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ABSTRACT Understanding the genetic basis of phenotypic adaptation to changing environments is an essential goal of
population and quantitative genetics. While technological advances now allow interrogation of genome-wide genotyping data in
large panels, our understanding of the process of polygenic adaptation is still limited. To address this limitation, we use extensive
forward-time simulation to explore the impacts of variation in demography, trait genetics, and selection on the rate and mode of
adaptation and the resulting genetic architecture. We simulate a population adapting to an optimum shift, modeling sequence
variation for 20 QTL for each of 12 different demographies for 100 different traits varying in the effect size distribution of new
mutations, the strength of stabilizing selection, and the contribution of the genomic background. We then use random forest
regression approaches to learn the relative importance of input parameters in determining a number of aspects of the process
of adaptation including the speed of adaptation, the relative frequency of hard sweeps and sweeps from standing variation, or
the final genetic architecture of the trait. We find that selective sweeps occur even for traits under relatively weak selection and
where the genetic background explains most of the variation. Though most sweeps occur from variation segregating in the
ancestral population, new mutations can be important for traits under strong stabilizing selection that undergo a large optimum
shift. We also show that population bottlenecks and expansion impact overall genetic variation as well as the relative importance
of sweeps from standing variation and the speed with which adaptation can occur. We then compare our results to two traits
under selection during maize domestication, showing that our simulations qualitatively recapitulate differences between them.
Overall, our results underscore the complex population genetics of individual loci in even relatively simple quantitative trait
models, but provide a glimpse into the factors that drive this complexity and the potential of these approaches for understanding
polygenic adaptation.
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Author summary29

Many traits are controlled by a large number of genes, and environmental changes can lead to shifts in trait optima. How30

populations adapt to these shifts depends on a number of parameters including the genetic basis of the trait as well as31

population demography. We simulate a number of trait architectures and population histories to study the genetics of32

adaptation to distant trait optima. We find that selective sweeps occur even in traits under relatively weak selection33

and our machine learning analyses find that demography and the effect sizes of mutations have the largest influence34

on genetic variation after adaptation. Maize domestication is a well suited model for trait adaptation accompanied by35

demographic changes. We show how two example traits under a maize specific demography adapt to a distant optimum36

and demonstrate that polygenic adaptation is a well suited model for crop domestication even for traits with major effect37

loci.38
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Introduction39

Adaptation40

Understanding molecular adaptation is essential for the study of evolutionary processes, genetic diseases and plant41

and animal breeding. The process of adaptation is often divided into three separate modes: hard selective sweeps, soft42

selective sweeps and polygenic adaptation. In recent decades many empirical population genetic analysis have focused43

on hard selective sweeps because these leave a distinct molecular trace that can be readily detected in genomic data.44

Hard sweeps result from the reduction of genetic diversity at neutral sites linked to a new beneficial mutation that45

rapidly fixes (Smith and Haigh 1974). In recent years, other forms of selection that play an important role in evolution46

and adaptation have begun to receive increased attention, although these are more difficult to detect in empirical data.47

For instance, sweeps from selection on standing genetic variation leave a less distinct pattern on diversity than hard48

selective sweeps because the beneficial variant has had more time to recombine onto multiple genetic backgrounds49

(Hermisson and Pennings 2005, 2017). In addition to processes involving sweeps at individual loci, polygenic adaptation50

— in which selection acts on a quantitative trait with complex genetic architecture — is frequently regarded as a third51

mode of adaptation and can lead to rapid phenotypic change via relatively minor shifts in allele frequencies (Pritchard52

and Di Rienzo 2010).53

Although well-studied traits such as human height (Berg et al. 2017), coat color in mice (Vignieri et al. 2010) and54

grain yield in crops (Wallace et al. 2014) follow patterns consistent with the polygenic pattern, the dynamics and genetic55

architecture of polygenic adaptation are not well understood. Polygenic adaptation has only gained importance in56

empirical population genetics relatively recently, but the field of quantitative genetics is based on the idea that traits are57

controlled by large numbers of loci (Barton and Keightley 2002). Population genetics and quantitative genetics drifted58

apart with the appearance of the first molecular data allowing empirical evaluation of single locus population genetic59

models, while the analysis of effects of single loci in quantitative genetics has long been limited by the large number of60

phenotyped individuals needed (Wollstein and Stephan 2014). The increasing availability of high density SNP sets and61

whole genome sequencing for tens of thousands of individuals, however, is now providing the opportunity to test both62

population and quantitative evolutionary genetic hypotheses in empirical data (e.g. Sanjak et al. 2017).63

One important model of polygenic traits is stabilizing selection, in which there is an optimum trait value and selection64

acts against extreme deviations from this optimum (Johnson and Barton 2005). Under such a model, an individual’s65

fitness is given by its phenotypic distance from the trait optimum and the strength of stabilizing selection. Within66

this framework, recent attention has focused on the dynamics of polygenic adaptation to a new nearby phenotypic67

optimum (Jain and Stephan 2017; Kopp and Hermisson 2009; Chevin and Hospital 2008; Lande 1983; de Vladar and68

Barton 2014; Barton and Keightley 2002). In this scenario, genetic variance in the population decreases when most69

effect sizes are small, because many sites fix. In contrast, when most mutations have large effect sizes, the genetic70

variance increases because large effect loci increase in frequency but do not fix (Jain and Stephan 2017; de Vladar and71

Barton 2014). Theoretical quantitative genetic analyses have also revealed that selective sweeps are prevalent during72

polygenic adaptation (Pavlidis et al. 2012; Chevin and Hospital 2008). These studies have developed important theoretical73

background for the understanding of polygenic adaptation and have documented the dynamics of a small number of loci74

during the course of adaptation. Each of these studies shows in detail how a small number of parameters influences75

adaptation, but the complex interplay of mutation, selection, and demography across a large parameter space has not yet76

been explored. For example, population growth has been shown to influence the contribution of low frequency alleles to77

trait variance (Lohmueller 2014), but the interaction of demography with parameters such as the distribution of effect78

sizes of new mutations needs further investigation.79

Here, we take a simulation approach to study a population adapting to an optimum shift, modeling sequence variation80

for 20 QTL for each of 12 different demographic models for 100 different traits with varying effect size distribution of81

new mutations, strength of stabilizing selection, and the contribution of the genomic background beyond the simulated82

QTL. After detailed analysis of a single scenario, we use machine learning to extract parameter importance for the83
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Figure 1 Population dynamics of a single parameter set A) Trait evolution after an optimum shift and B) allele fre-
quency dynamics during adaptation form a single replicate. The vertical line shows when the new trait optimum was
reached and line colors denote effect sizes, and time is shown on a log scale. C) The phenotypic distribution and D)
site frequency spectra of segregating mutations (black) and neutral expectation (red) from 100 independent replicates.
Panels show different generations including equilibrium prior to adaptation (0), during adaptation (0.005), just before
the new optimum is reached (0.01), after the new optimum has been reached (0.2), and the final generation (0.1). All
results are from a simulated population with constant population size, σm = 0.05, and VS = 1.

