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Abstract 
The effect of single nucleotide variants (SNVs) in coding and non-coding regions is of great               
interest in genetics. Although many computational methods aim to elucidate the effects of             
SNVs on cellular mechanisms, it is not straightforward to comprehensively cover different            
molecular effects. To address this we compiled and benchmarked sequence and           
structure-based variant effect predictors and we analyzed the impact of nearly all possible             
amino acid and nucleotide variants in the reference genomes of  H. sapiens ,  S. cerevisiae              
and  E. coli . Studied mechanisms include protein stability, interaction interfaces,          
post-translational modifications and transcription factor binding sites. We apply this resource           
to the study of natural and disease coding variants. We also show how variant effects can be                 
aggregated to generate protein complex burden scores that uncover protein complex to            
phenotype associations based on a set of newly generated growth profiles of 93 sequenced              
S. cerevisiae strains in 43 conditions. This resource is available through mutfunc, a tool by               
which users can query precomputed predictions by providing amino acid or nucleotide-level            
variants.  
 
 
Introduction 
One of the key challenges of biology is to understand how genetic variation drive changes in                
phenotypes. Genome-wide association studies (GWASs) have made progress in identifying          
causal genetic loci and over the past decade, a large number of associations have been               
made between genetic variation and phenotypic traits including disease risk  (Welter  et al ,             
2014) . However, GWASs are typically limited in their ability to explain the underlying             
mechanism that is influenced by the variant in question. This missing mechanistic layer             
severely limits our understanding of how variants cause phenotypic variability.  
 
Variants occurring in coding and noncoding regions can influence a diversity of molecular             
functions. For instance, non-coding variants can affect chromatin accessibility  (Kumasaka  et           
al , 2016) , splice sites  (Xiong  et al , 2015) , and epigenetic modifications  (Rintisch  et al , 2014) .               
Coding variants can affect post-translational modification (PTM) sites  (Reimand  et al , 2015;            
Wagih  et al , 2015) , protein folding and stability  (Lorch  et al , 2000) , protein interaction              
interfaces  (Engin  et al , 2016) , sub-cellular localization (Björses  et al , 2000) , and introduce             
premature stop codons. Understanding the disrupted biological mechanisms underlying         
genetic variation is key to many applications in genetics such as genetically engineering             
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organisms, assessing drug efficacy and drug discovery  (Nelson  et al , 2016; Labaudinière,            
2002; Lutz, 2010) .  
 
The ability to predict the degree to which genetic variation would alter such mechanisms              
offers a time and cost-effective alternative over experimental approaches to prioritize           
variants of interest and to facilitate the understanding of the mechanisms underlying causal             
variants. A multitude of  in silico predictors aimed at predicting such effects have been              
proposed  (Wagih  et al , 2015; Schymkowitz  et al , 2005; Adzhubei  et al , 2010; Kumar  et al ,                
2009) , yet they often require significant computational power, expertize and time to be used.              
Furthermore, each of the currently available tools do not comprehensively provide predicted            
effects across different molecular mechanisms (i.e disruption of stability, interfaces, TF           
binding etc).  
 
Accordingly, we have compiled and benchmarked commonly-used sequence and         
structure-based predictors of mutational consequences and predicted the effect of nearly all            
possible variants in the reference genomes of  H. sapiens ,  S. cerevisiae , and  E. coli . The               
impact of variants was measured in the context of conserved protein regions, protein             
stability, protein-protein interaction (PPI) interfaces, PTMs, kinase-substrate interactions,        
short linear motifs (SLiMs), start and stop codons, and transcription factor (TF) binding sites              
(TFBSs). This resource is available through the mutfunc resource ( http://mutfunc.com/ ),          
which allows for prioritization of variants while providing insight into the altered mechanisms.  
 
To demonstrate the utility of mutfunc, we assessed variants of uncertain clinical significance             
(VUSs) in  H. sapiens . We further applied mutfunc to publically available variants for yeast  S.               
cerevisiae  strains to generate protein complex burden scores. We then phenotyped 93            
sequenced  S. cerevisiae strains in 43 conditions and utilized burden scores to associate             
protein complexes to phenotypes. This yielded associations that would not be possible            
through traditional variant-based GWAS approaches. Mutfunc is a computational resource          
that will facilitate the study of the mechanistic impacts of genetic variation.  
 
Results 
 
Functional genomic regions display evolutionary constraint across yeast and human          
individuals 
In order to set up the variant effect prediction approaches we first derived, for  E. coli , S.                 
cerevisiae and  H. sapiens , molecular information such as: experimental and homology           
based protein structural models for individual proteins and protein interfaces, TF binding            
sites, protein kinase targets sites, post-translational modification sites and linear motif           
regions ( Methods ). Structural models were used to identify interface residues and residues            
with different surface accessibility. Given that functionally-relevant regions of the genome are            
are under evolutionary constraint we took the opportunity to use this large collection of              
functional regions to test if these tend to be depleted of natural variants. For yeast 896,772                
natural variants and their allele frequencies were compiled from 405 yeast strains  (Strope  et              
al , 2015; Zhu  et al , 2016; Gallone  et al , 2016; Bergström  et al , 2014) , of which 478,857 were                  
coding variants. For human, over 3.2M coding variants from over 65,000 individuals were             
obtained from the ExAC consortium  (Lek  et al , 2016) . 
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Natural variants were mapped to 9,837 protein structures and homology models (n=6,737            
human, n=3,100 yeast) and the residues were binned according to relative surface            
accessibility (RSA). Similarly, 9,883 structures (n=7,693 human, n=2,190 yeast) for protein           
interaction pairs were obtained from Interactome3D and the difference in surface           
accessibility (∆RSA) between the unbound and bound complex were determined to identify            
interface residues, corresponding to those with the highest ∆RSA ( Methods ). The number of             
variants per position of each bin of RSA and ∆RSA were compared to counts observed in                
random positions in the protein, permuted 1,000 times. Fewer variants were found in buried              
regions and interface regions when compared to exposed regions in both yeast and human              
( Figure 1a  p<1.28x10 −34 and  1b p<2.28x10 −33 ). To study variation at 296,147 and 26,560             
human and yeast PTM sites the variant counts over random expectation was calculated for a               
window of +/-5 residues flanking the PTM positions. The level of constraint was different              
across PTM types ( Figure 1c ) with ubiquitin showing the lowest level of constraint.             
Interestingly, the level of constraint for PTMs increases with the number of other neighboring              
PTMs present in a 10 amino acid window ( Figure 1d ) suggesting that the clustering of PTMs                
may have important biological functions such as cross-talk regulation  (Beltrao  et al , 2013) .  
 
