201 (<0.001)
-12.2818 (<0.001)
-12.1901 (<0.001)
-12.1163 (<0.001)
-12.2849 (<0.001)
-3.0413 (0.0026)
-3.0473 (0.0025)
-3.0316 (0.0027)
-5.3048 (<0.001)
-5.3364 (<0.001)
-5.3039 (<0.001)
-6.5947 (<0.001)
-6.6142 (<0.001)
-6.5945 (<0.001)
-4.6076 (<0.001)
-4.6299 (<0.001)
-4.6163 (<0.001)

-5.4768 (<0.001)

-0.7106 (0.478)
-0.7079 (0.4796)
1.8817 (0.061)
1.915 (0.0566)
1.7146 (0.0876)
1.8769 (0.0617)
1.897 (0.059)
1.8439 (0.0664)
4.0215 (<0.001)**
4.0506 (<0.001)**
3.9001 (<0.001)**
2.7144 (0.0071)
2.7322 (0.0067)
2.5945 (0.01)
2.1809 (0.0301)
2.2194 (0.0274)
2.0629 (0.0402)
4.0734 (<0.001)**
4.0759 (<0.001)**
3.9419 (<0.001)**
3.224(0.0014)*
3.233(0.0014)*
3.1135 (0.0021)*
0.4241 (0.6718)
0.3813 (0.7033)
0.5259 (0.5994)
-1.3758 (0.1701)
-1.4124 (0.159)
-1.2158 (0.2252)
-2.5748 (0.0106)
-2.6035 (0.0098)
-2.4889 (0.0134)
-0.2803 (0.7795)
-0.2747 (0.7838)
-0.2873 (0.7742)
-0.6439 (0.5202)
-0.6289 (0.53)
-0.657 (0.5118)
-0.9343 (0.351)
-0.9132 (0.362)
-0.8736 (0.3831)

-0.619 (0.5365)

-4.1973 (<0.001)
-4.1897 (<0.001)
1.9786 (0.0489)
1.9488 (0.0524)
2.0444 (0.0419)
1.7273 (0.0853)
1.7093 (0.0886)
1.7389 (0.0833)
2.0391 (0.0425)
2.0666 (0.0398)
2.0915 (0.0375)
1.1078 (0.269)

1.1277 (0.2605)
1.1659 (0.2448)
1.8851 (0.0606)
1.8487 (0.0657)
1.9411 (0.0534)
2.0223 (0.0442)
2.0485 (0.0416)
2.0994 (0.0368)
1.0274 (0.3052)
1.0273 (0.3053)
1.0945 (0.2748)
-0.4499 (0.6532)
-0.4415 (0.6592)
-0.4741 (0.6358)
0.5329 (0.5946)
0.5396 (0.5899)
0.4997 (0.6177)
-3.2544 (0.0013)
-3.2424 (0.0013)
-3.2639 (0.0012)
0.3424 (0.7323)
0.352 (0.7252)

0.3445 (0.7307)
-0.0916 (0.9271)
-0.0903 (0.9281)
-0.0873 (0.9305)
-1.567 (0.1184)

-1.5757 (0.1163)
-1.5842 (0.1144)

-0.8352 (0.4044)

0.8695 (0.3854)
0.2343 (0.8149)
2.6477 (0.0086)
1.6361 (0.103)
3.243 (0.0013)
0.0898 (0.9286)
-0.5228 (0.6016)
0.3307 (0.7411)
1.4584 (0.146)
2.245 (0.0256)
2.3542 (0.0193)
1.1959 (0.2329)
1.7316 (0.0846)
2.2006 (0.0287)
1.5137 (0.1314)
0.3205 (0.7489)
1.8349 (0.0677)
1.0347 (0.3018)
1.2741 (0.2038)
1.8804 (0.0612)
0.7875 (0.4317)
0.5573 (0.5778)
1.4951 (0.1362)
-1.56 (0.12)
-0.3491 (0.7273)
-1.8479 (0.0658)
-1.9551 (0.0517)
-0.8474 (0.3976)
-2.7995 (0.0055)
-2.0265 (0.0437)
-2.0796 (0.0385)
-1.642 (0.1018)
-0.5645 (0.5729)
-1.71 (0.0885)
-0.2836 (0.7769)
-0.1756 (0.8608)
-1.1522 (0.2503)
0.0421 (0.9664)
-0.068 (0.9458)
-1.3135 (0.1902)
-0.7237 (0.4699)

-0.2473 (0.8049)

