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Summary 

Large-scale cancer sequencing studies of patient cohorts have statistically implicated many 

cancer driver genes, with a long-tail of infrequently mutated genes. Here we present CHASMplus, 

a computational method to predict driver missense mutations, which is uniquely powered to 

identify rare driver mutations within the long-tail. We show that it substantially outperforms 

comparable methods across a wide variety of benchmark sets.  Applied to 8,657 samples across 

32 cancer types, CHASMplus identifies over 4,000 unique driver mutations in 240 genes, further 

distinguished by their specific cancer types.  Our results support a prominent emerging role for 

rare driver mutations, with substantial variability in the frequency spectrum of drivers across 

cancer types.  The trajectory of driver discovery may already be effectively saturated for certain 

cancer types, a finding with policy implications for future sequencing.  As a resource to handle 

newly observed rare driver mutations, we systematically score every possible missense mutation 

across the genome.  
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Significance 

With the ever-growing pace of DNA sequencing of human tumors, the total number of detected 

mutations in cancer continues to accelerate. However, only a few mutations in each tumor may 

actually “drive” the growth of cancer, some of which can have value for diagnostic, prognostic, or 

therapeutic purposes. Based on a new rigorous statistical analysis of The Cancer Genome Atlas 

(TCGA), we find a prominent emerging role for rare missense mutations predicted to be “drivers” 

of cancer, which may have potential implications for genome-driven precision oncology, since 

rare driver mutations that are putatively actionable could be newly observed in a patient, thus, 

requiring personalized modeling and assessment. To extend beyond the TCGA, we provide a 

systematic resource to assess such newly observed missense mutations as cancer drivers. 

Lastly, we assess the driver landscape of human cancers and find that discovery for some cancer 

types are already approaching saturation. 
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Introduction 

A growing set of mutations found in cancer genomes are recognized as clinically actionable 

(Hyman et al., 2017) with more putatively actionable mutations likely being verified in the future 

(Bailey et al., 2018). However, even interpreting the effect of somatic missense mutations, the 

most common type of protein-coding mutation found in human cancers(Vogelstein et al., 2013), 

is difficult because their impact on the fitness of cancer cells can be highly variable. Certain 

missense mutations are a critical step towards increasing the net growth of cells during the 

neoplastic process of cancer (drivers), while most others are benign passengers(Torkamani and 

Schork, 2008).  For example, certain cancer types are known to be driven by well-established, 

highly prevalent missense mutations in oncogenes, such as KRAS G12D mutations in pancreatic 

ductal adenocarcinoma(Biankin et al., 2012) or IDH1 R132H mutations in gliomas (Parsons et al., 

2008). Further, a literature curated database has compiled a list of approximately two thousand 

such driver missense mutations(Chakravarty et al., 2017), but due to the current limited 

throughput of functional validation assays it is likely incomplete.  It has been hypothesized, 

though, that cancer driver mutations exhibit a long tail phenomenon with few common drivers and 

many rare drivers(Ding et al., 2010; Garraway and Lander, 2013), suggesting that numerous rare 

drivers remain to be discovered.  

 

The task of identifying putative drivers from cancer sequencing studies has classically used 

statistical models that identify an excess number of mutations over expectation(Dees et al., 2012; 

Lawrence et al., 2013).  However, most genes are large and, even within a driver gene, numerous 

passenger mutations are expected to accumulate by chance(Martincorena et al., 2017). This 

leads to uncertainty on whether an individual mutation is a driver.  Approaches to improve the 

specificity of driver discovery have focused on smaller intra-genic regions, such as protein 

domains(Yang et al., 2015), protein-protein interfaces(Engin et al., 2016; Porta-Pardo et al., 

2015), and individual codons(Chang et al., 2016).  

 

An alternative approach is to apply machine learning to predict the cancer driver status of 

individual missense mutations by leveraging features characterizing the mutation, e.g., inter-

species evolutionary conservation of the protein sequence, features of the local protein 

environment, annotations of molecular function, and biophysical characterizations of the amino 

acid substitution. Cancer-focused machine learning methods have previously tried to enhance 

performance by training cancer-specific background models (Carter et al., 2009; Mao et al., 2013) 
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or boosting data with synthetic passenger missense mutations(Carter et al., 2009).   While results 

have been promising, a recent systematic study comparing 15 such methods concluded that none 

of them were yet sufficiently reliable to guide high-cost experimental or clinical follow-

through(Martelotto et al., 2014). We and others have hypothesized that determining the impact of 

missense mutations requires proper context(Raphael et al., 2014), which has not yet been 

systematically leveraged in the current generation of methods.  Context includes both prior 

knowledge about the functional importance of genes or gene subregions in which a mutation 

occurs, and mutational patterns that are now evident from cancer sequencing studies of many 

thousands of patients. 

 

In this work, we present a new statistically rigorous method, CHASMplus, for predicting the driver 

status of missense mutations. After careful benchmarking, we applied CHASMplus to 8,657 

sequenced tumors from The Cancer Genome Atlas (TCGA) spanning 32 types of cancer. We 

explore the role for rare driver missense mutations in cancer and, when possible, relate 

predictions to supporting functional evidence. We provide an interactive resource for exploring 

driver missense mutations identified from the TCGA (http://karchinlab.github.io/CHASMplus) and 

a user-friendly tool (http://chasmplus.readthedocs.io/) to predict whether newly observed 

mutations from further sequencing are likely cancer drivers. Lastly, we examine the diversity of 

driver missense mutations across various types of cancer, which leads to a refined understanding 

of the likely trajectory of driver discovery with further sequencing. 
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Result 

Overview of CHASMplus 

We have developed a new method named CHASMplus that uses machine learning to discriminate 

somatic missense mutations (referred to hereafter as missense mutations) as either cancer 

drivers or passengers (Figure 1a, Methods). Unlike a recent analysis (Bailey et al., 2018), 

predictions can be done in a cancer type-specific manner or considered across multiple cancer 

types in aggregate (“pan-cancer”). Predictions utilize the Random Forest Algorithm, which 

consists of an ensemble of many randomized decision trees(Amit and Geman, 1997; Breiman, 

2001), to score missense mutations. Each decision tree is trained on a random selection of 

training set examples and candidate features, via a recursive splitting process(Breiman, 1984) 

(Figure 1b). Missense mutations are only considered putative drivers if scores reach statistical 

significance, after controlling for sequence composition and multiple hypothesis testing with the 

Benjamini-Hochberg method (Figure S1a, methods). The resulting P-value distribution from 

CHASMplus suggest our statistical model is well calibrated (Figure S1).  

 

An adequate training and testing procedure is critical for any approach based on machine 

learning. CHASMplus is trained using somatic mutation calls from The Cancer Genome Atlas 

(TCGA) covering 8,657 samples in 32 cancer types (Methods).  Because there is no gold standard 

set of driver and passenger missense mutations, we developed a semi-supervised approach to 

assign class labels to missense mutations, taking advantage of Random Forest robustness to 

noisy class labels (Figure S1, Methods).   CHASMplus predictions are done with a rigorous gene 

holdout cross-validation protocol to avoid overfitting, by ensuring all mutations within a gene are 

within the same fold(Capriotti and Altman, 2011).   Therefore, missense mutations are never 

scored by a Random Forest trained on any missense mutation harbored by the same gene.  

Finally, predicted scores from CHASMplus are weighted by the 20/20+ driver gene score, 

producing gene-weighted (gwCHASMplus) scores (Figure 1c, Methods). 

 

CHASMplus represents the context of missense mutations at multiple scales. The Random Forest 

was trained on 95 features (Table S1), and the 34 with net-positive feature importance are shown 

in Figure 1d (Methods). Important features assess five broad categories: multi-resolution 

missense mutation hotspots (HotMAPS 1D algorithm(Tokheim et al., 2016a)), evolutionary 

conservation/human germline variation, molecular function annotations (e.g., protein-protein 

interface annotations from(Meyer et al., 2018)), sequence biased regions, and gene-level 
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covariates (e.g., replication timing). Missense mutation context is further represented by the 

20/20+ driver score of the gene harboring the missense mutation and the specific cancer type in 

which it was observed.  While gene-level features have been previously applied to missense 

mutation driver prediction(Kumar et al., 2016), to our knowledge, this is the first time that gene-

level and missense mutation-level driver scores have been coupled in a cancer type-specific 

manner.   

CHASMplus dramatically improves identification of somatic missense 

mutation drivers 

We next sought to compare the performance of CHASMplus with respect to 12 comparable 

methods by using seven mutation-level benchmarks.  Our benchmarks fall under three broad 

categories: in vitro experiments, high throughput in vivo screens, and curation from published 

literature.  Each of these categories has weaknesses, but, in aggregate, they span multiple scales 

of evaluation and amount of supportive evidence (Figure 2a). For example, several benchmarks 

are limited to one or a few well-established driver genes, while others are exome-wide but lack 

experimental support. A range of benchmarks is critical because missense mutations with the 

most established experimental support for a driver role tend to be in a few well-understood cancer 

driver genes.  However, limiting benchmarking to these genes makes it difficult to assess the 

generalizability of a method's performance to missense mutations in other genes.  

