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Abstract 
Quantitative analysis of morphological changes in a cell nucleus is important for understanding 

of nuclear architecture and their relationship with pathological conditions such as cancer. 
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However, dimensionality of imaging data, together with a great variability of nuclear shapes 

present challenges for 3D morphological analysis. Thus, there is a compelling need for robust 3D 

nuclear morphometric techniques to carry out population-wise analysis. We propose a new 

approach that combines modeling, analysis, and interpretation of morphometric characteristics of 

cell nuclei and nucleoli in 3D. We use robust surface reconstruction that allows accurate 

approximation of 3D object boundary. Then, we compute geometric morphological measures 

characterizing the form of cell nuclei and nucleoli. Using these features, we compare over 450 

nuclei with about 1,000 nucleoli of epithelial and mesenchymal prostate cancer cells, as well as 

1,000 nuclei with over 2,000 nucleoli from serum-starved and proliferating fibroblast cells. 

Classification of sets of 9 and 15 cells achieves accuracy of 95.4% and 98%, respectively, for 

prostate cancer cells, and 95% and 98% for fibroblast cells. To our knowledge, this is the first 

attempt to combine these methods for 3D nuclear shape modeling and morphometry into a highly 

parallel pipeline workflow for morphometric analysis of thousands of nuclei and nucleoli in 3D. 

 

Introduction 

Motivation 

Cell nuclear morphology is regulated by complex underlying biological mechanisms related to 

cell differentiation, development, proliferation, and disease 1-3. Changes in the nuclear form are 

associated with reorganization of chromatin architecture related to altered functional properties 

such as gene regulation and expression 1,3. Moreover, many studies in mechanobiology show that 

geometric constraints and mechanical forces applied to a cell deform it and, conversely, affect 

nuclear and chromatin dynamics and gene and pathway activation 4,5. Thus, nuclear 

morphological quantification becomes of major relevance as the studies of the reorganization of 
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the chromatin and DNA architecture in the spatial and temporal framework, known as the 4D 

nucleome, emerge 6,7. Cellular structures of interest in the context of the 4D nucleome include 

not only the nucleus itself, but also the nucleolus and nucleolar-associating domains, 

chromosome territories, topologically associating domains, lamina-associating domains, and 

loop domains in transcription factories 6,8. Furthermore, understanding of these processes 

through quantitative analysis of morphological changes also has many medical implications, for 

example, in detection, understanding, and treatment of pathological conditions such as cancer 7-

10. 

 

While efforts have been made to develop cell and nuclear shape characteristics in 2D or pseudo-

3D 11,12, several studies have demonstrated that 3D morphometric measures provide better results 

for nuclear shape description and discrimination 13-15. However, 3D shape descriptors that permit 

robust morphological analysis and facilitate human interpretation are still under active 

investigation 16. Additionally, the dimensionality and volume of acquired data, various image 

acquisition conditions, and great variability of cell shapes in a population present challenges for 

3D shape analysis methods that should be scalable, robust to noise, and specific enough across 

cell populations at the same time. Thus, there is a compelling need for robust 3D nuclear 

morphometric techniques to carry out population-wise analysis 17. 

 

3D shape representation and morphometric measures 

The way cell nuclear shapes can be measured depends on their representation extracted from 

image data 11. Many 3D morphometric measures are applied “as is” to 3D geometric objects 

represented by volumetric data 18. However, voxels-based shape representations are noisy, and 
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they may lose fine geometric details and even break object’s topological structure. Moreover, 

these representations are not intrinsic, and vary when changing pose or deforming the object. A 

recent review of approaches to 3D cell shape description in 16 separated them into three 

categories in increasing order of complexity: landmark-based, graph-based, and moment-based. 