0.1539

0.1516

0.1385

0.1239

0.1499

0.0528

0.0538

0.0531

0.2552

0.2635

0.265

0.2105

0.2154

0.221

0.1111

0.1033

0.1148

0.2488

0.2504

0.2561

0.2213

0.2203

0.2263

0.3656

0.3599

0.368

0.3656

0.3579

0.3752

0.1153

0.116

0.1105

0.0873

0.0966

0.0864

0.1355

0.1399

0.1354

0.0816

0.0878

0.0835

0.0993
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CP - Visual WM ss

CP - Spatial stroop congruent

CP - Spatial stroop incongruent

CP - Spatial stroop numb of reps

CP - Spatial stroop incong - cong

CP - Spatspan Is

CP - Spatspan total

CP - Coding corr

TVA - Short-term memory storage (K)

TVA - Perceptual threshold (ty)

TVA - Processing speed (C)

Cluster 1

Cluster 2

Cluster 3

0.1618

0.2152

0.2498

0.2613

0.1076

0.3027

0.3033

0.5307

0.1941

0.1146

0.0699

0.2446

0.1695

0.0767
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DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

DTI

Combined

T1

-5.4994 (<0.001)
-5.4903 (<0.001)
-7.0453 (<0.001)
-7.0749 (<0.001)
-7.051 (<0.001)
8.6103 (<0.001)
8.6646 (<0.001)
8.8148 (<0.001)
9.5215 (<0.001)
9.5663 (<0.001)
9.6908 (<0.001)
-9.7578 (<0.001)
-9.8334 (<0.001)
-9.967 (<0.001)
5.7387 (<0.001)
5.7189 (<0.001)
5.7304 (<0.001)
-9.0803 (<0.001)
-9.1511 (<0.001)
-9.0818 (<0.001)
-9.2413 (<0.001)
-9.3007 (<0.001)
-9.2443 (<0.001)
-16.7381 (<0.001)
-17.0629 (<0.001)
-16.9736 (<0.001)
-7.7533 (<0.001)
-7.7958 (<0.001)
-7.7352 (<0.001)
5.7716 (<0.001)
5.7764 (<0.001)
5.784 (<0.001)
-4.66 (<0.001)
-4.6708 (<0.001)
-4.6734 (<0.001)
-7.1703 (<0.001)
-7.1589 (<0.001)
-7.1752 (<0.001)
-7.2665 (<0.001)
-7.2772 (<0.001)
-7.2707 (<0.001)

-2.065 (0.0399)

-0.604 (0.5464)
-0.5466 (0.5852)
-0.9494 (0.3433)
-0.9354 (0.3504)
-0.9076 (0.365)
0.5061 (0.6132)
0.539 (0.5904)
0.27 (0.7874)
-0.3129 (0.7546)
-0.2497 (0.803)
-0.5285 (0.5976)
-0.1542 (0.8776)
-0.1782 (0.8587)
0.0905 (0.928)
-0.9619 (0.337)
-0.9105 (0.3635)
-1.0014 (0.3176)
0.8225 (0.4116)
0.8555 (0.3931)
0.8301 (0.4073)
0.5919 (0.5545)
0.6245 (0.5329)
0.6028 (0.5472)
-0.3279 (0.7433)
-0.3481 (0.7281)
-0.1442 (0.8855)
-0.0891 (0.9291)
-0.0894 (0.9288)
-0.0343 (0.9726)
0.9866 (0.3248)
1.0081 (0.3144)
0.8478 (0.3973)
0.1122 (0.9107)
0.135 (0.8927)
0.0619 (0.9507)
-0.4829 (0.6296)
-0.5024 (0.6158)
-0.4542 (0.6501)
-0.5147 (0.6072)
-0.5154 (0.6068)
-0.4611 (0.6451)

-1.6934 (0.0916)

-0.8389 (0.4023)
-0.8555 (0.3931)
-0.6911 (0.4902)
-0.6944 (0.4881)
-0.7016 (0.4836)
-1.099 (0.2728)

-1.1012 (0.2719)
-1.0172 (0.3101)
-0.6399 (0.5228)
-0.6711 (0.5028)
-0.5807 (0.5619)
1.2196 (0.2237)
1.2369 (0.2173)
1.1582 (0.2479)
-0.4011 (0.6887)
-0.4223 (0.6732)
-0.3888 (0.6978)
-4.9183 (<0.001)
-4.9703 (<0.001)
-4.9202 (<0.001)
-4.6451 (<0.001)
-4.6899 (<0.001)
-4.6491 (<0.001)
-2.3396 (0.0201)
-2.3804 (0.018)

-2.4411 (0.0153)
-1.4529 (0.1475)
-1.471 (0.1426)

-1.4655 (0.144)