We next analysed non-coding variation at putative TF binding sites for  S. cerevisiae that              
were predicted using a combination of TF specificity models, TF knockout gene expression             
studies and TF ChIP-seq or ChIP-chip data ( Methods ). A total of 4,523 potential binding              
sites were identified across 93 TFs of  S. cerevisiae . We computed the ratio between the               
variant counts within the predicted binding sites to that of random genomic sites of the same                
length and within the same ChIP regions. By combining the analysis across all putative              
binding sites of each TF we observed that binding sites for some TFs are generally more                
constrained than others ( Figure 1e ). Those with higher levels of constraint include HAP4, a              
global regulator of respiratory genes and general transcriptional regulators such as REB1            
and RAP1. At the level of individual TF binding sites we observed that those found within                
clusters of binding sites tended to show higher levels of constraints than isolated sites              
( Figure 1f ). Additionally, the TF binding positions for each TF were stratified according to              
their importance for binding as measured by the position-specific information content (IC) of             
the TF specificity position weight matrices. In accordance with expectation, positions with            
high IC, that correspond to positions that are important for binding, tend to have fewer               
variants than less important positions ( Figure 1g ). Position-specific constraint for individual           
TFs highlights this difference between high and low IC positions ( Figure 1h ). 
 
Overall these results provide an overview of how population level variation differs across             
diverse set of genome functional elements and recapitulates findings from analysis of            
specific types of functional elements  (Spivakov  et al , 2012; de Beer  et al , 2013; Reimand  et                
al , 2015) . Additionally, it suggests that our collection of functional elements (e.g. structures,             
interfaces, PTMs and TF binding sites) shows evolutionary constraints and therefore can be             
used further for the establishment of the variant effect prediction pipeline.  
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A comprehensive resource of mechanistic effects of single nucleotide variants 
We sought to better understand the mechanistic impact of point mutations affecting the             
above described functional elements. To do this, a set of commonly-used predictors were             
used to assess the impact of every possible single amino acid or nucleotide substitution              
across  H. sapiens ,  S. cerevisiae , and  E. coli , where applicable. We performed a large scale               
computational estimation of the impact of variants on conserved protein regions, protein            
stability, protein interaction interfaces, kinase-substrate phosphorylation and other PTMs,         
linear motifs, TFBSs and start and stop codons (illustrated in  Figure 2a , Methods ). These              
results were deposited in the mutfunc resource, which offers a quick and interactive way by               
which users can gain predicted mechanistic insight for variants of interest.  
 
To measure the impact on conserved regions, we constructed 29,027 multiple sequence            
alignments for proteins of the three organisms (n=19,497  H. sapiens , n=5,498  S. cerevisiae ,             
n=4,032  E. coli ), and used the SIFT algorithm  (Ng & Henikoff, 2003) to assess the impact of                 
all possible 291.7M protein coding variants (n=212.2M  H. sapiens , n=53.4M yeast, n=26.1M            
E. coli ). To measure the impact on protein stability, the FoldX algorithm  (Schymkowitz  et al ,               
2005) was applied to 17,893 structures (including homology models) across the three            
organisms, and precomputed effects of 66.3 million protein coding substitutions (n=42.7M  H.            
sapiens , n=10.3M  S. cerevisiae , n=13.4M  E. coli ,  Methods ). We identified interface residues            
in 10,675 structures of binary PPIs from Interactome3D across the three organisms and             
similarly applied FoldX to compute the effects of 11.2M possible interface mutations on             
binding stability (n=7.2M  H. sapiens , n=2.3M  S. cerevisiae , n=1.6M  E. coli ). To identify             
variants that could impact kinase-substrate sites, we used MIMP (Wagih  et al , 2015) to              
predict the impact of all possible 541,161 variants (n=485,736  H. sapiens , n=55,425  S.             
cerevisiae ) falling within  ± 5 residues of a known kinase-substrate phosphorylation site           
(phosphosite) on a kinase’s specificity. Specificities for 56 kinases in  H. sapiens and 46              
kinases in  S. cerevisiae were considered. Kinase-phosphosite relationships for  E. coli are            
not well established and cannot be scored in the same way. For all other PTMs such as                 
methylation, ubiquitination, and acetylation for which we do not have explicit flanking            
sequence specificity models, a variant was considered damaging if it directly altered the             
modified site. This resulted in a total of 6.3M possible variants that could alter such PTM                
sites across the three organisms (n=5.8M  H. sapiens , n=537,434  S. cerevisiae , n=9,177  E.             
coli ). For linear motif information, not available for  E. coli , we gathered 1,668 experimentally              
identified linear motifs (n=1,525  H. sapiens , n=143  S. cerevisiae ), along with their derived             
regular expression pattern from the ELM database  (Dinkel  et al , 2012) and computed the              
impact of all possible 226,920 variants (n=205,120  H. sapiens , n=21,800  S. cerevisiae ) on             
binding patterns. Finally, for TFBSs, for organisms without well-defined functional TFBSs ( H.            
sapiens and  S. cerevisiae ), we defined putative TF-gene regulatory network using           
TF-knockdown expression data and/or ChIP-seq/ChIP-chip ( Methods ). We then used         
PWMs to identify putative binding sites, and predict the impact ( Methods ) of all possible              
3.6M variant substitutions (n=3.3M  H. sapiens , n=236,382 yeast, n=46,768  E. coli ) on            
specificities of 217 TFs (n=72  H. sapiens , n=104  S. cerevisiae , n=41  E. coli ). 
 
These pre-computed variant effect predictions constitute a resource that can be used in             
diverse ways. In the next sections we benchmark this resource and illustrate some of its               
possible applications.  