input parameters. Our results illustrate that selective sweeps are common under most scenarios, even for mutations of84

relatively minor effect. We employ machine learning on genetic architecture matrices and find that demography and the85

effect size of new mutations have the largest influence on present day genetic architecture. After identifying general86

parameter importance, we use maize domestication as an example and investigate two diverging traits in a population87

that underwent a population bottleneck and exponential growth (Beissinger et al. 2016), showing how these traits adapt88

to the changing optimum and comparing our findings to archaeological and genetic data (Xue et al. 2016; Benz et al. 2006).89

Results90

We first simulated adaptive and stabilizing selection on a single quantitative trait in a randomly mating diploid population.91

After a burn-in to equilibrium, we simulated an instantaneous shift in the optimal trait value from 0 to 10. The population92

underwent truncation selection until reaching the new optimum, at which time stabilizing selection resumed. We93

assumed an additive model with no epistasis, and simulated 20 unlinked QTL as well as a genomic “background” over a94

range of parameters describing population demography and the trait, including the effect size of new mutations, strength95

of stabilizing selection, distance to the new optimum, effects of genomic background and population, and bottleneck96

severity and population expansion (Table 1).97

Single simulation results98

The adaptation of a quantitative trait to a sudden environmental change involves allele frequency shifts at many sites,99

some of which result in selective sweeps. To build intuition around basic patterns seen in these simulations as a100

population adapts to a new optimum, we first describe results of a single simulation with constant population size,101

intermediate effect sizes of new mutations (σm=0.05), strong stabilizing selection (VS=1), and no phenotypic effect of the102

genomic background (ψ=0). We present how such a population adapts to the new optimum and how allele frequencies103

and effect sizes change during this process (Figure 1).104

The population mean trait value increased linearly (log10 scaled x- axis in figure 1A) until shortly before the new105

optimum was reached within 0.011 (sd= 0.0004) Nanc generations (Figure 1A and C). As the population mean approached106

the optimum the rate of change decelerated, presumably because some individuals now had phenotype values above the107

Polygenic adaptation 3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/313247doi: bioRxiv preprint 

https://doi.org/10.1101/313247
http://creativecommons.org/licenses/by-nc-nd/4.0/


optimum such that alleles which contribute positively to the trait are no longer uniformly beneficial to fitness. The trait108

variance increased after the optimum shift and during the adaptation process. Though it declined once the new optimum109

was reached, it did not return to the equilibrium variance by the end of the simulation (Figure 1C). This increase in110

variance is generated by the increase in allele frequency of formerly rare, large positive effect alleles.111

Following individual mutations shows that, at the onset of the optimum shift (generation 0) alleles with negative effect112

sizes rapidly decline in frequency unless they were already near fixation (Figure 1B). Alleles with positive effects, on the113

other hand, increase quickly in frequency and fix. Once the new optimum is reached, frequencies of both positive and114

negative alleles changed slowly, but the number of small effect alleles increased. This shows how a population can adapt115

to a sudden environmental change by an increase of beneficial alleles and decrease of negative alleles in a relatively short116

time.117

Looking at the change in allele frequencies of all mutations helps to understand what drove the adaptation process in118

the population (Figure 1D). At equilibrium, variants with larger effects are selected against, leading to an excess of rare119

variants compared to neutral expectations. The site frequency spectrum (SFS) then changed quickly after the optimum120

shift as selection fixed positive mutations. Directly before the new optimum was reached (0.01Nanc ), 11% of mutations121

were at very high frequencies (> 0.5) while after reaching the new optimum (0.02Nanc ) only 8% of mutations were at122

such high frequencies and the number of high frequency segregating sites further declined in consecutive generations.123

Under stabilizing selection, extreme values are again selected against and alleles that have risen to intermediate frequency124

during adaptation return to their equilibrium frequency. By 0.1 ×Nanc generations the SFS again reflected an excess of125

rare alleles, but also an excess of high frequency derived alleles. The observed high frequency derived alleles ((Figure 1D)126

bottom) represent in fact their ancestral counterpart, which is at low frequency. These mutations increased in frequency127

during adaptation, but both alleles have the same fitness effect after the equilibrium has been reached and the mutation128

does consequently not decrease in frequency.129

When a selected mutation increases in frequency quickly, it often reduces diversity in adjacent genomic regions,130

leading to a pattern commonly referred to as a selective sweep. While we cannot assess diversity at linked neutral sites in131

our model, we can nonetheless identify likely selective sweeps by comparing the sojourn time of individual alleles to that132

of a neutral allele experiencing equivalent demographic processes (see Methods). Following these criteria, 72% of all133

fixations in this simulation were selective sweeps. Of these, 73% were sweeps from standing variation. While there was134

an overall negative correlation between the time a site was segregating in the population and its effect size on the trait,135

there were a number of mutations that fixed later than expected given their effect size (Figure 2A).136

Observing the frequency trajectories of sites that fixed after the new optimum had been reached shows that the speed137

of frequency change for sites that fix after the new optimum had been reached slowed down substantially, but they138

eventually reached fixation. When the new optimum has been reached, any increase or decrease in frequency of large139

effect mutations takes the population away from the trait optimum and is selected against. The remaining change in140

frequency is mostly stochastic and results from minor fluctuations in the trait mean due to frequency changes at other141

sites (de Vladar and Barton 2014). However, because stabilizing selection acts against stochastic variation in allele142

frequencies that move the population away from the optimum, the time to fixation or loss for an allele is still faster than143

neutrality in a manner that has sometimes been deemed similar to underdominance (Bürger 1989). Some mutations144

with negative effects that decreased in frequency under truncation selection after the optimum shift can then increase145

in frequency again once the new optimum is reached and stabilizing selection takes over (Figure 2B). Such mutations146

provide a good example of selection on a quantitative trait, which results in selection coefficients that can vary in sign or147

magnitude depending on the background they fall into, its distance to the optimum, and the details of when and what148

kind of selection occurred.149

In our simulations, fixations from standing variation fixed either fast, because they were present at high frequency at150

the onset of directional selection, or due to their large effect on the trait. However, there was no correlation between151

the initial allele frequency and the generation in which the mutation fixed (Figure 2C and D). Large effect mutations152

segregated at low frequency in the equilibrium population, while small effect sites were already at higher frequencies,153
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Figure 2 Selective sweeps A) Speed of fixation of selective sweep mutations. B) Dynamics of fixations that occur after
the new optimum was reached. C) Speed of fixation of sweeps from standing variation compared to their initial fre-
quency. D) The generation at which sweeps from standing variation fix. All results are from a simulated population
with constant population size, σm = 0.05, and VS = 1, and time is shown on a log scale.

explaining why large effect and small effect mutations fixed at similar generations, despite the difference in speed of allele154

frequency shift. Negative and effectively neutral mutations may also fix together with large effect positive mutations155

presumably due to the effects of genetic hitchhiking (Figure 2).156

Complex genetic architectures with demographic changes157

The detailed analysis of a single population adapting to a sudden environmental change helps to build intuition on158

the dynamics of a specific set parameters, but is far from the complexities of quantitative trait evolution in natural159

populations. For example, most populations have experienced some form of fluctuation in population size, and traits160

differ both in the strength of stabilizing selection as well as in their genetic architecture — the frequency and effect size of161

mutations that cause variation in the phenotype. To understand the effect of these and other variables, we simulated162