 

All benchmark evaluations used the area under the Receiver Operating Characteristic Curve 

(auROC) as a performance metric (Figure 2b-c, Figure S2a-h), which has been used in many 

prior studies of variant effect prediction (Adzhubei et al., 2010; Ioannidis et al., 2016; Kircher et 

al., 2014; Kumar et al., 2016; Mao et al., 2013).  Overall, CHASMplus had the highest auROC on 

each benchmark, with a mean auROC of 0.09 higher than the next best method. This common 

metric is used in machine learning to describe how well predictions separate two classes without 

a priori selecting a score threshold, which for many methods is not well defined(Bradley, 1997). 

In our assessment, the two classes represent likely driver and passenger missense mutations. In 

general, auROC values range from 0.5 (random prediction performance) to 1.0 (perfect). An 

alternative metric called the area under the Precision-Recall curve yielded similar conclusions as 

auROC (Figure S2i-k, Methods). 

 
We used three benchmarks based on in vitro experiments (Methods). The first was a set of 

missense mutations assessed by an assay of cell viability in two growth-factor dependent cell 
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lines, Ba/F3 and MCF10A (pro-B and breast epithelium cell lines), covering 747 mutations in 48 

genes(Ng et al., 2018). CHASMplus had significantly higher performance than the next best 

performing method (ParsSNP) (p<0.05, delong test). In the second benchmark, an in vitro assay 

of EGFR resistance to erlotinib from missense mutations observed in lung 

adenocarcinoma(Berger et al., 2016), CHASMplus (auROC=0.92) outperformed all other 

methods, with the next best method (CanDrA) having an auROC of 0.87.  CHASMplus auROC 

was significantly better than that of 7 of the methods tested (p<.05, delong test).  For the remaining 

5 methods, the improvement was not significant, possibly due to lack of power given the small 

number of mutations (n=75) tested in the assay.  In the third benchmark, an assay of reduced 

transactivation (<50% WT, median of 8 targets) in TP53 from the IARC database (n=2,314 

mutations)(Petitjean et al., 2007), CHASMplus significantly outperformed the next best method 

(REVEL) (p=0.02, delong test). 

 

To investigate whether CHASMplus would also perform well when compared to results of in vivo 

experiments, we considered two benchmarks based on pooled in vivo screens in mice that 

assessed mutation driver status by tumor growth fitness in a competition assay.  The first was 

performed from mutations observed in lung cancers (44 missense mutations)(Berger et al., 2016) 

and the second from mutations observed in 27 cancer types (71 missense mutations)(Kim et al., 

2016). CHASMplus had the highest auROC of the 13 tested methods on both benchmarks, with 

an increase in auROC by 0.09 and 0.1, respectively, compared to the next best methods 

(ParsSNP in the first benchmark and FATHMM in the second). The increase was significant in 

the second, larger benchmark (p=0.03, delong test, n=72), but not in the first, which may be the 

result of the smaller sample size.  In the first benchmark, CHASMplus was significantly better than 

9 out of 12 tested methods (p<0.05, delong test, n=44). 

 

Experimental testing of mutations across large number of genes or the whole exome is currently 

not feasible. Therefore, evaluation of CHASMplus at larger scales relied on two benchmarks 

based on literature and database curation. The first benchmark in this category labeled recurrent 

missense mutations within genes in the Cancer Gene Census(Futreal et al., 2004) as drivers 

(Methods). We found that the gene weighted CHASMplus scores (auROC=0.908) were 

substantially better at this whole exome-wide prioritization task compared to the unweighted 

CHASMplus scores (auROC=0.856) (p<2.2e-16, delong test). CHASMplus scores were also 

significantly better than the next best method (ParsSNP) (p=0.008, delong test). The second 

benchmark was derived from a large driver gene panel (MSK-IMPACT) (414 genes) and 10,130 
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sequenced cancer patients.  Missense mutations were labeled as drivers if they were annotated 

as such in OncoKB, a knowledge-base that aggregates known literature (Methods). CHASMplus 

significantly outperformed all other methods, the nearest being ParsSNP (p=7e-14, delong test).  

CHASMplus identifies putative driver mutations in 32 cancer types 

Certain cancer driver mutations primarily occur in a specific cancer type, while others appear in 

many cancer types.  The power to detect driver mutations, which occur at low frequency in many 

cancer types, is increased when many cancer types are aggregated, known as a pan-cancer 

analysis. Conversely, driver mutations, which are specific to a particular cancer type, are best 

identified when cancer types are analyzed individually(Cancer Genome Atlas Research et al., 

2013). 

 

Using CHASMplus, we identified 3,527 unique missense mutations as statistically significant 

putative drivers from our pan-cancer analysis at an estimated false discovery rate of 1% (Table 

S2).  The pan-cancer results had a substantial overlap with a prior pan-cancer analysis done by 

the TCGA (Figure S3a-b) (Bailey et al., 2018).  When applied to each cancer type individually, 

the number found significant varied substantially from 8 in thymoma to 572 in bladder urothelial 

carcinoma, with a median of 78 (Figure S3c-d, Table S3). In total, 479 unique driver missense 

mutations were only identified by the cancer type-specific analyses. The median overlap with 

literature-based oncogenicity annotation from OncoKB was 53%, suggesting 47% of the driver 

missense mutations identified by CHASMplus either have not been previously characterized or 

not yet sufficiently characterized for inclusion in OncoKB.  Moreover, CHASMplus had the best 

performance on a previously reported benchmark (Porta-Pardo et al., 2017) of cancer type-

specific driver predictions (Figure S4, Methods). Altogether across the pan-cancer and cancer 

type-specific analyses, 4,006 unique driver missense mutations were identified by CHASMplus, 

of which 2,037 were not found by OncoKB or the official TCGA analysis, indicating a potentially 

expanded landscape of putative driver missense mutations of interest for further examination. 

CHASMplus identifies both common and rare cancer drivers 

The long tail hypothesis, initially proposed from examining the overall mutation frequency of driver 

genes(Ding et al., 2010; Garraway and Lander, 2013), suggests there are few common drivers 

and many rare drivers. However, the overall mutation frequency of a gene does not account for 

the confounding presence of passenger mutations within a driver gene. From our mutation-level 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2018. ; https://doi.org/10.1101/313296doi: bioRxiv preprint 

https://doi.org/10.1101/313296


 9 

analysis, we observed that the spectrum of rare (<1% of cancer samples), intermediate (1-5%), 

and common (>5%) frequency driver missense mutations varied substantially among cancer 

types (Figure 3a). For example, uveal melanoma was dominated by common driver missense 

mutations (88%), while head and neck squamous cell carcinoma (HNSC) was dominated by rare 

driver missense mutations (63%). Interestingly, from the pan-cancer analysis, the overall 

proportion of driver missense mutations considered rare was slightly greater than for common 

drivers (35.5% and 35.4%, respectively) and 4-fold greater than found by a previous method (8%, 

P<2.2e-16, Fisher’s exact test)(Chang et al., 2016). After adjusting for sample size, we observed 

that the average tumor mutation burden for a cancer type positively correlated with the prevalence 

of rare (but not common) driver missense mutations (R=0.63, P=4.7e-5, likelihood ratio test, 

Figure 3b). Given that driver mutations likely arise in tumors from a combination of clonal selection 

and the mutation rate to generate the mutation in the first place (Greaves and Maley, 2012), the 

latter may have a larger role for the origins of less frequent driver mutations compared to their 

common counterpart. 

 

Conceivably, the different frequency spectra of driver missense mutations across cancer types 

could also arise from differential selection between subtypes within a given type of cancer. A 

common driver mutation in an uncommon subtype, could be perceived, overall, as rare. To test 

this, we analyzed whether driver missense mutations within a gene showed noticeable enrichment 

for cancer samples that are a particular subtype. For the 12 cancer types with available subtype 

information (Sanchez-Vega et al., 2018), 55 out of 223 genes (24.7%) found with significant 

missense mutations by CHASMplus were differentially enriched in cancer subtypes (q-value≤0.1, 

chi-squared test, Figure 3c, Table S4, Figure S5). The modest percentage of genes suggests that 

subtype-specificity only partly explains differences in the driver mutation frequency spectrum 

between cancer types. Several genes showed strong subtype specificity, consistent with prior 

literature, such as NFE2L2 mutations in the squamous cell subtype in ESCA (Network, 2017), 

TP53 mutations in Human Papillomavirus-negative tumors in HNSC (Network, 2015), and KIT 

mutations in testicular seminomas (Kemmer et al., 2004).  The mutational subtype enrichment in 

breast invasive carcinoma (BRCA) is consistent with previously reported divergent gene 

expression patterns in tumors related to the P53 pathway and the PI3K/AKT/MTOR signaling 

across BRCA subtypes (Dinalankara et al., 2018). However, in some cancer types, specifically 

glioblastoma (GBM) and low grade glioma (LGG), the subtypes were defined based on driver 

mutation status of the genes IDH1/IDH2, so it was not surprising there was strong enrichment. 
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Rare driver missense mutations exist not only in rarely mutated driver genes, but also may be 

spatially proximal in protein structure to common driver missense mutations. For example, the 

protein phosphatase PPP2R1A, which has been implicated as a tumor suppressor gene in many 

tumor types(Jeong et al., 2016), contained common driver missense mutations in our pan-cancer 

analysis at residue positions 179 and 183, which is located at the protein interface composing the 

phosphatase 2A complex (Figure 3d). It also had a much broader set of rare drivers throughout 

the protein interface, such as R105Q and R459C.  Similarly, CHASMplus identified common driver 

missense mutations (S310A/F/Y) in the extracellular domain of the well-known oncogene ERBB2, 

but also finds rare driver missense mutations in both the extracellular and kinase domain (e.g., 

L313V and R678Q) (Figure 3e). This is supportive of previous experimental work implicating rare 

cancer driver mutations in commonly mutated cancer driver genes(Kim et al., 2016). 