4 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/313031doi: bioRxiv preprint 

https://paperpile.com/c/ElZ9Nh/RtRD
https://paperpile.com/c/ElZ9Nh/ZczJ
https://paperpile.com/c/ElZ9Nh/ZczJ
https://paperpile.com/c/ElZ9Nh/ZczJ
https://paperpile.com/c/ElZ9Nh/ZczJ
https://paperpile.com/c/ElZ9Nh/nn2M
https://paperpile.com/c/ElZ9Nh/nn2M
https://paperpile.com/c/ElZ9Nh/nn2M
https://paperpile.com/c/ElZ9Nh/g2k5
https://paperpile.com/c/ElZ9Nh/g2k5
https://paperpile.com/c/ElZ9Nh/g2k5
https://doi.org/10.1101/313031
http://creativecommons.org/licenses/by/4.0/


Functionally important positions are enriched in predicted deleterious variants  
In order to benchmark the variant effect predictions that underlie the mutfunc resource we              
first asked if essential genes would harbour fewer natural variants that are predicted to be               
deleterious. Essential genes in yeast  (Giaever & Nislow, 2014) and human  (Blomen  et al ,              
2015) consistently demonstrated significantly lower frequencies of variants predicted to          
affect conserved sites (sift score < 0.05, p=1.04x10 −46 human, p=1.52x10 −22 yeast,  Figure            
2b ) and protein stability (∆∆G pred > 2, p=1.82x10 −12 human, p=7.07x10 −10 yeast,  Figure             
2b ). Variants of higher allele frequency in the population are expected to be less impactful               
and in accordance to this we observed an increase in deleterious scores, as predicted from               
SIFT and FoldX, for variants of lower allele frequencies ( Figure 2c ). In addition to allele               
frequencies we analyzed mutations that are known to be deleterious. For  H. sapiens we              
used 34,600 variants annotated to be pathogenic (n=17,167) or benign (n=17,433) from the             
ClinVar  (Landrum  et al , 2014) . For  S. cerevisiae we used 8,083 variants consolidate by Jelier               
et al.  (Jelier  et al , 2011) as either tolerated (n=5,271) or affecting function (n=2,812)              
( Methods ). The different predictors consistently discriminated tolerated from pathogenic         
variants as measured by the area under the receiver operating characteristic curve (AUC).             
SIFT performed the best at discriminating pathogenic variants from benign (AUC  H. sapiens             
= 0.87,  S. cerevisiae = 0.92), followed by FoldX interfaces (AUC  H. sapiens = 0.64,  S.                
cerevisiae = 0.72) and FoldX stability (AUC  H. sapiens = 0.70,  S. cerevisiae = 0.62,  Figure                
2d ).  
 
For other heuristic-based predictors such as SLiMs, PTMs or stop gains/losses we            
compared the proportion of pathogenic versus benign variants that disrupt or not the             
annotation. Despite the low number of pathogenic variants overlapping with these features            
we observed an enrichment of pathogenic variants for mutations that disrupt such features             
( Figure 2e ). The only exceptions were for PTM disrupting variants in human and for linear               
motif disrupting variants in yeast. In contrast, there were significant differences for the             
enrichment of pathogenic variants disrupting human linear motifs (p=5.23x10 -3 ) and yeast           
PTM sites (p=8.44x10 -7 ). For some of annotations the lack of statistical significance may be              
due to the small number of testable variants.  
 
The results here demonstrate that the predictors used in mutfunc are generally capable of              
enriching for variants of functional significance. The resource can be used to prioritize             
variants according to the degree of pathogenicity as well as provide molecular mechanisms             
affected.  
 
Predicting mechanistic impacts of variants of uncertain significance 
Variants that have been identified through disease related genetic testing but are yet to be               
deemed benign or pathogenic are termed variants of uncertain significance (VUS). The            
interpretation of such variants is a common challenge in genetics, one that is often aided by                
computational predictors. A total of 64,692 variants labelled with “uncertain significance”           
were collected from ClinVar  (Landrum  et al , 2014) . VUSs were annotated using mutfunc and              
21,584 variants were predicted impactful by at least one of the mechanistic predictors, not              
including SIFT (n=7,547 stability, n=751 interfaces, n=139 linear motifs, 2,372 PTMs, 57            
kinase-binding). From these we focused on variants predicted to impact the structural            
integrity of proteins (stability and interaction interfaces) since they hold the highest coverage.  
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Of the VUSs predicted to interfere with interface or protein stability we retained those in               
which (1) the protein also harbours a known pathogenic variant with the same predicted              
structural impact and (2) both the pathogenic variant and VUSs are identified in patients              
carrying the same disease. This allows us to connect VUSs to pathogenic variants via              
shared altered mechanisms and affected phenotypes. We demonstrate a few examples of            
VUSs that are predicted to alter binding ( Figure 3a, 3b and 3c ) or structural stability ( Figure                
3d and 3e ). For instance, primary hyperoxaluria is a disease caused primarily by mutations              
in GRHPR, a glyoxylate and hydroxypyruvate reductase  (Cramer  et al , 1999; Cregeen  et al ,              
2003) and its enzymatic activity requires homodimerization  (Booth  et al , 2006) . For this             
enzyme the variants R302H and E113K have been implicated in primary hyperoxaluria, are             
known to be pathogenic and are predicted to impact on binding stability ( Figure 3a , ΔΔG >                
2.15). We can reason that other variants in patients of the same disease impacting on               
GRHPR homodimerization should be equally pathogenic. For example, the variant R171H is            
predicted to impact a conserved region as well as the homodimerization stability ( Figure 3a ,              
ΔΔG = 2.19,  s < 0.018) and found in primary hyperoxaluria patients. Although R171H is of                
uncertain significance our analysis strongly suggests that it is pathogenic through the same             
molecular mechanism as R302H and E113K. Similarly compelling examples are found for            
other proteins such as fumarate hydratase ( Figure 3b ) and lamin ( Figure 3c ). 
 
Similar to interface variants, we analysed variants that destabilise the protein structure. We             
identified 1,182 VUSs predicted to alter stability in proteins containing pathogenic variants            
also predicted to be destabilizing. For instance, the ubiquitin ligase PARK2, implicated in             
Parkinson's disease, contains pathogenic variants predicted to impact on its stability. For this             
protein two rare VUSs (R42H, V148E) identified in Parkinson’s disease patients are similarly             
predicted to destabilise the protein (ΔΔG > 4.7,  Figure 3d ) and are therefore likely to be                
pathogenic. In the tumour suppressor serine/threonine-protein kinase STK11, pathogenic         
and VUS identified in Peutz-Jeghers syndrome patients can be similarly linked ( Figure 3e ).  
 
The analysis here demonstrates how mutfunc could be applied to systematically prioritize            
pathogenic variants through altered mechanisms that may be the molecular cause of the             
phenotype.  
 
S cerevisiae  strain genomic differences are a poor predictor of phenotypic similarity 
We sought to illustrate the use of mutfunc for genotype-to-phenotype association analysis.            
Using  S. cerevisiae as a case study, we first phenotyped growth for a panel of 166 strains in                  
43 conditions ( Methods ). Colony sizes for strains were quantified, normalised and scored            
relative to all strains in a condition to produce a phenotypic measure defined as the S-score                
(Collins  et al , 2006) . Positive and negative values indicate higher or lower than expected              
growth for a given strain and a specific condition ( Methods ). S-scores for biological             
replicates demonstrated a high degree of concordance ( r = 0.91,  p < 2.22x10 -16 ,  Figure 4a )               
suggesting a high degree of confidence in phenotypic measurements. S-scores for each            
strain and growth condition are provided in  Supplementary Table 1 .  
 