1,200 different combinations of parameter sets to examine the contribution of the strength of stabilizing selection, the163

effect size of new mutations, population demography, and differences in genetic background on variation and adaptation164

of the focal trait.165

The combination of VS and σm led to different genetic variances at equilibrium ranging from 0.004 to 0.751, leading to166

a distance of the new trait optimum between 11.5 and 158.2 z-scores (Figure S3). We calculate VG in every generation167

during the burn-in and compared it to the expected genetic variance approximated with the House of Cards (HoC)168

approximation (Turelli 1984). The majority of simulations are within the regime of HoC, though the approximation169

underestimated VG for σm = 0.9 and VS = 1 and overestimated VG for large VS and small σm. All burn-ins had a mean170

fitness close to one at equilibrium after 10xN and the mean VG was constant (Figure S4 and S3)171

To understand the factors driving variation in particular aspects of the data, we employed a random forest machine172

learning model (see Methods) to retrieve parameter importance.173
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Figure 3 Relative parameter importance Relative parameter importance inferred for four parameter categories. 1)
Adaptation: parameters describing adaptation speed and potential for future adaptation, 2) Fixations: summary statis-
tics for mutations that were fixed during trait adaptation, and 3) Segregating sites: descriptors of alleles polymorphic
in the final generation of the simulations. Top rows indicate prediction accuracy as calculated by 10-fold cross vali-
dation and NRMSE. Each bar is the result of an independent random forest learning and each color represents the
relative importance of the simulation input parameters (see Methods and Table S1 for summary statistics).

Speed of polygenic adaptation An important factor for the survival of a population exposed to changing environments174

is how fast it can adapt to new conditions. Our simulated populations varied widely in the time required to reach the175

new optimum, from 0.001 to 0.99 Nanc generations. A total of 732 of the 120,000 simulations did not reach the new trait176

optimum within the simulated time of 0.1 ×Nanc generations, but all parameter combinations had at least 8 (of 100)177

replicates reaching the new optimum. In general, simulations that did not reach the new optimum were those with a178

strong bottleneck (reduction to 1% or 5% of Nanc ). In particular, more than 70% of all simulations with the smallest σm179

(0.01), no genetic background, 1% bottleneck, and a final size of Nanc did not reach the new optimum, regardless of their180

strength of stabilizing selection (VS).181

All three adaptation-related summary statistics were well predicted, with cross-validation accuracy over 90%. Overall,182

the parameter contributing most to this variation is σm, with a relative importance of > 50% (Figure 4). This was followed183

closely by the proportion of the trait explained by genetic background (ψ) at 31%, while demography and VS were of184

relatively minor importance (Figure 3 and S5). We find that the rate of phenotypic adaptation was highest for populations185

with small σm and large ψ, and these two factors explained the majority of the observed variation (Figure 4). The initial186

genetic variance, a combination of VS and σm, was the best predictor for the genetic variance in the final generation, but187

the strength of the bottleneck and ψ had a relative importance of 11% and 17%, respectively (Figure S5). The genetic188

variance in the final generation increased with increasing σm, with declining increase for larger σm (Figure 4).189

Segregating sites after polygenic adaptation190

We further investigated segregating sites in the final generation, which correspond to a modern population that has191

experienced an optimum shift in the past. Cross validation prediction accuracies were for most summary statistics were192

very high (<0.9). The mean effect size of segregating sites was predicted with less accuracy, however, as all values are193

concentrated around zero leading to low R2 values in the CV. The NRMSD, shows that the accuracy for mean effect194

size of segregating sites was high and that the validation data could be predicted, which allowed to infer parameter195

6 Stetter et al.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/313247doi: bioRxiv preprint 

https://doi.org/10.1101/313247
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.000

0.025

0.050

0.075

0.100

0.01 0.05 0.1 0.3 0.9

Standard deviation of new mutations (σm)

T
im

e 
to

 n
ew

 o
pt

im
um

 (
x 

N
an

c)

0.01

0.05
0.1

1

Bottleneck
strength

A

0.0

0.1

0.2

0.3

0.4

0.01 0.05 0.1 0.3 0.9

Standard deviation of new mutations (σm)

E
vo

lu
tio

na
ry

 R
at

e 
(h

al
da

ne
)

B

0.001

0.010

0.100

1.000

0.01 0.05 0.1 0.3 0.9

Standard deviation of new mutations (σm)

F
in

al
 V

G

C

0

50

100

150

200

250

0.01 0.05 0.1 0.3 0.9

Standard deviation of new mutations (σm)

N
um

be
r 

of
 s

w
ee

p 
m

ut
at

io
ns

Sweep type

Hard

Standing
variation

D

0.00

0.25

0.50

0.75

1.00

0.01 0.05 0.1 0.3 0.9

Standard deviation of new mutations (σm)

S
w

ee
ps

/fi
xa

tio
ns

E

0.00

0.25

0.50

0.75

1.00

0.01 0.05 0.1 0.3 0.9

Standard deviation of new mutations (σm)

F
ro

m
 s

ta
nd

in
g/

sw
ee

ps

F

Figure 4 Summary of trait adaptation and selective sweeps A) Time to reach new trait optimum B) Rate of change in
phenotype C) Genetic variance after 0.1×Nanc generations. D) Total number of selective sweeps, separated by type of
sweeps. E) Proportion of sweeps compared to all fixations F) Proportion of sweeps from standing variation. Boxes are
split by major parameter importance as identified by our random forest model. Points in A-C and E-F show the values
of each of 1,200 parameter sets and are colored according to bottleneck size (Darker color indicate stronger bottleneck,
see legend in A). Interactive plots are available at https://mgstetter.shinyapps.io/quantgensimAPP/
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importance even with lower CV accuracy.196

While absolute numbers mostly depended on the final population size, other statistics showed more distinct patterns.197

Allele frequencies of both negative and positive sites were strongly influenced by the demography of the population.198

The proportion of negative sites segregating in the population was also most strongly influenced by the strength of the199

bottleneck (Figure 3), but when VG0 (Figure S3) was used to train the model instead, VG0 explained most of the variation200

(Figure S5). As VG0 is the result of the combination of VS and σm during the burn-in, this a strong interaction effect201

between VS and σm which is partitioned when using VS as feature in the random forest.202

Fixations and selective sweeps203

Mutations in a population can rise in frequency and fix due to demographic events and stochastic sampling or as a204

result of selection. The sudden change in trait optimum in our model imposed strong selection on sites with a postive205

effect, while mutations with negative effect values were deleterious until the new optimum was reached. Different206

parameter combinations led to strongly varying numbers and patterns of fixations in our simulations. The effect size207

of new mutations (σm) and ψ had the strongest influence on the absolute number of fixations and the effect size of208

mutations that fixed (Figure 4, 3 and S5). Variation in the mean effect size of fixations depended mostly on σm, though VS209

also contributed substantially for negative fixations. Consistent with fixations being driven primarily by selection, the210

effect size of positive mutations that fixed was an order of magnitude larger than that of negative fixations (Figure S6).211

Comparing results within each set of simulations with identical σm shows that stochastic sampling due to Nbneck played212

an important role in determining the number of fixations even if the relative importance of Nbneck among all parameters213

was only 3% (Figure S6A and 3).214

Not all fixations are due to positive selection, however, and even those that are due to selection would not necessarily215

reduce linked diversity sufficiently to be detected as a selective sweep. To differentiate between neutral and strongly216

selected fixations, we compared the fixation time of sites that fixed after the shift in trait optimum to single-locus neutral217

simulations with identical demography (see Methods). Consistent with the higher total number of fixations exhibited,218

populations with smaller σm also showed a higher number of sweeps. While the maximum number of sweeps was almost219