 

Truncating or likely loss-of-function mutations are typical hallmarks of tumor suppressor genes 

(Vogelstein et al., 2013).  However, the role of driver missense mutations may be under 

characterized in tumor suppressor genes, since these mutations are more diverse and occur over 

a larger region than in oncogenes (Porta-Pardo et al., 2017; Tokheim et al., 2016a).  As a case 

in point, the tumor suppressor gene CASP8 contains many truncating variants, while all of the 

putative driver missense mutations identified by CHASMplus were considered rare (Figure 3f).  

CASP8 is a member of the apoptosis pathway and recently has been associated with a potential 

role in immune evasion in cancer (Rooney et al., 2015; Thorsson et al., 2018).   

 

We explored functional evidence to support whether the rare driver missense mutations in 

CASP8, predicted by CHASMplus, behaved similarly to truncating variants.  Thorsson et al. 

previously characterized immune phenotypes in TCGA tumor samples, i.e., levels of immune cell 

infiltrates and expression of immune-related genes (Thorsson et al., 2018).  For 12 immune-

related phenotypes, we compared tumor samples with driver missense mutations or truncating 

mutations in CASP8 to control samples with no mutations in CASP8.  In Head & Neck Squamous 

Cell Carcinoma (HNSC), both types of mutated samples had higher estimated levels of 

leukocytes, CD8 T-cells and Th1 response than controls (p<0.001, Mann-Whitney U test, for all 

except truncating mutations in Th1 response p=5.06E-03), and significantly elevated expression 

of key genes involved in tumor immunity, i.e., PD-1 (PDCD1; missense p=6.59E-05,  truncating 

p=1.70E-02), PD-L1 (CD274; missense p=2.39E-05,  truncating p=2.19E-04), CD8A (missense 

p=2.65E-05,  truncating p=3.33E-03), and CTLA4 (missense p=1.81E-03, truncating  p=2.67E-

02) (Figure 4).  A similar trend was seen in other cancer types with significant mutations (Figure 
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S6).  Conventional wisdom has suggested that because rare missense mutations in tumor 

suppressor genes do not tend to cluster in protein sequence, they are solely passenger events 

(Vogelstein et al., 2013).  However, our work suggests that rare driver missense mutations in 

CASP8 and perhaps in other tumor suppressor genes may be relevant to tumor immuno-

phenotypes.  

CHASMplus mimics saturation mutagenesis 

To handle newly arising rare driver mutations not observed in large-scale sequencing studies, we 

have precomputed CHASMplus scores for all possible missense mutations across the whole 

genome.  We compared these scores (Figure 5a) to two saturation mutagenesis experiments 

characterizing the known tumor suppressor gene PTEN, a lipid phosphatase of 

phosphatidylinositol (3,4,5)-trisphosphate, an important signaling molecule in the PI3K signaling 

pathway, which is often dysregulated in human cancers (Sanchez-Vega et al., 2018). The first 

study systematically measured lipid phosphatase activity (Mighell et al., 2018), while the second 

study measured intracellular PTEN protein abundance (Matreyek et al., 2018), potentially an 

indicator of thermodynamic stability. Concordant with its tumor suppressor role, driver scores from 

CHASMplus are negatively correlated with both lipid phosphatase activity and PTEN protein 

abundance (Figure 5b-c, Table S5), indicating CHASMplus identifies functionally damaging 

mutations. Interestingly, CHASMplus is more correlated with each mutagenesis study (lipid 

phosphatase activity spearman 𝜌=-0.52, protein abundance spearman 𝜌=-0.43) than they are to 

each other (spearman 𝜌=0.35), suggestive that CHASMplus is capturing multiple modes of 

damage in PTEN (Figure 5d). 

 

We observed that driver missense mutations identified by CHASMplus in the TCGA, regardless 

of frequency, had significantly lower lipid phosphatase activity than other missense mutations in 

PTEN (common: p=0.008; intermediate: p=1.9e-9; rare: p=1.6e-18; Mann-Whitney U test, Figure 

5e). Moreover, the median lipid phosphatase activity monotonically decreased as the observed 

frequency increased in the TCGA, ultimately, to comparable levels as loss-of-function mutations 

(truncating variants: p=1.6e-112, Mann-Whitney U test). A likely explanation is that the strength 

of the functional consequence on lipid phosphatase activity in PTEN impacts the degree of clonal 

selection in tumors, resulting in more damaging PTEN variants being more frequently observed. 

In contrast, common (significantly higher, p=3.6e-3, Mann-Whitney U test) or intermediate 

(p=0.17, Mann-Whitney U test) frequency driver missense mutations in PTEN did not have a lower 
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protein abundance, indicating that lower protein abundance may only be a viable effect for rare 

driver missense mutations in PTEN (p=9.2e-5, Mann-Whitney U test, Figure 5f), while truncating 

variants had a pronounced lower protein abundance (p=5e-59, Mann-Whitney U test). 

The trajectory of driver discovery across diverse cancer types 

We next sought to understand whether cancer types fundamentally differed in their usage of driver 

missense mutations. We found the diversity and prevalence of driver missense mutations varied 

considerably across TCGA cancer types (Figure 6a, Methods).  We defined diversity with respect 

to the distribution of driver missense mutations across codons and prevalence with respect to the 

overall frequency of mutations in tumor samples.  High diversity indicated mutations were broadly 

distributed across codons, while high prevalence indicated driver missense mutations that 

occurred in a large number of tumor samples. Using K-means clustering, we found that cancer 

types grouped into high diversity and low prevalence (12 cancer types), high diversity and high 

prevalence (15 cancer types), and low diversity and high prevalence (5 cancer types). These 

differences were not associated with intra-tumor heterogeneity or normal contamination, as 

assessed by mean variant allele fraction (VAF) of a cancer type (p>0.05, correlation test, 

Methods).  The differences also could not be associated only with TCGA sample size for a 

particular cancer type.  For example, while both pancreatic ductal adenocarcinoma (PAAD) and 

sarcoma (SARC) had similar sample sizes (n=155, n=204 respectively), PAAD had high 

prevalence and low diversity, while SARC had low prevalence and high diversity.  

 

Are there substantially more cancer driver missense mutations yet to be discovered? If discovery 

was measured by the number of unique driver missense mutations identified, subsampling 

analysis showed all cancer types had a linear increase (𝑅2 > 0.5) with no evidence of saturation 

at current sample sizes (Figure S7a).  However, we observed substantial variability in trajectories 

if discovery was measured by driver prevalence (average number of driver missense mutations 

per cancer sample) (Figure 6b), a metric which goes directly to utility of driver discovery in clinical 

practice (Discussion). For sarcoma (SARC), adrenocortical carcinoma (ACC), and prostate 

adenocarcinoma (PRAD), driver prevalence remained minimal as sample size increased.  As a 

case in point, we repeated our analysis on data from a recently released PRAD study (Armenia 

et al., 2018), which augmented the 477 TCGA PRAD samples with 536 additional samples. This 

resulted in only marginal increases in the overall prevalence of identified driver missense 

mutations, consistent with our predicted trajectory based only on TCGA samples (Methods, Table 
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S6, Figure S7b-c). In contrast, thymoma (THYM), uveal melanoma (UVM), and pancreatic ductal 

adenocarcinoma (PAAD) contained common driver missense mutations that could be detected 

by using only a few samples from the cohort, e.g., GTF2I L424H in THYM.  Due to a lack of rare 

or intermediate driver missense mutations, we observed THYM and UVM saturated discovery as 

sample size increased. Although PAAD showed a growing set of intermediate/rare driver 

missense mutations, the overall driver prevalence exhibited a diminishing rate of discovery. In 

contrast, breast (BRCA), head and neck squamous (HNSC), and colon cancers (COAD) harbored 

a full spectrum of driver missense mutations, with rare drivers increasing substantially as a 

function of sample size.   
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Discussion 

Cancer genome interpretation is challenged by the reality that of all somatic mutations observed 

in cancer, only a small proportion are drivers(Tomasetti et al., 2015). Future insights into cancer 

evolution and its relevance for clinical care will increasingly rely on the precise interpretation of 

whether individual mutations are cancer drivers(Hyman et al., 2017). To address prior limitations 

of computational methods (Martelotto et al., 2014; Molina‐Vila et al., 2014), CHASMplus was 

designed to better represent the context in which missense mutations occur by coupling prior 

information about a mutation’s likely functional importance with mutational patterns evident from 

large cancer sequencing studies. After careful evaluation, CHASMplus had the best performance 

at predicting drivers at each scale of evaluation – a whole exome, a targeted gene panel, and 

within a single gene.  Although not perfect, we believe the application of multiple independent 

benchmarks spanning a wide array of genes is the current best practice for demonstrating 

effectiveness.  