Hierarchical clustering of growth phenotypes revealed known clusters of related stressors           
( Figure 4b ). Clusters of similar phenotypic profiles included for example: UV light, cisplatin             

6 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/313031doi: bioRxiv preprint 

https://paperpile.com/c/ElZ9Nh/LBcI+CDkq
https://paperpile.com/c/ElZ9Nh/LBcI+CDkq
https://paperpile.com/c/ElZ9Nh/LBcI+CDkq
https://paperpile.com/c/ElZ9Nh/LBcI+CDkq
https://paperpile.com/c/ElZ9Nh/LBcI+CDkq
https://paperpile.com/c/ElZ9Nh/LBcI+CDkq
https://paperpile.com/c/ElZ9Nh/kQGb
https://paperpile.com/c/ElZ9Nh/kQGb
https://paperpile.com/c/ElZ9Nh/kQGb
https://paperpile.com/c/ElZ9Nh/1QXr
https://paperpile.com/c/ElZ9Nh/1QXr
https://paperpile.com/c/ElZ9Nh/1QXr
https://doi.org/10.1101/313031
http://creativecommons.org/licenses/by/4.0/


and MMS, which are all DNA damaging agents (mean pearson’s  r = 0.51); nystatin and               
caspofungin, which interfere with the cell membrane ( r = 0.49); and caffeine and rapamycin,              
both involved in TOR signalling ( r = 0.41). Furthermore, strains belonging to the same              
population structure  (Strope  et al , 2015) or environmental origin often showed similar            
phenotypic profiles ( Figure 4b ). Genome sequences were available for 93 of the 166 profiled              
strains and used to calculate pairwise genomic similarity. As expected, genetic similarity            
alone is a poor predictor of phenotypic response similarity ( Figure 4c ). This is not              
unexpected since most genetic variation is expected to be neutral and distantly related             
strains accumulate variation that may not have an impact on the phenotypes tested.  
 
Gene and complex disruption scores for genotype-to-phenotype associations 
Given that most variants are expected to be neutral we used mutfunc to interpret the               
observed variants in each strain at the gene-level by computing a total gene burden or               
disruption score using the mechanistic predictions for conservation (SIFT), protein stability           
(FoldX) and protein truncating variants (PTVs, including start loss, nonstop and nonsense            
variants) ( Figure 5a ). Scores produced by predictors are standardised to reflect the            
likelihood they are deleterious ( Figure 5b ,  Methods ). This allows for effects of rare variants              
to be combined across different protein positions and predictors into a single probability that              
the gene is affected (P AF  score or burden score)  (Jelier  et al , 2011; Galardini  et al , 2017) .  
 
Using the gene level disruption scores we performed phenotype association analysis. Scores            
were binned based on high (P AF > 0.90) or low (P AF < 0.90) burden ( Figure 5c ). Associations               
were carried out for 1,446 genes (with at least three strains containing a P AF > 0.90) against                
growth phenotypes across 43 conditions ( Methods ). All reported p-values were corrected           
using the false discovery rate (FDR) method and the effect size was computed using the               
Glass' Δ approach ( Methods ). We identified 626 statistically significant gene-phenotype          
associations at p<1x10 -3 and FDR<10%, with 83% (520/626) being negative i.e. decreased            
growth ( Supplementary Figure 1a ). Under the assumption that gene function is conserved            
across strains of  S. cerevisiae we expected these associations to be enriched in genes that               
cause a condition specific phenotype when knocked-out. Such association between gene           
KOs and condition-specific growth phenotypes exist for the lab strain as part of extensive              
published chemical-genetic studies. We found KO chemical genetic data for 35 of the 43              
conditions tested. Of the significant negative associations, only 9% (48/520) are validated by             
the chemical genetic data. The validation rate increases for higher effect sizes            
( Supplementary Figure 1b ) to 13% (38/282) and 24% (15/64) for at Δ > 1 and at Δ > 1.7,                   
respectively. However, based on permutation testing only the enrichment found at large            
effect sizes (|Δ| > 1.7) was significant (p= 0.03,  Supplementary Figure 1b ).  
 
We next reasoned that protein complex members often act as coherent functional units and              
that the dysfunction of complex subunits often elicits similar phenotypic outcomes  (Collins  et             
al , 2007) . Therefore, we aggregated the gene-level scores to identify complexes that were             
potentially defective in a given strain. We performed protein complex level associations            
focusing on 263 complexes with at least two high burden genes across strains ( Figure 5d ).               
A total of 122 significant complex-phenotype associations were identified (p<1x10 −3 , FDR <             
10%), 48 (39%) of which had a high effect size (∆ > 1). The 48 associations involved 21                  
conditions and were preferentially negative associations (33 of 48, 69%). We found a             
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significant enrichment in KO chemical genetics data ( Supplementary Figure 1c ) that was            
significantly higher than observed based on random permutation testing ( Supplementary          
Figure 1c,  p=0.04 ) . This enrichment is observed only for stringent cut-offs for defining             
gene-deletion phenotypes from the KO chemical genetic studies  (Hillenmeyer  et al , 2008) .  
  
Some examples illustrate how the analysis at the protein complex level may increase power              
for the identification of associations ( Figure 5e ). For example we found associations            
between the ESCRT II complex and growth in low pH and the FBP complex, responsible for                
protein degradation, and high heat ( Figure 5e ). In both cases the individual complex             
members with high burden scores were not detected by gene-level burden associations,            
likely due to insufficient recurrency of mutation at the gene-level but in both cases the               
associations are validated by KO studies. The GET complex represents an example where             
the association with growth under heat is found both at the gene level and protein complex                
level due to recurrence of destabilizing mutations in the GET3 gene ( Figure 5e ).  
 
This association analysis indicates that there is value in combining effects of rare variants at               
the protein and protein complex level to perform association studies. Although the current             
study is limited due to the relative small number of strains studied, it illustrates how mutfunc                
can be applied to the study of diverse set of problems.  
 