300 (for σm = 0.01, ψ = 0, VS = 1, and a bottleneck), 13 parameter sets did not lead to any sweeps within the simulated220

time, all with σm ≥ 0.3, ψ = 0.95 and VS ≥ 5. The proportion of sweeps to fixations ranged from 0 to 99% but was highly221

variable and revealed strong interactions between σm, ψ and VS (Figure 4). Larger ψ led to a low proportion of sweeps to222

fixations when VS and σm were small, but for large values of VS and σm almost all fixations were sweeps, scaling with223

decreasing ψ (https://mgstetter.shinyapps.io/quantgensimAPP/). The proportion of sweeps from standing variation was also224

highly variable, but differentiated more strongly by demography within each group of σm than the total proportion of225

sweeps (Figure 4E). Population bottlenecks were the second most important parameter for the type of selective sweep226

observed, while either σm or VG0 were the most important parameters 3 and S5).227

Genetic architecture after adaptation228

The genetic architecture of phenotypic traits that we observe in populations today was shaped by demographic history229

and past selection. We evaluated the genetic architecture in the final generation of all 1,200 populations with their diverse230

range of histories by comparing the combined allele frequency - effect size matrices (see Methods). These frequency231

matrices were used as input for our random forest model to understand the contributions of input parameters to variation232

in genetic architecture.233

The extracted parameter importance showed that the variation in the genetic architecture depended most strongly234

on Nfinal and σm, but each of the other three parameters contributed at least 9% of the variation (Figure 5). The235

strong interaction between parameters becomes apparent in Figure 5, where the fine structure beyond the major 2236

parameters (σm and Nfinal ) can be seen on all levels of combinations. Among simulations with large σm and large237

Nfinal , however, all correlations are close to 1 and it is therefore not possible to easily distinguish parameter sets based238

on their genetic architecture (individual genetic architecture plots for each parameter combination are available at239
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Figure 5 Genetic architecture in final population A) Genetic architecture matrices for two parameter combinations
(maize models, see Methods) differing in effect size of new mutations and strength of stabilizing selection. Effect size
bins are centered around zero with negative effect size quantiles on the left and positive quantiles on the right of the
central bin. Shown is the correlation coefficient between the genetic architectures. B) Pairwise correlation of genetic
architecture of all comparisons of 1,200 parameter combinations. Subplots display the combination of final population
size (log ; 1, 3, 10) and effect size distribution (σm, 0.01,0.05,0.1,0.3,0.9) of incoming mutations. Each pixel displays a
pairwise comparison between two of the 1,200 scenarios. C) Relative parameter importance for genetic architecture
prediction.

https://mgstetter.shinyapps.io/quantgensimAPP).240

Maize domestication traits241

After evaluating a wide parameter space using our machine learning models, we then investigated in more detail two242

parameter sets that resemble diverging traits during maize domestication. Using simulations with demographic models243

similar to that inferred for maize (a bottleneck of 0.05×Nanc followed by exponential growth to 10×Nanc, Beissinger244

et al. 2016), we selected one trait with strong stabilizing selection and small effect mutations (Trait 1; σm = 0.01 and245

Vs = 1) and one trait with weak stabilizing selection and large effect mutations (Trait 2; σm = 0.9 and Vs = 50).246

The two traits showed notably different patterns of adaptation (Figure 6, x-axis on log10 scale). Trait 1 increased almost247

linearly for 0.0733×Nanc generations before asymptotically arriving at the new optimum. The genetic variance for this248

trait declined for the first 0.0169×Nanc generations before it slowly increased, but did not reach the equilibrium value249

within the 0.1×Nanc generations simulated. Trait 2, on the other hand, adapted rapidly, reaching the optimum in only250

0.002×Nanc generations. The genetic variance for Trait 2 increased during adaptation to a value higher than VG0 , then251

decreased after the optimum was reached but remained higher than VG0 (Figure 6A and B). The number of fixations was252

100 times higher for trait 1 than for trait 2; the ratio of sweeps per fixation was also higher, and most sweeps in trait 1253

were hard (Figure 6C). Though on average trait 2 exhibited fewer than 2 sweeps per simulation, 94 % of these were from254

standing variation. The sojourn time for sweeps from standing variation was correlated with the initial allele frequency,255

but also with the effect size of a mutation. Large effect positive mutations had a low initial frequency but fixed fast, while256

negative alleles fixed slowly, despite their high initial frequency similar to the trait we described above (Figure 2). This257

observation held particularly true for Trait 2, where only few small or negative effects fixed quickly (Figure 6 D and E).258
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The overall contribution of all sweeps to phenotypic change was also different between the two traits: the summed effect259

size of all sweeps represents 45 % of the adaptation in trait 2, but only 18 % for trait 2.260

Figure 5A shows the difference in genetic architecture between the two traits. While the adaptation of trait 1 led to an261

equal distribution of effect sizes at low frequencies, trait 2 had a larger proportion of both very low frequency mutations262

from the extreme tail of the distribution and small effect mutations at higher frequencies. Despite these differences the263

correlation between the genetic architecture matrices was very high (0.96; Figure 5).264
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Figure 6 Maize specific adaptation procedure A) The evolution of trait value and B) genetic variance during adapta-
tion to a new trait optimum for two traits under maize demography with no genetic background. Time in both figures
is shown on a log scale, light shadows show standard deviations from the mean of 100 simulation replicates. Trait 1
(blue) with small effect mutations (σm = 0.01) strong stabilizing selection (VS = 1). Trait 2 (red) with large effect new
mutations (σm = 0.9) and weak stabilizing selection (VS = 50). Vertical lines denote the generation when 99% of the
new trait optimum is reached. C) Proportions of selective sweeps. D) Sojourn time of sweeps from standing variation
in Trait 1. E) Sojourn time of sweeps from standing variation in Trait 2. Scales in D and E are different due to strong
divergence of effect size values.

Discussion265

Model choice266

We use a combination of two different fitness functions to study the quantitative genetics of adaptation to a sudden267

change to a new trait optimum far beyond observed trait values for any individual in the equilibrium population. During268

the stationary phase before the shift and after reaching the new optimum we followed a Gaussian fitness function269
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appropriate for a trait under stabilizing selection (Johnson and Barton 2005). During the optimum shift, however, such a270

model would be problematic, as only a few individuals in the upper tail of the fitness distribution would have extremely271

high relative fitness, inducing a strong population bottleneck. Instead, we applied a model of truncation selection, first272

calculating fitness under the Gaussian fitness function but then assigning a fitness of 1 to the top half of the population273

and 0 to the bottom half. Such a model is reasonable for sudden shifts in trait optima that do not lead to the extinction274

of a population, but where higher trait values are unambiguously advantageous and the maximum population size is275

limited. In natural populations these factors can be observed when sudden changes in the environment favor a specific276

phenotype for invasive species (Moran and Alexander 2014) or in semi-artificial populations in agroecosystems and277

during domestication (Benz et al. 2006). Truncation selection is also common in evolve and re-sequence experiments278