 

The long tail hypothesis(Ding et al., 2010; Garraway and Lander, 2013) posits that there are many 

rare driver mutations in human cancers. However, a rigorous foundation for this hypothesis had 

been limited by the lack of statistical power to move beyond implicating genes towards 

understanding individual mutations (Methods, Figure S7). To overcome this limitation, we 

leveraged the improvements made in CHASMplus to systematically predict driver missense 

mutations in 8,657 cancer samples from the TCGA. Although individually rare, rare driver 

missense mutations, collectively, comprise a prominent emerging role in cancer, consistent with 

the long tail hypothesis. However, not every type of cancer is the same; our study is the first, to 

our knowledge, to systematically show that the prevalence and diversity of driver missense 

mutations is highly variable across cancer types. We find several factors likely influence the 

diversity of driver missense mutations in cancer, including tumor mutation burden, the type of 

gene (i.e., tumor suppressor genes), the functional strength of the mutation, and the mutation’s 

subtype specificity. Other factors may also contribute, such as epistasis between mutations (Kent 

et al., 2015; Skoulidis et al., 2015), interactions between mutations and the (micro)environment 

(Marty et al., 2017; Rooney et al., 2015), selective pressures based on a broader cell-of-origin 

(Bailey et al., 2018), or competition from other types of somatic alterations. The diversity of driver 

missense mutations supports the critical role of understanding the overall contribution of rare 

driver mutations -- failure to capture and identify rare driver mutations, which occur in aggregate 
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at reasonable prevalence, may result in crucial missed opportunities for interpreting a patient’s 

cancer.    

 

Because, individually, they are so infrequent, rare driver mutations in newly sequenced tumors 

may not have been previously observed in the TCGA or other large-scale sequencing projects.  

A similar problem exists for interpreting rare germline variants impacting susceptibility to disease 

(Bomba et al., 2017; Consortium et al., 2015). One approach to this issue is saturation 

mutagenesis experiments, which functionally assess all mutations in genes of interest, regardless 

of whether they have been seen before (Fowler and Fields, 2014).  These experiments have so 

far been limited to handful of well-characterized genes and are not yet available for most genes 

implicated in cancer (Bailey et al., 2018). Consequently, computational methods, like 

CHASMplus, are needed to prioritize mutations for low- and medium- throughput studies. We 

therefore have precomputed the score of every possible missense mutation across the genome, 

effectively an in silico saturation mutagenesis across all genes to score as of yet unobserved 

mutations that are potential cancer drivers. We provide mutation scores for each of the cancer 

types available in the TCGA, as well as pan-cancer scores (http://chasmplus.readthedocs.io/). 

We also have provided an interactive portal for exploring driver mutations 

(http://karchinlab.github.io/CHASMplus). 

 

There are several limitations to our study. Although missense mutations are the most frequent 

somatic alteration in cancer (Vogelstein et al., 2013), CHASMplus only predicts missense 

mutations; however, in principle, our approach could be extended to other types of alterations. 

Further, CHASMplus is specifically optimized for somatic mutations in cancer, as such, it is not a 

general-purpose pathogenicity predictor of germline variants. Also, CHASMplus is trained using 

semi-supervised labels, emphasizing driver mutations in low mutation burden tumor samples, 

which may result in underperformance for driver mutations specific to high mutation burden 

cancer types or hypermutated tumors. We therefore performed predictions on melanoma 

separately (Table S7). Lastly, although CHASMplus can be applied to targeted gene panels, the 

estimation of statistical significance requires a correction for the specific genes that are targeted. 

 

We expect that an increasingly complete catalog of driver missense mutations will be generated 

by a combination improved computational methods and cumulative growth of available samples 

from cancer sequencing studies.  The multi-faceted features used in CHASMplus yield an 

improvement in statistical power to effectively identify these mutations. However, for some cancer 
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types, discovery may already be effectively saturated.  We observed that the rate of new driver 

discoveries with greater sample size may decay because of the rarity of newly identified driver 

missense mutations; indicating the trajectory of driver discovery is more complicated than 

previously envisioned by an analysis of driver genes(Armenia et al., 2018; Lawrence et al., 2014). 

The distinction of predicting drivers at the mutation-level is important, otherwise estimates will 

increasingly be inflated by the relatively greater proportion of passenger mutations within rarely 

mutated driver genes.  Future work will further elucidate a broader range of driver mutations, 

including those within non-coding regions of the genome, at different stages of carcinogenesis, 

such as in pre-cancerous lesions, and in response to therapeutic treatment. 
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Figure Legends 
 

 

Figure 1. Overview of CHASMplus. a) CHASMplus was applied to somatic missense mutations 

in tumors from 32 different cancer types found in The Cancer Genome Atlas (TCGA). Significant 

putative driver missense mutations were identified at a False Discovery Rate (FDR) threshold of 

1%.  b) CHASMplus predictions utilize the random forest algorithm, consisting of an ensemble of 

decision trees. Each decision tree is constructed by selecting a random set of examples and 

features and recursively splitting examples by the best split criterion. c) Diagram of training and 

testing procedure by CHASMplus. d) Features with a net-positive feature importance by 

CHASMplus according to a permutation adjusted z-score. Boxed text indicates broad feature 

categories that were important.  
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Figure 2. Benchmarking cancer driver prediction. a) Conceptual diagram of how 8 

benchmarks compare in terms of the scale of evaluation and amount of supportive evidence. b) 

A heatmap showing performance measured by the area under the Receiver Operating 

Characteristic Curve (auROC) on the 7 mutation-level benchmarks (shown in text). The color 

scale from red to blue indicates methods ranked from high to low performance.  Benchmarks are 

categorized by in vitro (green), in vivo (yellow), and literature-based benchmarks (turquoise). The 

bar graph shows the mean auROC across the benchmarks. c) Table of reported P values (delong 

test) from comparing the auROC of each method against that of CHASMplus. 
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Figure 3. Frequency landscape of driver missense mutations. a) Proportion of overall 

frequency of driver somatic missense mutations found to be rare (<1% of samples or singleton 

mutations), intermediate (1-5%), and common (>5%) driver somatic missense mutations. 

Correspondingly shown as light to dark blue. d) Structure of the Phosphatase 2A holoenzyme 

(PDB 2IAE). e) Structures of the ERBB2 extracellular domain (left, PDB 2A91) and kinase domain 

(right, PDB 3PP0).  f) Lollipop plot of driver missense mutations identified by CHASMplus (yellow), 

and likely truncating variants (frameshift insertion or deletion: purple, nonsense mutation: red, and 

splice site mutation: orange) in CASP8 for Head & Neck squamous cell carcinoma (HNSC). TCGA 

cancer type acronyms are listed in methods. 
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Figure 4. Effect of rare driver missense mutations on immune phenotypes. Correlation of 

putative driver mutations in CASP8 with immune phenotypes in HNSC tumors, where control 

samples have no CASP8 mutations, “mis” indicates samples with driver missense mutations 

identified by CHASMplus, and “lof” is likely loss-of-function variants (nonsense, frameshift 

insertion/deletions, splice site, translation start site, and nonstop mutations). Top row, immune 

cell/phenotype response inferred from DNA methylation or gene expression from (Thorsson et 

al., 2018). Bottom row, gene expression values from RNASeq for several important immune-

related genes reported in (Thorsson et al., 2018). Mann Whitney U test: *=p<0.05, **=p<0.01, and 

***=p<0.001. 
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Figure 5. CHASMplus predictions correlate with saturation mutagenesis experiments in 

PTEN. a) Heatmap displaying gene-weighted CHASMplus scores (gwCHASMplus) across all 

possible missense mutations in PTEN assessed as high-confidence by a prior saturation 

mutagenesis experiment (Mighell et al., 2018). Correlation of gwCHASMplus with a saturation 

mutagenesis experiments measuring PTEN b) lipid phosphatase activity by (Mighell et al., 2018) 
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and c) protein abundance by (Matreyek et al., 2018). d) Comparison of the spearman correlation 

of gwCHASMplus with the two PTEN saturation mutagenesis experiments, as well as the 

correlation between the two experiments. ***=p<0.001. Comparison of e) PTEN lipid phosphatase 

activity or f) protein abundance for driver missense mutations identified from the TCGA to other 

missense mutations and loss-of-function mutations in (Mighell et al., 2018). Driver missense 

mutations are stratified by their maximum frequency in the TCGA cohort (common: >5% of cancer 

samples, intermediate: 1-5%, and rare: <1%). 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2018. ; https://doi.org/10.1101/313296doi: bioRxiv preprint 

https://doi.org/10.1101/313296


 30 

 

Figure 6. Characteristics and trajectory of driver discovery for missense mutations. a) Plot 

displaying normalized driver diversity and driver prevalence (fraction of samples mutated) for 

driver somatic missense mutations in 32 cancer types. K-means clustering identified 5 clusters 

with centroids shown as numerically designated circles. b) Prevalence of driver missense 

mutations identified by CHASMplus as a function of sample size. Lines represent LOWESS fit to 

different rarities of driver missense mutations.  All TCGA cancer type acronyms are in the 

Methods.  
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Figure 7. Limited statistical power of hotspot detection. a) Statistical power to detect 

significantly elevated number of non-silent mutations for individual codons as a function of sample 

size and mutation rate. Circles represent each cancer type from the TCGA and is placed 

according to sample size and median mutation rate. Curves are colored by the frequency of driver 

mutations (fraction of non-silent mutated cancer samples above the expected background 

mutation rate). If a circle is below a curve, then hotspot detection is not yet sufficiently powerful 

to detect driver mutations of that frequency. b) Bar graph comparing sensitivity to detect labeled 

oncogenic driver missense mutations from OncoKB between CHASMplus and a hotspot detection 

approach. 
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Supplemental Figure Legends 
 

 

Supplementary Figure 1. Overview of CHASMplus. Related to Figure 1. a) Diagram of how 

CHASMplus identifies statistically significant driver somatic missense mutations in each of the 

32 cancer types individually and in aggregate (pan-cancer). b) Diagram demonstrating how the 

cancer type specificity of Cancer Genome Landscape (CGL) genes were determined. c) 

Somatic missense mutations were labeled either as “likely-passenger” or “likely-driver” based on 

a semi-supervised approach using two steps: overlap with previously known genes from CGL in 

a cancer type specific manner and samples with low mutation burden. d) QQ plot of observed p-

values for a method (blue line) compared to theoretically expected under the null hypothesis 

(red line). All mutations in genes found in the Cancer Gene Census were removed to eliminate 

possible driver mutations in this comparison. CHASMplus represents unweighted CHASMplus 

scores, gwCHASMplus represents gene weighted CHASMplus scores, and Hotspot is a 

previous codon-based mutation hotspot detection method(Chang et al., 2016). 
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Supplementary Figure 2. Detailed mutation-level benchmark performance. Related to 

Figure 2. a) Heatmap of the absolute spearman correlation between methods on the TCGA 

mutation dataset. b-h) Receiver Operating Characteristic curves for, in order, the following 

benchmarks: Ng et al., Berger et al (EGFR resistance), TP53 transactivation (IARC database), 

Berget et al. (in vivo tumorplex assay), Kim et al., recurrent mutations in the Cancer Gene 

Census, and gene panel using OncoKB. Area under the curve is shown in parenthesis. Top 5 

methods are labeled, but if the method has two version of scores then both are shown. 