 
Discussion 
The mutfunc resource makes use of variant predictors to precompute millions of variant             
effects across the reference genomes of  H. sapiens ,  S. cerevisiae , and  E. coli . These              
predictors and their performance have been previously described but the large           
computational effort and the accompanying web-service (mutfunc.com) constitute a resource          
that facilitates their use. Within mutfunc, conservation effects hold the highest coverage, ( H.             
sapiens 98.6%,  S. cerevisiae 87.9%, and 96.1%  E. coli ) followed by stability ( H. sapiens              
18.9%,  S. cerevisiae 16.9%, and 49.2%  E. coli ) and interfaces ( H. sapiens 2.20%,  S.              
cerevisiae 2.84%, and 4.45%  E. coli ). Other mechanisms like PTMs and TFBSs have lower              
coverage. As additional data become available, mutfunc will be updated to improve coverage             
and future work could expand the set of mechanisms studied such as drug or small-molecule               
binding sites, RNA-binding interfaces, among others. The effects of variants on molecular            
and cellular phenotypes is increasingly being probed directly by large-scale mutagenesis           
experiments  (Fowler & Fields, 2014; Weile  et al , 2017) , which will likely result in improved               
variant effect prediction algorithms  (Gray  et al , 2018) . The curation of such experimentally             
determined effects and the improved algorithms can be integrated in future iterations of             
mutfunc.  
 
A strength of mutfunc lies in its large set of precomputed SNV effects allowing for               
genome-wide variants to be rapidly queried. However, within such a framework,           
combinatorial and potential epistatic effects cannot be precomputed due to a large number of              
possible combinations. Similarly, many other types of genetic variation such as copy number             
variations and indels  (Chuzhanova  et al , 2003; Beroukhim  et al , 2010) have not be              
considered in mutfunc due to their complex structure. Lastly, many organisms in which             
genetic variation is commonly studied are not included in mutfunc. These include  M.             
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musculus ,  D. melanogaster and  A. thaliana , which contain an abundance of data and could              
be added in the future.  
 
Understanding how disrupted cellular mechanisms propagate to changes in phenotypes is           
critical for variant interpretation. We show here how different variants can be integrated using              
effect predictors and protein complex annotations to perform genotype-to-phenotype         
associations for full genome sequences. In addition, we and others have also shown how              
prior knowledge of gene function and variant effect predictions can be used to predict growth               
differences of different strains of  S. cerevisiae  (Jelier  et al , 2011) and  E. coli  (Galardini  et al ,                 
2017) . These analyses illustrate ways to calculate gene burden scores across different effect             
predictors. We found a significant but limited overlap between the gene-condition           
associations derived here with those found in gene KO studies in the reference lab strain.               
This small overlap could be due to a number of reasons including errors in variant effect                
predictions; limited sample size for the associations (i.e. 93 strains); epistatic interactions of             
variants and different protocols for fitness measurements. The effects of a genetic variation             
in vivo can be complex and depend on both genetic and environmental factors  (Wray  et al ,                
2013; Burga  et al , 2011; Perez  et al , 2017) . Several studies have shown that many variants                
annotated as disease-causing or predicted as deleterious have been identified in healthy            
humans  (Xue  et al , 2012) . In addition to these potential causes of error, it is assumed here                 
that the loss of function of a given gene will have the same phenotypic consequence across                
individuals of the same species. The extent by which this assumption is true remains to be                
tested. 
 
Despite the limitations discussed, given the growing number of efforts to sequence exome             
and genomes for panels of individuals, the incorporation of variant prioritization by different             
approaches into association analyses will become more prevalent. The mutfunc resource           
can provide such variant effect predictions with mechanistic annotations for 3 species. We             
illustrate how this resource can be applied in different scenarios and given the architecture              
used these analysis can be easily incorporated into large scale full genome or exome              
sequencing efforts.  
 
Methods 
 
Genetic variant data collection 
A total of 896,772 genetic variants occurring in for 405 haploid and diploid  S. cerevisiae               
strains were collected from four studies  (Strope  et al , 2015; Gallone  et al , 2016; Bergström  et                
al , 2014; Zhu  et al , 2016) . All but one study by Strope et al. provided processed variant calls                  
in VCF format. Variants were called for the Strope et al. study using the following pipeline.                
Raw reads were obtained from the ENA resource  (Leinonen  et al , 2011) . Adapter sequences              
were removed using cutadapt v1.8.1and reads were mapped to the  S. cerevisiae genome             
version 64 using BWA-MEM v0.7.8 ( https://arxiv.org/abs/1303.3997 ). Duplicate reads were         
discarded using picard v1.96 ( https://github.com/broadinstitute/picard ) and reads were        
realigned using the GATK indel realigner v3.3  (McKenna  et al , 2010) . Base alignment             
qualities were computed using samtools v1.2  (Li  et al , 2009) and variants were called using               
freebayes v0.9.21-15-g8a06a0b and the following parameters  --no-complex ,       
--genotype-qualities ,  --ploidy 1 and  --theta 0.006 . The VCF was filtered for calls            
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with  QUAL > 30 ,  GQ > 30 and  DP > 4 . VCF for individual  S. cerevisiae strains were                  
combined and coding variants were called using the  predictCoding function of the            
VariantAnnotation R package  (Obenchain  et al , 2014) .  
 
A total of 3,198,692 coding variants in  H. sapiens for over 65,000 individuals was collected               
from the ExAC consortium along with corresponding adjusted allele frequencies. Ensembl           
transcript positions were mapped to UniProt by performing Needleman-Wunsch global          
alignment of translated Ensembl transcript sequences against the UniProt sequence using           
the  pairwiseAlignment function in the Biostrings R package. The mapping between           
Ensembl transcript IDs (v81) and UniProt accessions was obtained from the biomaRt R             
package  (Smedley  et al , 2015) . In the case that multiple alleles mapped to the sample single                
amino acid substitution, the one with the highest adjusted allele frequency was retained. 
 
A total of 139,167 variants were obtained from ClinVar. Only variants that did not match one                
of the following clinical significance terms were removed: 'Benign', 'Benign/Likely benign',           
'Likely benign', 'Likely pathogenic', 'Pathogenic/Likely pathogenic', and 'Pathogenic'. Variants         
with a review status of 'no assertion criteria provided' were also removed, as those reflect               
variants that have been assigned clinical significance without any particular criteria. The final             
filtered set contained 39,597 variants. Of these variants, 44% were classified as pathogenic             
or likely pathogenic. For  S. cerevisiae , a total of 8,083 manually curated variants were              
obtained from  (Jelier  et al , 2011) , 34.5% (2,812) of which were labelled as deleterious.              
Variants were collected from a combination of the UniProt database  (Apweiler  et al , 2004) ,              
Protein Mutant Database  (Kawabata  et al , 1999) ,  Saccharomyces genome database  (Cherry           
et al , 2012)  and mutations that are identified in essential genes  (Liti  et al , 2009) . 
 