(Turner et al. 2011), crop populations (Dudley 2007) and during strong directional selection in natural populations(Crow279

and Kimura 1979).280

In our model simulations we fixed the equilibrium optimum to 0 and the new optimum to 10, but change VS and σm.281

As VS and σm change, the relative distance to the new optimum changed with respect to the initial VG (VG0). The wide282

range of distances simulated resembles observations in nature and experimental populations. For example, in the Illinois283

long term selection experiment in maize, 105 generations of selection for high oil resulted in a shift of over 40 standard284

deviations (Dudley 2007), and large trait shifts have also been identified in other experimental and natural populations285

(Oz et al. 2014; Hoekstra et al. 2001). Our results should therefore be relevant for a variety of traits that adapt to changing286

environments.287

While our modeling investigated a wide parameter space for a number of key variables, one key aspect we have288

ignored is interaction among alleles (dominance) or loci (epistasis). Both forms of interaction are widely recognized to be289

important at the molecular level (Carlborg and Haley 2004; Jiang et al. 2017), but the majority of variance for a wide array290

of quantitative traits seems reasonably well explained under a simple additive model (Polderman et al. 2015; Zhu et al.291

2015), but see (Mackay 2014; Wallace et al. 2014; Carlborg and Haley 2004; Forsberg et al. 2017). And although we do not292

include any explicit simulation of interlocus interactions, our quantitative trait model is such that the effect of an allele in293

any given generation will depend on the genetic background. We predict that epistasis and dominance would absorb294

some of the effect of σm for most statistics and have relatively little influence on demographic parameters. Further efforts295

should incorporate the effects of dominance and epistasis, especially for understanding phenomena such as heterosis296

and inbreeding depression, where nonadditive effects are likely to play a significant role (Charlesworth and Willis 2009).297

How do organisms adapt to change298

Rapidly changing environments, such as those faced by changing climate impose a threat to populations with narrow299

genetic variance for important traits. Quantitative traits inherently provide adaptive potential to a population, because300

of the genetic variance created by varying effect sizes at a number of alleles (Burger and Lynch 1995). However, the301

speed and manner in which traits adapt depends on the initial variation and beneficial mutations entering the population302

once the environment changes. In rapidly changing environments or during new colonization of habitats the time it303

takes to reach the new optimum is critical as this might determine whether the population is first to occupy a niche.304

We looked at two summary statistics — time to optimum and adaptation rate — to compare the adaptive behavior of305

different traits. The speed to the optimum shows the absolute speed of a population to reach the new optimum, while the306

adaptation rate is corrected for the genetic variance present. The absolute speed depends most on σm, but the adaptation307

rate is more uniform across σm with even higher adaptation rates for small σm (Figure 4A and B). This shows that with308

small effect mutations and strong stabilizing selection adaptation is mutation limited, but this is not the case when VS is309

large. These two types of adaptation regimes have previously been described as mutation and environmentally limited310

adaptation regime (Kopp and Hermisson 2009). Large adaptation rates are reached with the largest ψ (0.95) values,311

because genetic diversity is maintained during the adaptation process. Populations with small σm and small ψ run out312

of genetic variance, because most positive standing variation fixes and negative mutations get lost. The loss of genetic313

variance is also apparent when comparing the initial genetic variance to the final genetic variance, which is smaller after314
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adaptation for most populations with σm = 0.01 (Figures 4 C, 6B and S3). The decrease in VG for small effect mutations315

and the increase from large σm is consistent with previous results (Jain and Stephan 2017). The genetic variance after316

historical adaptation is important in the face of climate change where recently adapted populations will be forced to317

further adapt. Populations with a large initial genetic variance and large effects also have larger genetic variance in318

the final population and are thus better prepared for future adaptation. The severity of population bottlenecks is an319

additional factor influencing VG in the final generation as diversity is removed by genetic drift (Figure3 and S5).320

Overall, it is little surprising that populations with the largest VG0 and largest σm adapt fastest to a new optimum, but321

we also show the impact of population bottlenecks and the overlap between trait architectures (combinations of VS and322

σm). Different trait architectures can result in similar adaptation speed and genetic variance depending on the population323

history. This implies that for traits that are highly polygenic, it is of particular importance to prevent population declines324

in order to maintain the adaptability of populations.325

Selective sweeps during polygenic adaptation326

Much of standard population genetic theory assumes mutations have a constant fitness effect s. This assumption has327

led to a number of findings about selective sweeps, from the probability of fixation being ≈ 2s (Haldane 1927) to the328

rule of thumb that mutations with fitness effects |2Ns| > 1 will be fixed or removed by natural selection, while those329

with smaller effects will drift stochastically as effectively neutral alleles (Wright 1931). For quantitative traits, however,330

the fitness effect of a mutation is conditional on the phenotypic distance of an individual to the trait optimum and the331

correlation between the trait and fitness (Johnson and Barton 2005). At equilibrium this follows a Gaussian distribution332

(Equation 1), but during directional selection it will depend on the distance of the population from the trait optimum.333

The relationship between the phenotypic effect size of a mutation and its fitness effect is strongly positive at the onset of334

selection, while the slope declines as the population trait mean approaches the new optimum and is even slightly negative335

once the new optimum has been reached (Chevin and Hospital 2008, Figure S7). This shows that segregating large336

effect positive mutations are beneficial when the population trait mean is distant from the new optimum, but become337

disadvantageous once the population mean is close to the new optimum, as on average they will cause individuals to338

overshoot the optimum.339

Most selective sweeps occur during the adaptation process before the new optimum has been reached, but the number340

of fixations and sweeps is strongly dependent on the demography of the population. A strong population bottleneck leads341

to more fixations, but most of these are fixed by drift rather then selection, and Nbottleneck is therefore more important for342

the number of fixations than the number of selective sweeps (Figure 3 and S5). Population bottlenecks also decrease343

the proportion of sweeps from standing variation and favor hard selective sweeps, because the bottleneck removes344

segregating beneficial alleles (Figure 4).345

The overall importance of selective sweeps for different traits depends on the initial genetic architecture: our two346

example traits show that differences in the number of sweeps do not necessarily reflect their combined effect: while trait347

1 exhibited 279 sweeps, these contributed to 42 % of the change in trait value, while for trait 2, only 2 sweeps contributed348

22% (Figure 6C). This is consistent with previous results showing that allele frequency shifts of large effect alleles are349

sufficient to reach the new optimum, but selective sweeps are more important when the new optimum is distant (Pavlidis350

et al. 2012; Jain and Stephan 2017) Our results show even more extreme cases, for example trait 1 and simulations with351

σm ≤ 0.05, in which the population exhausts standing variation and relies almost entirely on new mutations. In this case352

hard selective sweeps are most common, as new positive mutations provide a strong relative fitness advantage (Figure 4353

and 6).354

Without linked neutral sites, our ability to identify likely sweep regions requires a few important caveats. First, we use355

a conservative definition of selective sweeps, including only those alleles fixing faster than 99% of neutral simulations.356