Precision-recall curve for imbalanced benchmarks: i) MSK-IMPACT gene panel using OncoKB 

and j) recurrent mutations in the Cancer Gene Census (CGC-recurrent). k) To identify potential 

overfitting by methods, we repeated the Precision-Recall curve with all TP53 mutations 

removed. Differential performance between panels b and c is a reasonable indicator of 

overfitting for a method, suggesting FATHMM and CanDrA plus may have overfit to TP53. Area 
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under the curve is shown in parenthesis. Top 5 methods are labeled according to auROC 

performance, but if the method has two version of scores then both are shown. 
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Supplementary Figure 3. Comparative analysis of driver missense mutations found by 

CHASMplus. Related to Figure 3.  A prior TCGA analysis (Bailey et al., 2018) performed a 

pan-cancer analysis to identify driver missense mutations by combining three approaches, 

clustering of mutations in protein structure and two types of machine learning predictions. 

Mutations supported by more approaches had higher experimental validation rates. a) Nearly all 

consensus mutations (identified by all three approaches) in the prior study are found by pan-

cancer predictions by CHASMplus. b) A substantial proportion of mutations identified by at least 

two approaches in the prior study are also identified by CHASMplus. c) Bar graphs showing the 

number of unique driver somatic missense mutations (top) and the proportion previously known 

in OncoKB, a literature curated database (bottom). d) Heatmap of the top 25 genes containing 

the most frequent driver somatic missense mutations in TCGA across the cancer type specific 

analyses. Shown are the percentage of samples that are mutated. 
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Supplementary Figure 4. Cancer type-specific benchmark on identifying cancer driver 

genes. Related to Figure 3. a) Heatmap showing performance (F1 score) on a Porta-pardo et 

al. benchmark identifying genes found in the Cancer Gene Census. The overall performance on 

four cancer types (BLCA, BRCA, GBM, and LUAD) is measured by the average F1 score (right 

column). Heatmap of c) recall and d) precision of methods in detecting genes with matching 

tissue type association in the cancer gene census. Overall performance is shown with average 

values in the right column. TCGA cancer type acronyms are listed in Methods. 
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Supplementary Figure 5. Subtype enrichment for driver missense mutations at the gene-

level. Related to Figure 3.  All genes with a statistically significant preferential enrichment for 

driver missense mutations in one or more cancer subtypes are shown in the form of a heatmap 

(q<0.1, chi-square test). Heatmaps are formatted as follows: the cancer type is noted above the 

heatmap, the y-axis represents cancer subtypes, and the x-axis represents genes. The 

percentage of samples containing driver missense mutations is indicated in each heatmap cell. 

a-l) Heatmap results, in order, for UCEC, TGCT, SARC, READ, STAD, LGG, HNSC, GBM, 

ESCA, COAD, CESC, and BRCA. Cancer subtype information was obtained from (Sanchez-

Vega et al., 2018). 
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Supplementary Figure 6. Correlation of putative driver mutations in CASP8 with immune 

phenotypes. Related to Figure 4. The CASP8 mutation status of tumor samples was 

compared to immune phenotypes in three cancer types: a) breast invasive carcinoma (BRCA), 

b) bladder urothelial carcinoma (BLCA), and c) cervical squamous cell carcinoma and 

endocervical adenocarcinoma. Control samples have no CASP8 mutations, mis indicates 

samples with driver missense mutations identified by CHASMplus, and lof is likely loss-of-

function variants. Top row, immune cell/phenotype response inferred from DNA methylation or 

gene expression from (Thorsson et al., 2018). Bottom row, gene expression values from 

RNASeq for several important immune-related genes reported in (Thorsson et al., 2018). All 

TCGA cancer type acronyms are listed in Methods. *=p<0.05, **=p<0.01, and ***=p<0.001. 
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Supplementary Figure 7. Subsampling analysis of unique driver somatic missense 

mutations by CHASMplus and comparison to a larger study. Related to Figure 6. a) The 

number of driver somatic missense mutations identified as significant by CHASMplus (q<=0.01) 

as a function of sample size. CHASMplus was ran on random subsets of various sizes (fraction 

of samples) of the full data. To ascertain whether the trajectory suggested by subsampling 

analysis was consistent with what would happen with a study with greater number of tumor 

samples, we compared predictions to a larger prostate cancer study by Armenia and colleagues 
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(Armenia et al., 2018). Venn diagram of the significantly mutated genes as reported from 

Armenia et al. compared with genes containing a significant missense mutation predicted by 

b) CHASMplus (FDR<=0.01) or c) CHASMplus (FDR<=0.05). 
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STAR Methods 

CONTACT FOR REAGENT AND RESOURCE SHARING 

For additional information regarding the data, please contact Rachel Karchin: karchin@jhu.edu.  

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

The Cancer Genome Atlas (TCGA) collected both tumor and non-tumor biospecimens from 

human samples with informed consent under authorization of local institutional review boards 

(https://cancergenome.nih.gov/abouttcga/policies/informedconsent). 

TCGA Mutation dataset 

We collected a set of 1,225,917 somatic mutations in 8,657 samples from The Cancer Genome 

Atlas (TCGA) somatic mutation calls from whole-exome sequencing (v0.2.8, 

https://synapse.org/MC3)(Ellrott et al., 2018). We analyzed 32 cancer types with abbreviations 

for the cancer types are listed below. We further filtered mutations by restricting to only 

mutations with an annotated ‘PASS’ filter, except for OV and LAML where mutations with only 

whole genome amplified (‘wga’) status was allowed because otherwise the majority of samples 

were filtered. We additionally removed hypermutated samples, as they tend to have an adverse 

effect on statistical power. We identified hypermutated samples as having more mutations than 

1.5 times the interquartile range above the third quartile (Tukey’s condition) of samples within 

the same cancer type. Because some relatively low mutation rate cancer types contained 

outliers, we additionally required the sample to have at least 1,000 mutations to be considered 

hypermutated. 

 

Cancer types in the TCGA are abbreviated as follows: Acute Myeloid Leukemia (LAML, n=139), 

Adrenocortical carcinoma (ACC, n=90), Bladder Urothelial Carcinoma (BLCA, n=386), Brain 

Lower Grade Glioma (LGG, n=510), Breast invasive carcinoma (BRCA, n=779), Cervical 

squamous cell carcinoma and endocervical adenocarcinoma (CESC, n=274), 

Cholangiocarcinoma (CHOL, n=34), Colon adenocarcinoma (COAD, n=230), Esophageal 

carcinoma (ESCA, n=172), Glioblastoma multiforme (GBM, n=311), Head and Neck squamous 

cell carcinoma (HNSC, n=502), Kidney Chromophobe (KICH, n=65), Kidney renal clear cell 

carcinoma (KIRC, n=368), Kidney renal papillary cell carcinoma (KIRP, n=275), Liver 
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hepatocellular carcinoma (LIHC, n=354), Lung adenocarcinoma (LUAD, n=431), Lung 

squamous cell carcinoma (LUSC, n=464), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

(DLBC, n=37), Mesothelioma (MESO, n=81), Ovarian serous cystadenocarcinoma (OV, n=408), 

Pancreatic adenocarcinoma (PAAD, n=155), Pheochromocytoma and Paraganglioma (PCPG, 

n=179), Prostate adenocarcinoma (PRAD, n=477), Rectum adenocarcinoma (READ, n=86), 

Sarcoma (SARC, n=204), Stomach adenocarcinoma (STAD, n=357), Testicular Germ Cell 

Tumors (TGCT, n=145), Thymoma (THYM, n=121), Thyroid carcinoma (THCA, n=492), Uterine 

Carcinosarcoma (UCS, n=55), Uterine Corpus Endometrial Carcinoma (UCEC, n=396), Uveal 

Melanoma (UVM, n=80), and Pan-cancer (all cancer types) (PANCAN, n=8657). 

CHASMplus 

The code for CHASMplus is available on github (https://github.com/KarchinLab/CHASMplus). 