-2.1312 (0.034)

-2.1342 (0.0338)
-2.1074 (0.0361)
0.3556 (0.7225)
0.3579 (0.7207)
0.3657 (0.7149)
-4.8899 (<0.001)
-4.8709 (<0.001)
-4.8989 (<0.001)
1.6797 (0.0943)
1.6829 (0.0937)
1.6725 (0.0957)

-3.4589 (<0.001)

-1.2897 (0.1983)
-0.9558 (0.3401)
-0.2639 (0.7921)
-1.3432 (0.1804)
-0.5866 (0.558)
2.1677 (0.0311)
2.6844 (0.0078)
3.8562 (<0.001)**
2.6625 (0.0083)
2.8797 (0.0043)
3.8325 (<0.001)*
-2.2091 (0.0281)
-2.951 (0.0035)
-3.8672 (<0.001)**
1.5968 (0.1116)
0.9815 (0.3273)
1.2835 (0.2005)
-0.0628 (0.95)
-1.5904 (0.113)
-0.1448 (0.885)
0.085 (0.9324)
-1.3875 (0.1665)
-0.1118 (0.9111)
-1.596 (0.1117)
-3.3875 (<0.001)*
-2.976 (0.0032)
-1.1129 (0.2668)
-2.0247 (0.044)
-0.9449 (0.3456)
0.9264 (0.3551)
1.0951 (0.2745)
1.7412 (0.0829)
0.804 (0.4222)
0.1387 (0.8898)
0.8815 (0.3789)
-0.1702 (0.865)
0.3825 (0.7024)
-0.3391 (0.7349)
-0.0814 (0.9352)
-0.6514 (0.5154)
-0.5914 (0.5548)

-0.7735 (0.4399)

0.105

0.1023

0.1588

0.1645

0.1597

0.2265

0.234

0.2561

0.2674

0.2708

0.2883

0.2725

0.2831

0.2999

0.1131

0.1075

0.1099

0.3

0.307

0.3

0.3006

0.3059

0.3006

0.5335

0.5495

0.5449

0.1949

0.2039

0.1938

0.1141

0.1153

0.1217

0.0686

0.0662

0.0691

0.2416

0.242

0.2419

0.1662

0.1676

0.1674

0.0753
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DTI -2.0812 (0.0384) -1.693 (0.0917) -3.4728(<0.001)  -1.8207 (0.0698) 0.0849
Combined  -2.0636 (0.0401) -1.6405 (0.1021) -3.4746 (<0.001)  -0.848 (0.3972) 0.0757
Cluster 4 0.2757 T1 -10.1014 (<0.001)  0.3766 (0.7068) 1.098 (0.2733) -2.5518 (0.0113) 0.2912
DTI -10.118 (<0.001) 0.31(0.7568) 1.1208 (0.2635)  -2.5199 (0.0124) 0.2908
Combined  -10.2703 (<0.001)  0.5794 (0.5629) 1.0357 (0.3014)  -3.6468 (<0.001)* 0.3095
Cluster 5 0.2124 T1 -7.1604 (<0.001) -3.4563 (<0.001)*  -1.6891(0.0924)  -1.0197 (0.3089) 0.2125
DTI -7.1405 (<0.001) -3.4709 (<0.001)*  -1.6759 (0.095) -0.5011 (0.6167) 0.21
Combined  -7.2104 (<0.001) -3.3405 (0.001)* -1.7586 (0.0799)  -1.6393 (0.1024) 0.2177
Cluster 6 0.51 T1 -15.9382 (<0.001)  -1.0984 (0.2732) -0.8171(0.4147)  -1.8518 (0.0653) 0.5149
DTI -15.9778 (<0.001)  -1.1226 (0.2627) -0.8054 (0.4214)  -2.0589 (0.0406) 0.5165
Combined  -16.0092 (<0.001)  -0.9591 (0.3385) -0.8532(0.3944)  -2.3608 (0.019) 0.5191
Cluster 7 0.1381 T1 -6.5016 (<0.001) -0.6594 (0.5102) -0.5961 (0.5516)  -0.3018 (0.7631) 0.135
DTI -6.5363 (<0.001) -0.643 (0.5208) -0.5958 (0.5518)  -1.5824 (0.1148) 0.1432
Combined  -6.5065 (<0.001) -0.6229 (0.5339) -0.6062 (0.5449)  -0.5676 (0.5708) 0.1358

892  Table S1. Cognitive associations with Brain Age Gap (BAG) using non-linear models,
893 including age, age” and sex as covariates — statistics. * FDR significant ** Bonferroni
894  significant.
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