Less conservative cutoffs should not strongly influence the general result, as most mutations that sweep fix substantially357

faster than neutral fixations and only few more fixations would be defined as selective sweeps. Second, while we identify358

only sweeps from mutations that arose after the optimum shift as hard sweeps, some sweeps from standing variation359
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would be difficult to distinguish from hard sweeps in genomic data if their frequency at the onset of directional selection360

was very low (Berg and Coop 2015). Likewise, not all alleles that fixed faster than 99% of neutral simulations would361

be detectable as selective sweeps in empirical data, as selection on standing variation has a less pronounced impact on362

diversity at linked sites (Hermisson and Pennings 2017).363

The effect of genetic background on focal QTL364

Allele frequency shifts and selective sweeps in a focal QTL are dependent on the genetic background. Chevin and365

Hospital (2008) showed analytical results for the behavior of a single locus with a polygenic background during the366

adaptation to a new optimum. In our study, we simulate a more complex case: in addition to a genetic background (see367

Eq. , we model 20 QTL each involving numerous loci. Moreover, in our model the QTL and the genetic background368

are not independent, because the QTL in the parents contribute to their trait value but can themselves be inherited369

as well. Nonetheless, our results broadly agree with Chevin and Hospital (2008), showing that when the effect of the370

background and effects of mutations within the QTL are large, adaptation proceeds without selective sweeps (Figure 4).371

We additionally show that the background explains considerable variation in many summary statistics, in particular372

those related to fixations and selective sweeps (Figure 3). Together with empirical observations of varying fitness effects373

for QTL in different backgrounds (Symonds et al. 2005; Doebley et al. 1995; Stitzer and Ross-Ibarra 2018), our results374

highlight that evolutionary models of QTL cannot ignore the effects of genetic background.375

Genetic architecture of quantitative traits after adaptation376

The genetic architecture of a trait is an important feature in the study of adaptation, influencing both the response to377

selection as well as the power to detect causal loci for a trait. Our two example traits show that different adaptation378

processes lead to different patterns of the genetic architecture matrix. Because trait 1 only reached the new optimum379

shortly before we assess the the genetic architecture, the values are distributed asymmetrically along the zero effect size380

bin. Trait 2 reached the new optimum very early and therefore is more similar to an equilibrium genetic architecture381

with effects sizes close to zero at higher frequency and larger effect sizes at very low frequencies. These differences even382

between two highly correlated genetic architectures show that in addition to the input parameters, the time that passed383

since the new optimum was reached has an influence on the genetic architecture we observe in a population.384

Using a machine-learning approach that trained on a subset of our simulations, we were able to identify the parameters385

that explained the largest proportion of variation among the genetic architectures studied (Figure 5). We found that386

demographic change plays a key role in determining the present genetic architecture, explaining as much as 55% (growth387

and bottleneck combined) of the variation we observed. For example, recent population growth leads to an increased388

number of low frequency mutations; this effect drives many of the observed differences between genetic architecture389

matrices of different demographies. We observed a high correlation (0.83 – 0.99) between genetic architectures with390

similar population demographies, suggesting that making inference about the process of adaptation from present day391

genetic architecture will have greater power in situations where the demography can be independently inferred. The392

result confirms the theoretical prediction that the combination of different allele frequency shifts at a large number393

of loci lead to similar trait architecture (Lynch and Walsh 1998). However when other statistics, such as information394

about fixations, effect size distributions observed in present populations, number and type of selective sweeps and the395

demography are added as parameters to the modern genetic architecture, we can predict the evolutionary rate, sigmam,396

and VS with 70% accuracy.397

In addition to the effect of population growth, other input parameters do contribute substantially to variation in the398

genetic architecture, including, including the strength of stabilizing selection. Simons et al. (2014) and Simons et al. (2018)399

suggest that rare alleles are unlikely to contribute substantially to trait variance, but our models show that rare alleles400

can explain a large proportion of the variation when effect sizes are large. This is more consistent with the findings of401

Lohmueller (2014), who showed that population growth leads to an increase proportion of genetic variance explained by402

rare alleles. The lack of consensus might result from differences in the models: while Simons et al. (2014) models selection403

Polygenic adaptation 13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/313247doi: bioRxiv preprint 

https://doi.org/10.1101/313247
http://creativecommons.org/licenses/by-nc-nd/4.0/


on fitness directly and Simons et al. (2018) a quantitative trait under stabilizing selection with pleiotropy, our models and404

that of Lohmueller (2014) consider selection on traits that are directly correlated to fitness.405

Maize domestication406

Quantitative traits have been extensively studied in maize and breeders have made steady progress selecting traits for407

ever increasing trait values. But despite decades of observation that many important traits in maize are polygenic and408

work identifying QTL underlying domestication-related phenotypes (Briggs et al. 2007), there has been little attention to409

the process of quantitative trait adaptation during maize domestication (but see Brown et al. 2011; Xue et al. 2016). Many410

domestication traits, alike maize traits, are polygenic and controlled by a number of loci with varying effect sizes (Xue411

et al. 2016). Archaeological records of maize domestication traits show that adaptation took several thousand years (Benz412

et al. 2006). Our example trait 1 matches this pattern, representing an adaptation time of almost 10,000 years 6. Trait 1413

also leads to a reduction in genetic variance compared to the equilibrium population (wild ancestor), again matching414

observed data (Xue et al. 2016).415

Trait 2, on the other hand, differs dramatically in a number of ways. It reached the new optimum extremely quickly,416

and diversity in the present is actually slightly higher than at the time of the optimum shift (Figure 6). The behavior417

of trait 2 most closely resembles that of resistance traits with few large effect QTL potentially (Poland et al. 2011). We418

only look at the genetic variance of mutations that affect a single trait, the overall diversity of a population is based on419

a combination of traits with different trait architectures and neutral parts of the genome. The reduction in diversity420

could partly be due to the distant optimum shift and partly because of the population bottleneck experienced during421

domestication.422

The difference in trait adaptation and genetic variance trajectory can be partially explained by the fixations and423

selective sweeps of beneficial alleles. The number of fixations revealed that as expected far more mutations fixed for trait424

1 than for trait 2, as in trait 1 much more sites are segregating in the equilibrium population, but the number of sweeps425

was also much higher. This is corrected for sites that fix due to genetic drift and shows that the larger relative distance to426

the new optimum changes the pattern. In maize it has been shown that the domestication led to an accumulation of427

deleterious alleles, which so far was mainly attributed to the domestication bottleneck because no increase in deleterious428

alleles near major domestication genes was found (Wang et al. 2017). For quantitative traits the small deleterious fixations429

could be distributed more uniformly across the genome and fix even without population bottlenecks. In general there430

are only few hard selective sweeps observed in maize and 84% of fitness related SNPs were already segregating in431

teosinte (Swarts et al. 2017). Our traits show that depending on the relative distance to the new optimum the type of432

selective sweeps changes. While for close traits mainly standing variation sweep for distant optima, more hard sweeps433

are observed because the standing variation is exhausted. The overall pattern of selective sweeps in the maize genome is434

a result of the selection on combination of traits and probably involves pleiotropic effects that can prevent fixation of new435

mutations even if they have large effects on a trait.436

Signature of polygenic adaptation in genomic data437

The recently suggested omnigentic model predicts that regulatory networks are sufficiently interconnected that many loci438

even outside the most biologically relevant genetic pathways can nonetheless affect a trait (Boyle et al. 2017). If indeed439

many traits are omnigentic, a quantitative evolutionary model as employed in our simulations is well suited for making440

inferences about observations in genomic data. Large sets of genomic and phenotypic data are becoming increasingly441