Features 

CHASMplus uses features spanning somatic mutation hotspot detection, evolutionary 

conservation, genetic variation, molecular features, sequence-based features, amino acid 

substitution scores, and other covariates (Table S1). Additional new features include features 1-

10. Original features used in CHASM were obtained from an updated SNVBox MySQL 

database (features 11-95)(Wong et al., 2011).  

Training Set  

Using the TCGA mutation dataset, we established training labels with a semi-supervised 

approach, designed to minimize bias.  The positive class (likely-driver missense mutations) was 

selected by the following criteria: 1) missense mutations had to occur in a curated set of 125 

pan-cancer driver genes(Vogelstein et al., 2013); 2) for each of the 32 TCGA cancer types, 

missense mutations found in that cancer type had to occur in a  significantly mutated gene for 

that cancer type according to MutSigCV v1.4(Lawrence et al., 2014). We ran MutSigCV using 

recommended settings and a full sequencing coverage file 

(http://archive.broadinstitute.org/cancer/cga/mutsig).  Importantly, MutSigCV v1.4 only assess 

the total number of mutations in a gene, and not any characteristics of those mutations; thus, we 

avoid making strong assumptions about the properties of a particular driver mutation; 3) 

missense mutations had to occur in samples with relatively low mutation rate (less than 500 
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mutations, half the minimum hypermutator threshold as defined above).  This filter was intended 

to limit the number of passenger mutations mislabeled as drivers.  The negative class (likely-

passenger missense mutations) consisted of the remaining missense mutations in the TCGA 

mutation set.  For training purposes, we only used unique mutations to avoid double counting a 

mutation seen more than once. If, however, the same mutation consequence observed in 

different cancer types had contradictory labels, we regarded the mutation as a driver because 

mutation recurrence is often cited as supportive evidence for a cancer driver role. This 

established a set of 2,051 likely-driver missense mutations and 623,992 likely-passenger 

missense mutations, for which we found sufficient annotation to compute our selected features. 

Skin cutaneous melanoma mutations were not included in training due to the systematically high 

mutation burden for this cancer type, however, predictions for melanoma are included in Table 

S7. 

 

20/20+ driver gene prediction 

Briefly, the driver gene predictions by 20/20+ (v1.2.0, https://github.com/KarchinLab/2020plus) 

were carried out as previously described(Tokheim et al., 2016b). We used all somatic mutations 

from the TCGA data to train a pan-cancer model. Driver gene scores for each cancer type or 

pan-cancer were then computed based on predictions from the trained model. The driver gene 

score represents the fraction of decision trees predicting driver for a particular gene in the 

random forest. 

Random forest algorithm 

We used random forests(Amit and Geman, 1997; Breiman, 2001), a machine learning 

technique, to predict whether a missense mutation is a cancer driver.  We trained a random 

forest using the randomForest R package. To ameliorate the problematic imbalance in the 

training set, we used a stratified down sampling approach within the bagging procedure of the 

random forest. Random undersampling has been previously recommended for random forests 

based on empirical performance(Hulse et al., 2007). The imbalance occurred on two levels, 

there were substantially more labeled passenger missense mutations than drivers, and among 

drivers it was concentrated in a few genes. We first calculated the median number of labeled 

driver missense mutations within genes containing at least one driver missense mutation label. 

If a gene contained more labeled driver missense mutations than the median, we set the 

number of driver missense mutations sampled from that gene to the median. Passenger 
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missense mutations were sampled at an equal frequency as driver missense mutations after the 

gene-based median correction. 

 

Since missense mutations in the same gene may have overlapping feature representations 

which result in classifier overfitting(Capriotti and Altman, 2011), we performed prediction using a 

10-fold gene hold-out cross-validation procedure for both CHASMplus and 20/20+. This 

involved creating 10 random folds for cross-validation but ensuring all mutations within a gene 

are within a single fold. The CHASMplus score represents the fraction of decision trees which 

vote for the mutation being a driver. We calculate the gene-weighted CHASMplus score 

(gwCHASMplus) by multiplying the random forest score of CHASMplus by the driver gene score 

from 20/20+. 

Estimation of statistical significance 

For each gene, the somatic mutation simulation procedure as previously reported(Tokheim et 

al., 2016b) was repeated 10 times, and for each simulation all features were computed 

(probabilistic2020 python package, v1.2.0). Because the MSK-IMPACT gene panel did not 

contain silent mutations, we likewise dropped all simulated mutations resulting in a silent 

mutation for the MSK-IMPACT simulations. Next, each simulated missense mutation and gene 

was scored with the CHASMplus and 20/20+ models that were previously trained on the real 

data. The resulting CHASMplus and gwCHASMplus scores for all simulations were used as an 

empirical null distribution. To compute a P value for a score, we used the fraction of simulated 

mutations with a score equal to or greater than the actual score. P values were adjusted by the 

Benjamini–Hochberg method for multiple hypotheses. We considered a missense mutation to 

be significant at a q-value threshold of 0.01. 

Feature importance 

We used the Mean Decrease in Gini Index (MDGI) as a measure of feature importance in the 

random forest. This measurement, however, has been previously noted to favor continuous 

features over discrete features with a small number of possible values(Altmann et al., 2010). We 

compensated for this phenomenon by calculating an adjusted z-score using a permutation-

based approach. This involved calculating MDGI for each feature for 1,000 permutations and 

calculating the z-score of the observed data by using the mean and standard deviation of the 

permutations. The permutations were carried out as follows: First, we randomly permuted the 
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list of unique genes containing any missense mutation. Second, we assigned the first gene in 

the permuted list with the same fraction of driver/passenger mutations as our first gene 

containing labeled driver mutations in our training set. We then proceeded to the next gene in 

the list, and repeated the procedure, until the same number of labeled driver mutations as in our 

actual training set was reached. All other genes had their mutations labeled as passengers. 

Finally, we computed the MDGI for each feature based on the CHASMplus model on the 

permuted training data. Grouping by gene in the permutation was done to mimic the heuristic on 

how training data was labeled, and to avoid gene-level features from having artificially high 

feature importance. 

Compared methods 

We compared CHASMplus to 12 other methods at prioritizing likely cancer driver missense 

mutations (VEST(Carter et al., 2013), CADD(Kircher et al., 2014), FATHMM cancer(Shihab et 

al., 2013), SIFT(Ng and Henikoff, 2001), MutationAssessor(Reva et al., 2011), REVEL(Ioannidis 

et al., 2016), MCAP(Jagadeesh et al., 2016), ParsSNP(Kumar et al., 2016), CHASM(Carter et 

al., 2009), Polyphen2(Adzhubei et al., 2010), transFIC(Gonzalez-Perez et al., 2012) and 

CanDrA(Mao et al., 2013)). Scores were obtained by means made available by each of the 

methods. We used ANNOVAR to obtain scores for 7 of the methods (VEST, CADD, SIFT, 

MutationAssessor, REVEL, MCAP, and Polyphen2) from dbNSFP using the ljbb26_all 

annotation, except for REVEL and MCAP, which we used the revel and mcap annotations, 

respectively. TransFIC was obtained (http://bbglab.irbbarcelona.org/transfic/home) and ran 

locally using the scores from SIFT as input. Two versions of CanDrA were tested as the 

preferred version was not clear (http://bioinformatics.mdanderson.org/main/CanDrA), version 

1.0 and version plus. With version plus, we used the “cancer-in-general” scores, but this was not 

available for version 1.0, so instead we used the ovarian scores. CHASM was executed using a 

10-fold gene-holdout cross-validation procedure also using an ovarian passenger distribution. 

We executed ParsSNP using the provided pre-computed model where the input annotations 

were obtained from ANNOVAR. FATHMM cancer scores were obtained directly from the 

available website (http://fathmm.biocompute.org.uk/). Inputs to each of the methods were 

prepared using custom python scripts. 

 

CHASMplus was also compared to a codon-based hotspot method (v0.6)(Chang et al., 2016), 

with respect to its ability to identify cancer type-specific driver genes, sensitivity at discovering 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2018. ; https://doi.org/10.1101/313296doi: bioRxiv preprint 

http://bbglab.irbbarcelona.org/transfic/home)
http://fathmm.biocompute.org.uk/)
https://doi.org/10.1101/313296


 47 

oncogenic codons, and its calibration of p-values.  The hotspot method was run using default 

parameters on the TCGA mutation dataset. For each gene, we used the biomart R package to 

measure its protein length. To assess p-value calibration, we collected all p-values for all 

codons, except for mutated codons in genes found in the Cancer Gene Census(Futreal et al., 

2004).  The code was obtained from github (https://github.com/taylor-lab/hotspots). 

Driver mutation benchmarks 

In each benchmark, we define a ‘positive’ (more driver-like) and ‘negative’ (more passenger-

like) class for mutations to evaluate discriminating performance. We define the annotation of 

class and mutation data used for each benchmark below. Only missense mutations were used 

for each of the benchmarks. For reproducibility, all data, results, and analysis code are available 

on github (https://github.com/KarchinLab/Tokheim_2018). 

 

CGC-recurrent 

We examined driver prioritization on an exome-scale for our TCGA mutation dataset (see 

above) through a combined literature/heuristic evaluation. We first obtained a set of curated 

likely driver genes from the Cancer Gene Census (CGC, COSMIC v79) (Forbes et al., 2017). 

We restricted to only CGC genes that were labeled as somatic and marked as relevant for 

missense mutations. We labeled all recurrent missense mutations (n>1) in the CGC genes as 

the positive class, and remaining mutations as the negative class(Forbes et al., 2017).  