Essential genes 
A total of 2,501 essential genes identified using gene trapping technology in two haploid  H.               
sapiens cell lines KBM7 and HAP1 were obtained from  (Blomen  et al , 2015) . These were               
further filtered for genes that were essential in both cell lines, for a total of 1,734 genes. A                  
total of 1,156 essential genes in  S. cerevisiae were obtained from the  Saccharomyces             
Genome Deletion Project  (Giaever  et al , 2002) .  
 
Predicting impact on protein stability and protein interaction interfaces 
Experimentally determined structures were obtained from the protein data bank (PDB).           
Large structures that did not have a corresponding PDB file were downloaded in mmCIF              
format and converted to PDBs using the PyMOL Python library v1.2r3pre (pymol.org).            
Mapping of coordinates from PDB to UniProt residues was derived from the SIFTS database              
(Velankar  et al , 2013) . Structures with a resolution above 3 angstroms were discarded and a               
single representative structure maximising the coverage of the protein was retained.           
Homology modelling was carried out for proteins with no experimentally determined           
structures using ModPipe version 2.2.0  (Pieper  et al , 2009) and the following parameters:             
--hits_mode 1110 and  --score_by_tsvmod OFF . For each protein, the model with the            
highest normalised DOPE score was retained. Experimental and homology modelled          
structures for protein interactions were obtained from the Interactome3D database          
[23399932]. Relative solvent accessibility (RSA) for all residue atoms was computed using            
NACCESS for proteins individually, and in the interaction complex. Interface residues were            
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defined as those with any change in RSA. All other calculation of RSA was carried out using                 
freeSASA v1.1  (Mitternacht, 2016) .  
 
The impact of variant on stability was computed using FoldX v.4.0  (Schymkowitz  et al , 2005) .               
All structures were first split by chain into individual PDB files and repaired using the               
RepairPDB command, with default parameters. The  Pssm command is then used to predict             
ΔG with  numberOfRuns=5 . This performs the mutation multiple times with variable rotamer            
configurations, to ensure the algorithm achieves convergence. The average ΔG of all runs is              
computed and the ΔΔG is computed as the difference between the wildtype and mutant. The               
impact of variants on interaction interfaces is measured similarly, with the exception of             
structures being provided in binary interaction, rather than individual chains. 
 
 
Predicting the impact of variants on PTMs and linear motifs 
For  S. cerevisiae , a total of 20,056 phosphosites and 2,219 kinase-substrate associations            
were obtained from the PhosphoGRID database  (Sadowski  et al , 2013) . A total of 1,070 of               
other PTM sites was obtained from the dbPTM database  (Lee  et al , 2006) . For  H. sapiens ,                
all PTM data, including that of phosphorylation and kinase-substrate associations were           
obtained from PhosphoSitePlus  (Hornbeck  et al , 2012) , for a total of 296,147 sites. For  E.               
coli , a total of 483 PTM sites were obtained from dbPTM  (Lee  et al , 2006) . Linear motif data                  
for  S. cerevisiae and  H. sapiens , including annotated linear motif binding sites and regular              
expression patterns, were obtained from the ELM database  (Dinkel  et al , 2016) . 
 
Impact of variants on phosphosites and flanking regions was measured using the MIMP             
algorithm  (Wagih  et al , 2015) , with default parameters. For other PTMs, a variant was              
predicted to be impactful if it resulted in the change of the modified residue. For linear motifs,                 
a variant was predicted to be impactful if it causes a loss of match for associated regular                 
expression pattern.  
 
 
Predicting the functional impact of variants using conservation 
All protein alignments were built against UniRef50  (Suzek  et al , 2015) , using the             
seqs_chosen_via_median_info.csh script in SIFT 5.1.1  (Ng & Henikoff, 2003) . The siftr R            
package ( https://github.com/omarwagih/siftr ), an implementation of the SIFT algorithm, was         
used to generate SIFT scores with parameters  ic_thresh=3.25  and  residue_thresh=2 .  
 
Transcription factor binding sites 
A total of 177  S. cerevisiae TFs binding models were collected in form of a position                
frequency matrices (PFMs) from JASPAR  (Sandelin  et al , 2004) and converted to position             
weight matrices (PWMs) using the TFBSTools R package  (Tan & Lenhard, 2016) . PWMs             
were trimmed to eliminate consecutive stretches of low information content (<0.2) on either             
terminus. To identify genes likely regulated by a particular TF, a combination of TF-knockout              
expression and ChIP-chip experiments were used, as similarly described in  (Gonçalves  et al ,             
2017) . Genome-wide gene expression profiles for 837 gene-knockout strains were obtained           
from three studies  (Chua  et al , 2006; Hu  et al , 2007; Kemmeren  et al , 2014) , 148 of which                  
were a known TF with a defined PWM. Studies provided either a Z-score or p-value for each                 

11 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/313031doi: bioRxiv preprint 

https://paperpile.com/c/ElZ9Nh/8RJ1
https://paperpile.com/c/ElZ9Nh/ZczJ
https://paperpile.com/c/ElZ9Nh/ZczJ
https://paperpile.com/c/ElZ9Nh/ZczJ
https://paperpile.com/c/ElZ9Nh/n0ma
https://paperpile.com/c/ElZ9Nh/n0ma
https://paperpile.com/c/ElZ9Nh/n0ma
https://paperpile.com/c/ElZ9Nh/e99C
https://paperpile.com/c/ElZ9Nh/e99C
https://paperpile.com/c/ElZ9Nh/e99C
https://paperpile.com/c/ElZ9Nh/tTmL
https://paperpile.com/c/ElZ9Nh/tTmL
https://paperpile.com/c/ElZ9Nh/tTmL
https://paperpile.com/c/ElZ9Nh/e99C
https://paperpile.com/c/ElZ9Nh/e99C
https://paperpile.com/c/ElZ9Nh/e99C
https://paperpile.com/c/ElZ9Nh/dy5E
https://paperpile.com/c/ElZ9Nh/dy5E
https://paperpile.com/c/ElZ9Nh/dy5E
https://paperpile.com/c/ElZ9Nh/nn2M
https://paperpile.com/c/ElZ9Nh/nn2M
https://paperpile.com/c/ElZ9Nh/nn2M
https://paperpile.com/c/ElZ9Nh/Kqte
https://paperpile.com/c/ElZ9Nh/Kqte
https://paperpile.com/c/ElZ9Nh/Kqte
https://paperpile.com/c/ElZ9Nh/RtRD
https://github.com/omarwagih/siftr
https://paperpile.com/c/ElZ9Nh/f5me
https://paperpile.com/c/ElZ9Nh/f5me
https://paperpile.com/c/ElZ9Nh/f5me
https://paperpile.com/c/ElZ9Nh/8QO6
https://paperpile.com/c/ElZ9Nh/9CKT
https://paperpile.com/c/ElZ9Nh/9CKT
https://paperpile.com/c/ElZ9Nh/9CKT
https://paperpile.com/c/ElZ9Nh/9CKT
https://paperpile.com/c/ElZ9Nh/vs8h+4MFS+utFs
https://paperpile.com/c/ElZ9Nh/vs8h+4MFS+utFs
https://paperpile.com/c/ElZ9Nh/vs8h+4MFS+utFs
https://paperpile.com/c/ElZ9Nh/vs8h+4MFS+utFs
https://paperpile.com/c/ElZ9Nh/vs8h+4MFS+utFs
https://paperpile.com/c/ElZ9Nh/vs8h+4MFS+utFs
https://paperpile.com/c/ElZ9Nh/vs8h+4MFS+utFs
https://doi.org/10.1101/313031
http://creativecommons.org/licenses/by/4.0/