available, facilitating the study of the role of polygenic adaptation. Our results help to understand the implications of442

different theoretical parameters for the interpretation of such studies and provide targets for new selection tests that443

explicitly test for polygenic adaptation and the underlying genetic architecture. We show, for example, that selective444

sweeps can have a crucial role during polygenic adaptation and should be integrated into detection methods, as some445

approaches to investigate polygenic adaptation from shifts in allele frequencies may lose power if large effect alleles are446

fixed in the population in which effects are estimated (Berg et al. 2017; Forsberg et al. 2017; Crawford et al. 2017).447
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Inferring polygenic adaptation and the underlying parameters in empirical data can provide important insight into448

the evolution of complex phenotypes. For experimental evolution scenarios in which the ancestral populations are449

known, the distance between the initial and the final optimum can be inferred from phenotype data, but for natural450

populations this may be more challenging. Our results indicate that the relative distance could be inferred from genomic451

data via estimates of the genetic architecture if the demographic history is known. One current challenge of transferring452

simulation results to empirical data is the computational limitation of simulating whole genome sequences in large453

populations. Faster implementations will allow simulation of larger regions and include neutral sites (Kelleher et al.454

2018), and could be used to train machine learning models in order to predict the evolutionary history of a population455

from existing data coming from association studies. The implementation of machine learning trained on simulated data456

has been successfully applied to identify a number of population genetic patterns (Schrider and Kern 2018), and is a457

promising avenue for future work.458

Materials and Methods459

Table 1 Parameters and variables

Variable Description

Nanc Population size at equilibrium

Nfinal Population size after 0.1 ×Nanc generations

Nbottleneck Population size during bottleneck

ψ Proportion of phenotype due to genetic back-
ground outside of QTL

σm Standard deviation of effect sizes of new muta-
tions

VS Strength of stabilizing selection

VG0 Genetic variance at equilibrium

Model460

We simulated a quantitative trait under stabilizing selection with an optimum of 0 that adapted to a discrete optimum461

change to a value of 10. The population was diploid and mated randomly. Phenotypes followed a purely additive462

model in which the genotypic values at a given locus with an allele of effect size a were 0, 0.5a and a for homozygous463

ancestral, heterozygous and homozygous derived genotypes. We modeled 20 QTL resembling 50kb regions, each with a464

4 kb “genic” region centered in a 46 kb “intergenic” region. In the intergenic region mutations that affect the phenotype465

appeared with 1% probability of the genic region, leading to approximately 10% of mutations in intergenic regions and466

90% in the 4kb genic regions. Starting with a neutral substitution rate of 3× 10−8 per site per generation (Clark et al.467

2005), we then assumed that only 1% of all mutations affect the trait of interest, resulting in a mutation rate of 3× 10−10
468

per site per generation and a total per gamete mutation rate of 3× 10−4 per generation. Regions were unlinked (50 cM469

distance), and within regions the recombination rate was 5× 10−8 per site per generation (0.05 per gamete).470

Fitness We used a Gaussian fitness function in which an individual’s fitness w was modeled as:471

w = exp[−
(z− zopt)2

2VS
] (1)

where z is the trait value of an individual, zopt is the population optimum trait value and Vs modulates the possible472

deviation from the optimum. This standard model for traits under stabilizing selection is well suited for populations at473
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equilibrium (Bürger 2000, chapter 7). Under strong directional selection, however, this model greatly amplifies fitness474

differences among individuals in the tails of the phenotypic distribution. During the adaptive phase of the simulation,475

we calculated individual fitness following equation 1, but then apply truncation selection by assigning a fitness of 1 to476

the top 50% of the distribution of w and 0 for the remaining 50%. This model allowed for truncation selection on z, while477

the population was distant from the new optimum, but allows for selection against phenotypes that surpass the new478

optimum during the final stages of adaptation. We stopped truncation selection once the population mean reached the479

new optimum, returning the population to stabilizing selection using fitness values calculated in equation 1.480

Initial genetic Variance The genetic variance at equilibrium can be approximated by the house of cards (HoC) approxi-481

mation (Turelli 1984; Bürger 2000):482

E[VG] = 4µVS (2)

We simulated five different values of VS (1, 5 10, 20, 50) to modulate the genetic variance of the equilibrium population.483

Effect size of new mutations We used a Gaussian distribution around zero for the effect size of new mutations and484

five different standard deviations (σm = 0.01, 0.05, 0.1, 0.3, 0.9) to create traits with different effect sizes. Given a fixed485

optimum of 10, this distribution of effect sizes in combination with VS effectively parameterize the distance to the new486

optimum, from a minimum distance of 11.5 z-scores (phenotypic standard deviations) to a maximum of 158.2 z-scores.487

Background Computational limitations do not allow simulation of an entire eukaryotic genome, so we added a heritable488

background (GB) to our simulations to account for the adaptive potential of the rest of the genome.489

GB ∼ N (Gmp, σ2) (3)

where GB is the value of the genomic background of an individual, Gmp is the mid-parent genotypic value and σ2
490

is the variance of the parental trait values (Falconer 1960, chapter 9). Hence, GB is drawn from a normal distribution491

around the mid-parent value.492

P = ψ× GB + (1− ψ)× G (4)

The trait value of an individual P is then given by the sum of its genetic value G and the genomic background GB,493

weighted by ψ, the proportion of trait variation represented by background. We modeled four different background494

levels (ψ = 0, 0.1, 0.5, 0.95).495

Demography To study the effect of population bottlenecks and expansion, we simulated a total of 12 different demo-496

graphic scenarios with varying strength of a single bottleneck and subsequent growth (Figure S1). In scenarios with497

a bottleneck, an instantaneous reduction in population size occurs immediately after the burn-in and is followed by498

exponential growth over the length of the simulation (0.1 ×Nanc generations).499

Simulations500

Using the above described parameters we simulated 100 replicates each of 25 different equilibrium traits using fwdpy11501

v1.2a (https://github.com/molpopgen/fwdpy11), a Python package using the fwdpp library (Thornton 2014). These 25 traits502

differed in their combination of VS and σm and were run for a burn-in of 10 Nanc generations (Figure S3). Subsequently,503

each of the 1,200 parameter combinations was run for 0.1 Nanc starting from these equilibrium traits.504

To simulate a trait in a population of 100,000 individuals for 10,000 generations, we scaled population size and505

generation time down and mutation and recombination rate up by a factor of 10 (based on values above), thus simulating506

a population of 10,000 individuals for 1,000 generations after a burn-in of 100,000 generations to reach equilibrium.507
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The population mean trait values and variances were recorded every generation and entire populations, including508

individual trait values, mutations and effect sizes, were recorded every 10 generations for the first 100 generations after509

burn-in and then every 100 generations thereafter.510

Analysis511

Sweeps To identify selective sweeps, we used binomial sampling to simulate the sojourn time of neutral alleles arising in512

populations undergoing each of the demographic models described above. Mutations that were lost or that fixed before513

the end of the burn-in were ignored. We ran 10,000 replicates for each of the 12 demographic models and recorded the514

time it took a mutation that fixed within the last 0.1N generations (similar to our selection model) to fix in this random515

model. These simulations provided a null distribution to which we compared selected mutations in our quantitative trait516

simulation (Figure S2). We defined as a sweep any mutation that fixed faster than 99% of neutral alleles and categorized517

them as hard or from standing variation depending on whether the mutation arose before or after the optimum shift.518