 

MSK impact gene panel and OncoKB 

We obtained all missense mutations from the MSK-impact gene panel of 414 cancer-related 

genes(Zehir et al., 2017). Mutations were annotated against OncoKB (downloaded 4/3/2017), if 

the oncogenicity annotation was available for an individual mutation(Chakravarty et al., 2017). 

We regarded any mutation labeled as ‘Oncogenic’ or ‘Likely Oncogenic’ as the positive class for 

evaluation with remaining mutations considered as negative. 

 

Pooled in vivo screen in mice 

A previous study by Kim et al (Kim et al., 2016) used a competitive screen of mutations in mice 

to assess the oncogenicity of mutations. The study selected mutations based on their presence 

in sequenced human tumors. Mutations were then transduced into HA1E-M cells, and pools of 

cells with different mutations were then injected into mice and then later assessed for 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2018. ; https://doi.org/10.1101/313296doi: bioRxiv preprint 

https://doi.org/10.1101/313296


 48 

representation of the mutation. 71 promising alleles were then subsequently validated, 

individually, from the screen in NCR-Nu mice. We directly used the annotation of ‘functional’ 

(positive class) and ‘neutral’ (negative class) from the authors in terms of the individually 

validated alleles. 

 

Multiplexed xenograft tumorigenesis assay and In vitro EGFR resistance 

Berger et al. tested a subset of lung adenocarcinoma somatic mutations suspected as likely 

cancer drivers. We regarded a missense mutation as ‘negative’ for benchmarking if they were 

labeled ‘neutral’ by the expression-based method (eVIP) and did not appear as a hit in 

functional assays. We benchmarked these neutral mutations against two functional assays, an 

in vitro EGFR resistance and a xenograft tumorigenesis assay. The former is an erlotinib-rescue 

assay using PC9 cells treated at two erlotinib concentrations (300 nM and 3 M), which we 

required resistance at both concentrations to be labeled a positive. The multiplexed xenograft 

tumorigenesis assay (TumorPlex) used pooled barcoded alleles to assess allele tumor 

formation capability by comparing barcode representation to pre-injection levels. We used the 

author defined threshold of a TumorPlex hit to label a mutation as a positive for benchmarking 

purposes. 

 

TP53 transactivation from the IARC TP53 database 

We assessed each methods ability to distinguish TP53 mutations with low transactivation 

(positive class) versus all other TP53 mutations (negative class). We evaluated all missense 

mutations (n=2,314) for TP53 from the IARC TP53 database (Petitjean et al., 2007). Low 

transactivation was considered as less than 50% wildtype, as indicated by the median of 8 

different targets (WAF1, MDM2, BAX, h1433s, AIP1, GADD45, NOXA, and P53R2). 

 

Cell viability in vitro assay 

We evaluated missense mutations (n=747) from a prior medium-throughput in vitro experiment 

on two growth-factor dependent cell lines, Ba/F3 and MCF10A(Ng et al., 2018). We assessed 

each method’s ability to distinguish mutations resulting in increased cell viability (labeled 

‘activating’; positive class) versus those that did not (labeled ‘neutral’; negative class). The 

experiment assumes that mutations that provide a growth advantage to cells with growth factors 

withdrawn reflect cancer drivers. The study considered mutations as validated if the cell viability 

with the mutation was higher than wild type in either cell line (2 negative controls, 3 positive 

controls, and wild type). 
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Performance analysis based on area under the Precision-Recall 

curve 

An alternative performance metric to the area under the Receiver Operating Characteristics 

curve (auROC) for a binary classification task is the area under the Precision-Recall curve 

(auPR). Like auROC, auPR summarizes the performance over all possible score thresholds 

from a method (Davis and Goadrich, 2006). However, auPR is preferable when there is 

substantial class imbalance, i.e., when the positive class of interest (in our case, cancer 

drivers) is the substantial minority (Saito and Rehmsmeier, 2015). The maximum auPR is 1.0 

but the baseline score for a random predictor changes depending the skew of the class 

distribution (Saito and Rehmsmeier, 2015). Specifically, the expected auPR performance of a 

random baseline predictor is as follows: 

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑢𝑃𝑅 =
𝑃

𝑃 + 𝑁
      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

where P is the number of samples from the positive class of interest and N is the number 

from the other, negative class. In contrast to the auROC, auPR will give systematically high 

values for all methods in benchmarks that contain a majority of positive class examples (Eq. 

1). Consequently, Precision-Recall curves and auPR are a poor means of comparison for 

several benchmarks that we used, with auROC being a better alternative. 

 

We therefore performed auPR analysis on the two benchmarks with a substantially under 

represented positive class: MSK-impact gene panel (OncoKB) and CGC-recurrent (see 

methods). Like auROC, the auPR from the MSK-impact gene panel benchmark indicated 

CHASMplus had higher performance than other methods (Figure S2i). At first glance, the 

auPR on the CGC-recurrent benchmark for FATHMM seemed to be higher than for 

CHASMplus (Figure S2j). However, the performance of FATHMM and CanDrA plus dropped 

substantially if TP53 mutations are not included in the benchmarks (Figure S2k). This 

suggests the two methods may have overfit to TP53 and seemingly do not generalize as well 

to other genes. CHASMplus, on other hand, maintains a high auPR, which is twice as high as 

the next best method. 

Evaluation of cancer type-specific driver genes 
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We evaluated the performance of CHASMplus on identifying cancer-type specific driver 

genes, using a previously published benchmark and assessment of 15 computational 

methods designed for this purpose(Porta-Pardo et al., 2017). Genes were labeled by their 

designations in the Cancer Gene Census as a cancer driver gene for a specific cancer type. 

Since the cancer type-specific benchmark measures performance by gene, we indicated a gene 

as a cancer driver if any missense mutation was found significant by CHASMplus. CHASMplus 

was executed on the same mutation data used for the other methods in the benchmark(Chang 

et al., 2016). Out of the 4 cancer type cohorts assessed (BLCA, BRCA, GBM, and LUAD), 

CHASMplus had the highest average F1 score, a balance between precision and recall that 

was used as a performance metric by(Porta-Pardo et al., 2017) (Figure S4a). We additionally 

note that of the methods tested, CHASMplus was the only one not primarily designed to 

predict driver genes that had high recall (average recall=.45) while maintaining precision 

(average precision=.23) (Figure S4b-c). Evaluation of performance was carried out by 

modifying the benchmarking scripts and data provided by the author to include CHASMplus 

(https://github.com/eduardporta/sub-gene_resolution). 

Calculation of driver mutation frequency 

Mutation frequency was calculated based on the fraction of cancer samples that contain a driver 

mutation in a particular cancer type. Estimates for pan-cancer analysis, which analyzes 32 

cancer types, are based on the maximum frequency observed over each of the cancer types 

individually. The mutation frequency calculation uses the sum of driver mutations observed 

within the same codon, because the American College of Medical Genetics and Genomics 

(ACMG) guideline indicates other pathogenic mutations in the same codon provides moderate 

support for the pathogenicity of a mutation(Richards et al., 2015). All mutations within a codon 

are then classified as rare (<1% of cancer samples), intermediate (1-5%), or common (>5%). As 

a result of certain cancer types having a low total number of cancer samples, we also regarded 

singleton mutations as rare. 

CASP8 mutations and immune phenotypes 

All values for leukocyte fraction, type of immune response (CD8 T cell, regulatory T cell, Th1 

response, Th2 response, and Th17 response), and immune-related gene expression for tumor 

samples were obtained from (Thorsson et al., 2018). Leukocyte fraction is an estimated 

proportion of cells in the tumor sample that are leukocytes, as inferred from DNA methylation 
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(Thorsson et al., 2018). The fraction consisting of CD8 T cells or regulatory T cells was 

estimated using the method CIBERSORT (Newman et al., 2015). Th1, Th2, and Th17 response 

scores are computed from RNA-Seq gene expression using single sample Gene Set 

Enrichment Analysis (ssGSEA) (Hanzelmann et al., 2013). Gene expression for CTLA4, CD8A, 

PDCD1, CD274, TRIM1, and CD68 are quantitated from RNA-Seq using RSEM (score version 

2)(Li and Dewey, 2011). 

To examine the likely effect of CASP8 mutations, tumor samples were divided into control 

samples (no CASP8 mutations), samples with driver missense mutations predicted by 

CHASMplus (q<=0.01), and samples with truncating/likely loss-of-function mutations. A two-

sided Mann-Whitney U test was used to determine whether CASP8 mutated samples were 

significantly different from control for the above immune-related phenotypes. 

Comparison with PTEN saturation mutagenesis 

CHASMplus was compared to two previous saturation mutagenesis studies of PTEN, examining 

lipid phosphatase activity (Mighell et al., 2018) and intracellular PTEN protein abundance 

(Matreyek et al., 2018). We first compiled a list of 6,564 missense mutations designated as high 

confidence for lipid phosphatase activity by Mighell and colleagues. We then merged the 

smaller data set of protein abundance, resulting in 3,540 missense mutations matching Mighell 

et al. gwCHASMplus scores were then computed for each missense mutation available from the 

experiments. Correlation of gwCHASMplus with lipid phosphatase activity and protein 

abundance was carried out using Locally Weighted Scatterplot Smoothing (LOWESS) and 

spearman rank correlation. Driver missense mutations identified by CHASMplus from the pan-

cancer analysis were compared to all other missense mutations observed in PTEN using a two-

sided Mann-Whitney U test.  