gene as a measure of over or under-expression, relative to the distribution of values for all                
genes. Two-tailed p-values were computed from Z-scores when a p-value was not provided.             
In cases where TF knockout was repeated between studies, the lowest p-value for each              
gene was used. ChIP-chip tracks for 355 TFs were collected from four studies  (Harbison  et               
al , 2004; Rhee & Pugh, 2011; Tachibana  et al , 2005; Venters  et al , 2011) via the                
Saccharomyces genome database. Of the 355 of the TFs, 144 (56%) had a defined PWM.               
Potential binding sites were then only searched for in TF-gene pairs with a p-value below               
0.01 and the corresponding ChIP-chip region upstream of the regulated gene. A normalised             
log score of 0.80 was used as the cutoff for defining putative binding sites. Similarly, for  H.                 
sapiens , 454 TF PWMs were generated from JASPAR PFMs. ENCODE clustered ChIP-seq            
data were obtained for 161 TFs, of which 72 had a PWM. Only those regions were scored                 
against the corresponding PWM. For  E. coli , a total of 1,905 TF-matching sequences across              
84 TFs were obtained from RegulonDB  (Gama-Castro  et al , 2016) and used to construct              
PWMs. A total of 2,416 experimentally identified TFBS were obtained for 79/84 TFs from              
RegulonDB. These sites were used as putative binding sites for downstream variant            
predictions.  
 
Potential target sequences were scored against the PWM using the log-scoring scheme            
defined in  (Wasserman & Sandelin, 2004) and normalised to the best and worst matching              
sequence to the PWM. The resulting score lies between 0 and 1, where 1 signifies strong                
predicted binding by the factor, whereas 0 signifies predicted lack of binding. Potential             
binding sites were scored in the presence (S wt ) and absence (S mt ) of a variant. Three               
separate metrics are used to quantify the change in binding between the reference and              
alternate allele. The first one is simply the difference in the normalised log score, S wt - S mt ,                 
where a large positive value indicates loss of binding. The second is the difference in binding                
percentile. Here, random oligonucleotides are used to generate a negative distribution of log             
normalised scores for each TF. The percentile of each wildtype p wt and mutant scores p mt is                
computed from this distribution, and the difference, p wt - p mt , is used to quantify the               
magnitude of impact. The last is the difference in the relative information content. This can               
be thought of as the difference of letter height in a sequence logo. Given that the wildtype                 
and mutant bases have relative frequencies of f wt and f mt , respectively and a position has an                
IC value of γ, then this is computed as (f wt · γ) - (f mt · γ). This value ranges from 0 to 2, where                        
0 indicates little to no impact on a critical base, and 2 indicates a strong one. 
 
Implementation of mutfunc 
Described predictors were used to precompute effects for all amino acid and nucleotide             
substitutions. The mutfunc web server at  http://mutfunc.com uses the Java and Scala-based            
Play Framework v1.3.7 backend ( http://www.playframework.org ) along with a MySQL         
database. The front-end utilises a modified version of the the Twitter Bootstrap UI library              
( http://twitter.github.com/bootstrap ). Visualization tools used include a modified version of the          
neXtProt feature viewer v0.1.52 ( https://github.com/calipho-sib/feature-viewer ) for interactive       
visualisation of protein sequence features, WebGL protein viewer v1.1 for interactive           
visualisation of protein structures v1.8.1 ( https://github.com/biasmv/pv ), and a modified         
version of the JSAV v.1.10 library ( https://github.com/AndrewCRMartin/JSAV ) for        
visualization of multiple sequence alignments.  
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Chemical genetic screening  
The screening was carried out in 1536 format on synthetic complete media with the addition               
of the appropriate chemical at a specific concentration. The Singer RoToR (Singer            
instruments, UK) was used to replicate screening plates in 1536 format. Agar plates were              
pinned onto the conditioned media and allowed to grow for 48 or 72 hours at 30 degrees                 
centigrade (unless specified otherwise). Each experiment was replicated once for quality           
control. After incubation, plates were imaged and colony sizes were extracted using IRIS             
version v0.9.7  (Kritikos  et al , 2017) with the "Colony growth" profile, which extracts colony              
size, circularity and opacity from each colony in each plate. Individual strains were scored              
using the E-MAP software, which transforms colony sizes into s-scores  (Collins  et al , 2006) .              
In brief, a surface correction algorithm is applied to each plate, the outer frame effect is                
corrected by bringing the two outermost rows and columns to the plate middle median. All               
the plates are then normalized to the overall median, followed by a variance correction and               
finally the s-score calculation. The resulting s-scores are quantile normalized in each            
condition separately and final s-scores from both replicates are averaged. 
 