Machine learning For each of the 120,000 simulations we calculated various summary statistics using the pandas version519

0.21.0 and numpy version 1.12.1 Python libraries (McKinney 2010; Walt et al. 2011). These include statistics related to520

adaptation, selective sweeps, segregating sites, and fixed mutations; Table S1 contains a full list of parameters used for521

prediction and importance estimation.522

To identify the importance of input variables we trained a random forest and extracted the relative importance of523

the input parameters. We employed the RandomForestRegressior of sklearn 0.19.0 (Pedregosa et al. 2011) with 100 trees524

to extract parameter importance by training the model using input parameters as features and predicting a summary525

statistic. The prediction accuracy for all parameters was then estimated by 10-fold cross validation (training using 80% of526

the data) as well as root-mean-square deviation normalized by the range of values observed (NRMSD), and the process527

repeated for each summary statistic of interest (Table S1).528

To compare the genetic basis of traits between scenarios we define the genetic architecture as the matrix of allele529

frequencies and effect sizes for each simulation. Allele frequencies were split into 7 discrete bins (0 - 10−4, 10−4 - 10−3,530

10−3 - 10−2,10−2 - 0.1, 0.1 - 0.5, 0.5 - 0.9, 0.9 - 1) and effect sizes were split into 9 quantiles, as absolute effect sizes were531

strongly dependent on the input effect size. Relative occurrence frequencies (summing to 1 over the whole matrix) of532

segregating sites in each frequency-effect size combination were calculated for each simulation. These values were used533

to train a random forest model and extract parameter importance. Parameter importance was estimated by predicting534

frequencies of each effect size bin from the input parameters. Prediction accuracy was again assessed by 10-fold cross535

validation. Additionally, we calculated pairwise correlations of genetic architecture matrices in the final generation536

between all possible pairs of scenarios using the mean of all simulation replicates.537

Maize domestication538

We took a closer look at two sets of simulations that represent diverging traits under a demographic model similar to539

that of maize domestication (Nbottleneck = 0.05×Nanc; Nfinal = 10×Nanc). For these simulations we assumed no genetic540

background (ψ = 0). Trait 1 represents a trait with new mutations of small effect (σm = 0.01) and strong stabilizing541

selection (VS = 1), while Trait 2 has new mutations of large effect (σm = 0.9) and weaker stabilizing selection (VS = 50).542

Data availability543

All scripts and code to reproduce the simulations and figures is available at https://dx.doi.org/10.6084/m9.figshare.6179219.544

A detailed interactive graphical analysis of summary statistics is available at https://mgstetter.shinyapps.io/quantgensimAPP/545
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Supplement667

Figure S1 Demographies Bottlenecks and growth models
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Figure S2 Detection of selective sweeps Distribution of fixation times from neutral single locus simulations (red) and
forward simulations with selection (green). The grey area denotes the 99% confidence interval of neutral fixation time.
Fixations outside the confidence interval are considered selective sweeps.
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Figure S3 Genetic variance during burn-in The genetic variance in each generation over 10 Nanc generations for each
parameter set. The horizontal line denotes the House of Cards approximation of VG (Turelli 1984). Scenarios with
small σm and large VS do not reach the expected VG because mutations are too small to "fill up" the variance volume.
However, their equilibrium variance is higher than that approximated by Lande (1975) and is between those regimes.
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Figure S4 Equilibrium Fitness Fitness for each burn-in parameter combination after 10N generations.
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Figure S5 Relative parameter importance Relative parameter importance inferred by Random Forrest machine learn-
ing for three parameter categories. 1) Adaptation, trait related parameters describing adaptation speed and potential
for future adaptation. 2) Fixations, summary statistics for mutations that were fixed during trait adaptation and 3)
segregating sites in the final generation of the simulations. Top panel indicating prediction accuracy as calculated by
10-fold cross validation and normalized relative mean squared error
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Figure S6 Fixations A) Total number of fixations B) Mean effect size of fixations C) Mean effect size of positive fixa-
tions D) Mean effect size of negative fixations
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Figure S7 Fitness effect of mutations Fitness effect of mutations at the onset of directional selection (0.001-0.012N),
Before the new optimum is reached (0.001 - 0.012N) and after the new optimum has been reached (0.012 - 0.022N)
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Table S1 Predicted summary statistics for feature importance estimation
Parameter Description

Adaptation Trait related parameters

Time to optimum Generations until new optimum is reached

Adaptation rate (haldane) Adaptation rate until new optimum is reached. Calculated as rate(h) =
ln(x2)
sdx12

− ln(x1)
sdx12

t2−t1

Final genetic variance Genetic variance in the final generation

Fixations Mutations that fix after the optimum shift

From new mutations (#) Sum of fixed mutations in the final population that were already segregating before the optimum
shift

From standing variation (#) Sum of fixed mutations in the final population that arose after the optimum shift

Max. effect size Maximal effect size of all fixations

Mean effect size Mean effect size of all fixations

Mean effect size of negative fixations Mean effect size of negative mutations

Mean effect size of positive fixations Mean effect size of positive mutations

Mean emergence time Mean generation when a mutation arose that fixed in the last 0.1 N generations

Mean fixation time Mean generation in which a mutation fixed

Min. effect size Minimal effect size of all fixations

Negative (#) Sum of fixed mutations with negative effects in the final population

New/standing fixations Ratio of mutations from new mutations vs. standing mutations

Proportion negative Proportion of negative fixations from all mutations

Positive (#) Sum of fixed mutations with positive effects in the final population

SD of effect sizes Standard deviation of effect sizes of all fixations

SD of negative effect sizes Standard deviation of effect sizes of negative fixations

SD of positive effect sizes Standard deviation of effect sizes of positive fixations

Total (#) Sum of fixed mutations in the final population

Sweeps Mutations that fix faster than 99% of neutral fixations

Hard sweeps (#) Sum of selective sweeps from new mutations

Proportion of hard sweeps Porportion of hard selective sweeps of all selective sweeps

Proportion of sweeps from standing Proportion of selective sweeps from stainding variation of all selection sweeps

Sweeps (#) Sum of selective sweeps

Sweeps from standing variation (#) Sum of selective sweeps from mutations that were already segregating before the optimum shift

Sweeps/fixations Ratio of sweeps vs. fixations

Segregating sites Mutations that segregate in the final generation

Max. effect size Maximal effect size of segregating sites

Mean effect size Mean effect size of segregating sites

Mean effect size of negative sites Mean effect size of segregating sites with negative effects

Mean effect size of positive sites Mean effect size of segregating sites with positive effects

Mean frequency of all sites Mean allele frequency of segregating sites

Mean frequency of negative sites Mean allele frequency of segregating sites with negative effects

Mean frequency of positive sites Mean allele frequency of segregating sites with positive effects

Min. effect size Minimal effect size of segregating sites

Negative (#) Sum of segregating sites with negative effect

Positive (#) Sum of segregating sites with positive effect

Proportion of negative sites Proportion of segregating sites with negative effect of all segregating sites

Standard deviation of effect sizes Standard deviation of effect sizes of all segregating sites

Total (#) Sum segregating sites in the final generation
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