Clustering of cancer types 

We clustered TCGA cancer types according to two features, prevalence (fraction of samples 

mutated) and normalized diversity (normalized entropy) among predicted missense mutation 

drivers (q <= 0.01). The normalized entropy score was calculated based on the codon-level, as 

follows, 

𝐸 =  
− ∑ 𝑝(𝑖) log2 𝑝(𝑖)𝑘

𝑖=1

log2 𝑘
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where there are k codons containing significant mutations, and the fraction of significant 

mutations in the i’th codon is p(i). We performed clustering using the k-means algorithm (scikit 

learn v0.18.0) where k, the number of clusters, was selected by the maximum silhouette score 

(k=5; varied between 2 and 10). Each parameterization was run ten times with different initial 

conditions to avoid local optimums by choosing the best run, defined as the lowest sum of 

distances to the closest centroid. 

 

Beyond biological differences intrinsic to each cancer type, technical difficulties in mutation 

calling could possibly explain the above clustering patterns. To evaluate this possibility, we 

correlated the mean Variant Allele Fraction (VAF) for mutations in tumor samples in each 

cancer type with a variety of metrics summarizing our results. VAF acts as a combined indicator 

of mutation sub-clonality and normal tissue contamination within the tumor sample, both of 

which lower the capability to detect mutations. We found no significant correlation between 

mean VAF for cancer types with: average number of predicted driver mutations per sample 

(Pearson r=0.26, p=0.14, correlation test), fraction of samples with predicted driver mutations 

(Pearson r=0.2, p=0.28, correlation test), unique number of significant mutations (Pearson 

r=0.04, p=0.82, correlation test), and normalized driver diversity (Pearson r=0.33, p=0.07, 

correlation test). 

 

Subsampling procedure 

We performed driver missense mutation predictions on random subsamples of each of 9 

representative cancer types (ACC, SARC, PRAD, THYM, UVM, PAAD, BRCA, HNSC, and 

COAD), using CHASMplus. Subsampling was performed by randomly selecting a certain 

fraction of cancer samples without replacement. The designated fraction of samples for each 

iteration was randomly selected from a uniform distribution bounded between 0 and 1. We then 

ran CHASMplus using a 10-fold gene-holdout cross-validation model previously trained on the 

TCGA pan-cancer data. The number of unique driver missense mutations and overall driver 

prevalence (average number of driver missense mutations per cancer sample) were then 

calculated based on significant CHASMplus predictions (q<=0.01). The prevalence of a mutated 

residue within a particular sub-sampled result was measured against the full cohort. 

 

Analysis of the tail of driver discovery for Prostate 

Adenocarcinoma 
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Here, we performed a detailed analysis of 1,013 prostate adenocarcinoma samples from the 

study of Joshua Armenia and colleagues(Armenia et al., 2018). Mutation calls were directly 

used as reported from the study. This expanded data set allowed us to assess whether the 

expected trajectory of discovery for prostate adenocarcinoma (see sub-sampling procedure 

in methods) from The Cancer Genome Atlas (TCGA) (n=477) matches what is observed from 

more than 1,000 samples. Additionally, since the Armenia et al. study only performed gene-

level analysis, our analysis adds value to understanding of cancer drivers at the level of 

individual missense mutations in prostate adenocarcinoma (Table S6).  

 

We found that the genes which contain significant CHASMplus missense mutat ions 

substantially overlap the significantly mutated genes found in Armenia et al (Figure S7b-c). 

We note that there are three reasons why Armenia et al. report a larger number of genes 

than CHASMplus: 1) they reflect genes driven by mutations other than missense mutations 

(e.g., nonsense, frameshift, splice site, etc.); 2) They selectively rescued previously known 

cancer genes seen in other types of cancers; and 3) They used a considerably laxer 

threshold at a false discovery rate (FDR) of 25%, while CHASMplus uses FDR of 1%. 

 

In our TCGA analysis, we noted that the number of unique driver mutations in Prostate 

Adenocarcinoma linearly increased with sample size. Our original analysis identified 94 

unique driver missense mutations at a false discovery rate of 1%. A strictly linear increase 

would expect 200 unique driver missense mutations for 1,013 samples (=94 mutations / 477 

samples * 1,013 samples). Indeed, we find 203 unique driver missense mutations from the 

data in Armenia et al., strikingly close to our expectations. 

 

We next examined the prevalence of driver missense mutations with this expanded data set 

compared to that from the TCGA. To compare the two, we used the average number of driver 

missense mutations per sample. Like in the TCGA analysis, a 1% false discovery rate 

threshold was applied. We found the driver prevalence from Armenia et al. data was 0.40 

mutations per sample compared with 0.31 mutations per sample from the TCGA data. As 

expected, driver prevalence increased gradually but with a rate showing diminishing returns. 

A strictly linear increase would have yielded 0.66 mutations per sample.  Next, we looked at 

mutations that were marginally significant at a false discovery rate (FDR) of 5%. At 5% FDR, 

the driver prevalence was 0.48 mutations per sample. So, despite the diminishing returns for 
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discovery, there were a reasonable prevalence of marginally significant driver missense 

mutations, suggesting that discovery is not completely saturated. 

 

Limited power for mutation hotspot detection approaches 

A codon or small region of protein sequence or structure where recurrent mutations are 

observed is known as a hotspot.  Similar to statistical methods for driver gene detection, 

hotspot detection identifies an excess number of mutations compared to expectation using  a 

large number of cancer samples.  We asked whether, given current cohort sizes, codon-

based hotspot detection had sufficient statistical power to identify rare driver mutations.  We 

assessed the number of samples required to detect driver mutations across a range of 

frequencies (proportion of samples in which a mutation occurs) and somatic background 

mutation rates. In Figure S7a, each of the 32 TCGA cancer types is placed according to its 

sample size and background mutation rate, relative to six curves which represent the 

required sample size to detect driver mutations of a certain frequency, with 90% power, using 

hotspot detection (see Statistical Power Analysis).  For example, the TCGA Cervical 

Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) cohort has 274 

samples and a background mutation rate of 3.5 mutations/Mb.  This sample size is sufficient 

to detect driver mutations that occur in ~2% of the samples with 90% power. 

 

At current TCGA sample sizes, we found codon-based hotspot detection approaches were not 

well powered to identify driver mutations that occurred at less than 1% frequency in most cancer 

types.  Exceptions were thyroid carcinoma (THCA), low grade glioma (LGG) and breast cancer 

(BRCA), which are seen to lie above (or close to) the curve representing 1% frequency (Figure 

7a).  Notably, these cohorts had large numbers of samples and low-to-medium background 

mutation rates.  We also found that when cancer types were aggregated in pan-cancer analysis, 

power to detect codon-based hotspots improved substantially, but only when the recurrent 

mutations were shared in more than one cancer type.  For these mutations, pan-cancer analysis 

using ~10,000 TCGA samples should enable detection of driver mutations at frequency as low 

as 0.1%.    

 

In our pan-cancer analysis, CHASMplus had greater sensitivity to detect putatively oncogenic 

missense mutations than a recently published codon-based hotspot detection method. We 

compared the missense mutations in the TCGA pan-cancer cohort that were called statistically 
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significant by CHASMplus and those called by a hotspot method described by(Chang et al., 

2016) (q<=0.01).  For both methods, we computed the overlap with well-curated oncogenic 

mutations in the OncoKB database.  The sensitivity of CHASMplus to detect the OncoKB-

labeled mutations was 0.83, which was significantly higher than the hotspot method (0.46, 

p<2.2e-16, McNemar’s test, n=896).  To minimize potential gene bias, we also repeated the 

analysis after excluding all 389 TP53 mutations, yielding sensitivity of 0.76 for CHASMplus and 

0.49 for hotspot detection, a difference which is still statistically significant (p<2.2e-16, 

McNemar’s test, n=507) (Figure 7b).  Moreover, these results are also reflected in the number 

of significant predictions of the two methods.  The codon-based hotspot method only identified 

360 unique codons as significant in our TCGA data set, while CHASMplus found significant 

missense mutations in 2,588 codons. We believe that the increased sensitivity is the result of 

CHASMplus using a broad range of important features, including multi-resolution hotspot 

detection and weighting by driver gene scores (Figure 1d).  Importantly, our increased sensitivity 

did not come at the cost of low specificity, as evidenced by our p-value calibration (Figure S1d) 

and extensive ROC analysis across seven benchmarked datasets (Figure 2b), which measures 

a balance of sensitivity and specificity. 

 

Statistical power methodology 

We estimated the statistical power to find frequently mutated codons within driver genes by 

using a binomial model, as done previously(Tokheim et al., 2016b). In contrast with gene-

level estimates, the length in the model represents a codon (𝐿𝑐=3 bases) and not a typical 

coding DNA sequence length (𝐿𝑔=1,500 bases). Consistent with previous gene-level power 

analysis(Lawrence et al., 2014), we use a Bonferroni family wise error rate threshold of 0.1 

for statistical significance of testing all codons within putative driver genes. This threshold 

depends on the number of designated driver genes. We assume 206 genes (n=206), for this 

purpose, as this is the number of significant genes found by 20/20+ in the pan-cancer 

analysis (q-value <= 0.1). The alpha-level (α) to establish statistical significance is than as 

follows, 

 𝛼 =
0.1

𝑛∗𝐿𝑔/𝐿𝑐
 

Other parameters used to estimate statistical power were the same as done previously 

(Tokheim et al., 2016b). 
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