Calculating gene and complex disruption scores  
Scores produced by different predictors were standardized in order to reflect the likelihood of              
identifying a deleterious mutation (P del ). For SIFT, a curated gold standard set of 8,083              
variants in 1,346 yeast genes with known tolerated or deleterious effects were obtained from              
Jelier et al.  (Jelier  et al , 2011) . The negative natural logarithm of the SIFT score was binned                 
by 0.5 and for each bin, the proportion of deleterious variants was computed. A binomial               
logistic regression was fit to the proportion values and used to compute subsequent P del              
values for subsequent SIFT scores. For FoldX, 964 gold-standard mutations across 34            
experimentally identified proteins structures with both experimentally quantified ∆∆G values          
and FoldX-predicted ∆∆G values were obtained from Guerois et al.  (Guerois  et al , 2002) . A               
variant was labelled destabilising if ∆∆G was greater than 1. Mutations were binned by              
predicted ∆∆G at intervals of 0.4 and for each bin, the proportion of destabilising variants               
was computed. A binomial logistic regression model was similarly fit to the data and used to                
compute subsequent P del for FoldX-predicted ∆∆G values. For variants disrupting start or            
stop codons we assigned P del  value of 1. Since nonsense variants occurring closer to the               
C-terminal of a protein are less likely to impact function, we only assign P del value of 1 for                  
nonsense variants occurring in the first 50% of the protein, otherwise a value of 0 was used.                 
Gene burden scores are then computed as the variant with the maximum P del score and               
describes the predicted likelihood that a protein has an affected function (P AF ). Similarly, for              
protein complexes the maximum P del score for any complex subunit was selected to reflect              
the protein complex P AF score. Variants with a MAF > 20% were considered unlikely to be                
deleterious given their high frequency in the population and were discarded prior to the              
burden score analysis. 
 
Genotype to phenotype association analysis  
The associations were carried out using the MatrixEQTL R package  (Shabalin, 2012) with             
the modelLINEAR mode. The significance of the association was measured using a            
t-statistic. For the associations genes and complex binarized P AF scores were used as             
genotypes where a P AF score above or below 0.9 is given a value 1 and 0, respectively and                  
growth phenotypes are used in lieu of gene expression. A  p-value threshold of 0.001 was               
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used for all associations and multiple testing correction was carried out using the false              
discovery method. Effect size was computed using Glass’ ∆. For the case (p) and control (n)                
group, differences in the mean was computed relative to the standard deviation of one of the                
groups. Given the mean (μ i ) and standard deviation (σ i ) for a given group i this is computed                 
as ∆ i = (μ p − μ n )/σ i . For robustness this was computed in both direction and the final effect                  
size, ∆, is reported as the minimum absolute value of effect sizes in both directions. 
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Figures 

 
Figure 1 - Population level sequence constraint in genome functional elements.  The            
level of sequence constraint was estimated using a ratio of the counts of genome variants               
across individuals of yeast and human compared with a random control regions for different              
functional elements (a) Regions buried within a protein structure with a low RSA typically              
exhibit higher evolutionary constraint. Similarly, (b) regions buried within interaction          
interfaces exhibit a high ∆RSA and demonstrate stronger sequence constraints. P-values           
represent a one-sided Wilcoxon test. (c) sequence constraint on PTMs, where numbers            
reflect the number of PTM sites for each modification. (d) PTMs with a higher number of                
neighbouring PTMs are show stronger constraint. (e) Variability in constraint amongst           
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bindings sites for TFs with at least 40 sites. (f) TFBSs that coexist with other binding sites                 
are under stronger constraint. P-value shown is computed using a one-sided Wilcoxon test             
(g) Position-specific constraint shows that positions of higher relevance for binding in TFs             
with at least 20 sites are under stronger constraint. P-value shown is computed using a               
one-sided Kolmogorov-Smirnov test. (h) four examples where the bar plots reflect the            
position-specific constraint in (blue) and around (grey) the binding site, along with sequence             
logos for the binding specificities. 
 
 

 
Figure 2 -  The mutfunc resource and benchmarking of underlying variant effect            
predictors.  a) The mutfunc interface provides an intuitive, user-friendly way by which users             
can query the resource using DNA or protein substitutions provided in plain text format or the                
variant call format (VCF). The impact of variants across different mechanisms are provided             
with information on impact strength in downloadable format and/or protein structural views.            
(b) The fraction of variants predicted to affect a conserved of structural important residues for               
essential and non-essential genes. (c) mean SIFT scores and predicted ∆∆G values for             
human and yeast variants within different MAF bins. Error bars represent the standard error              
and p-values are calculated based on a one-sided Wilcoxon test. (d) Benchmarking of the              
capacity of different predictors to discriminate between pathogenic and benign variants. (e)            
the proportion of pathogenic versus benign variants that disrupt or not different functional             
annotations (SLiMs, PTMs or stop gains/losses). 
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Figure 3 - Analysis of variants of uncertain clinical significance using mutfunc . (a-c)             
Three examples of interaction interfaces containing variants predicted to impact binding           
stability. Subunits of the interaction complex are coloured in dark grey and white, and              
respective interface residues in dark green and green. (b) Two examples of variants             
predicted to impact protein stability. Pathogenic variants are labelled "P" in red, and VUSs              
"U" in blue. 
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Figure 4 - Phenotypic screening of 166 yeast strains (a) Concordance between replicate             
s-score measurements. (b) Heatmap of s-scores showing hierarchical clustering of both           
strains and conditions reveals clusters of phenotypically similar strains and conditions. (c)            
Comparison of pairwise genotype and phenotype distances between 93 sequenced strains           
shows little observable correlation. 
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Figure 5 - Gene and protein complex level aggregation of variant effects for phenotype              
association analysis (a) Diagram demonstrating the aggregation of variant impact. Each           
variant is first assigned a probability of deleteriousness, which are aggregated at the gene              
level using the maximum impact. (b) The probability of deleteriousness for FoldX and SIFT              
was computed by assessing the proportion of deleterious variants in gold-standard data for             
FoldX and SIFT. A logistic regression model (red line) is fit to compute subsequent              
probabilities. Protein complex level burden scores was taken to be the maximal burden for              
any complex member (c) Gene and complex burden scores for each strain,            
gene/complex-phenotype associations were carried out. 
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Supplementary figures 

 
Supplementary figure 1 - Gene and protein complex level phenotype association           
analysis show significant but modest enrichment in prior knowledge of gene KO            
growth phenotypes . (a) Gene to phenotype associations using the gene burden scores are             
preferentially negative. (b) the fraction of gene-phenotype associations that is validated by            
chemical genetic information derived from gene deletion experiments. The significance of the            
observed overlap was tested using permutation testing and only found to be significant at              
effect size threshold. (c) Associations between protein complexes and conditions were           
benchmarked by calculating the enrichment of previously known gene-condition associations          
from gene deletion studies. An enrichment was observed for some cut-offs for the             
gene-deletion condition dependent essentiality but only found to be better than random            
expectation for stringent cut-off.  
 
Supplementary tables 
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Supplementary table 1 - Growth measurements for  S. cerevisiae strain panel.  The            
growth measurements expressed as s-scores for each strain in each condition is listed. 
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