This last category includes approaches that are widely used in cellular morphology and allow the 

user to obtain a global representation that combines low-order moments describing the coarse 

conformation with high-order moments retaining information at higher frequency. Typically, 

before applying these methods a binary mask or outline of the shape (surface) is first extracted 

from image data, which is done by most segmentation methods. These masks are assumed to 

have a sphere-like topology and can be projected onto an appropriate basis. Two popular 

approaches of this type are spherical harmonics (SPHARM) 19 and spherical wavelets 20. Both 

methods first map the surface of interest onto the sphere using appropriate spherical 

parameterization techniques and then project it onto a reference function basis living on the 

sphere. SPHARM is arguably one of the most widely applied cell morphology modeling 

approaches 21-24. In SPHARM the spherical signal is projected onto a basis of Legendre 

polynomials, extending the classical Fourier analysis to signals on the two-sphere. SPHARM 

coefficients describe general conformation of the shape of interest at different spatial scales, are 

rotation invariant, and can be directly used as features for further analysis 25. However, 

SPHARM methods are most appropriate when low order approximation is satisfactory and 

become less effective in preserving surface details as artificial oscillations start to appear when 

higher order basis functions are incorporated 26. More robust smooth surface reconstruction can 

be obtained from a 3D binary mask via Laplace-Beltrami (LB) eigen-projection followed by 

topology-preserving boundary deformation to remove various artifacts 26. On a unit sphere, the 
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LB eigen-functions correspond to spherical harmonics, so overall they can be viewed as a 

generalization of the SPHARM to the complex geometry manifold with local adaptation of the 

basis to the dataset at hand 27. The method proposed in 26 has been demonstrated to produce 

smooth and more detailed surfaces compared to the SPHARM and the topology preserving level 

set 28. Extracted surfaces are smooth, accurately represent the shape of an object, and can be 

further used for morphometric analysis. 

 

In order to extract shape geometric characteristics, boundary surfaces of binary masks are 

typically reconstructed from voxel data and discretized as meshes. At the next step, various 

useful morphometric descriptors can be computed based on this representation. Useful extrinsic 

and intrinsic geometric descriptors aim to distinguish between global and local shape features. 

Intrinsic measures capture shape properties that are invariant under transformations (e.g., affine: 

rotation, translation and scaling). Various shape morphometry measures, like surface area and 

Gaussian curvature, represent invariant metrics of complexity, which are stable under special 

transformations of the surface (e.g., bending) that do not affect the inner geometry of the 

boundary of the 3D volume 29. Alternatively, shape metrics, e.g., mean 𝐿"-norm and the extrinsic 

curvature index are sensitive to affine transformation and other shape morphology in the ambient 

space. Shape index and curvedness are morphometric descriptors that can capture local shape 

features, independently or in relation to the size of an object 30. Combination of the object 

surface reconstruction with the extraction of such shape measures demonstrated high 

performance in recent neuroimaging studies for discriminatory morphometric analysis of 

complex 3D shapes of cortical and subcortical brain areas 31-33. 
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Technical capabilities and interoperability of tools 

When it comes to a choice of tools for 3D cell nuclear morphometrics, reproducibility and 

implementation availability are among major concerns in the field of bioimage analysis 16. To 

date, many of the widely available software tools for cell shape morphometry were either 

developed for the analysis of 2D 11,34-38 or pseudo-3D images 39. Other tools only implement 

slice-by-slice or voxel-based morphometry 40-43, providing a coarse approximation of the global 

cell shape that is sensitive to increasing amounts of noise and usually fails to characterize 

morphological variations occurring at different spatial scales. Other common limitations of many 

3D cell morphology solutions include a lack of high-throughput processing capabilities and a 

restriction to the specific programming language or platform that dictate principles of a tool 

implementation 44-46. Implementations of various methods in a bioimage analysis landscape are 

highly diverse. They range across programming languages, software libraries and file formats, 

which raises module interoperability issues and makes code reuse extremely difficult. Re-

implementing underlying methods is often very challenging as well as being time-consuming and 

error prone 47. Some of the existing bioimage analysis frameworks, including ImageJ 48, rely on a 

plugin architecture, which allows their extension via third-party contributions 40,41,43. High-

throughput capabilities of some of these tools are limited to processing of multiple objects 

simultaneously within its graphical user interface (GUI), for example, Tango 43. More advanced 

packages, such as CellProfiler 2.0 37, BioimageXD 42, and Icy 41 provide a basic graphical 

interface to assemble elementary tasks into reusable pipelines that are possible to execute in GUI 

and batch modes. However, these solutions are still limited to specific scripting languages and 

libraries supported by the main software package. They also don’t provide a straightforward way 
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to take advantage of the growing number of parallel hardware configurations such as clusters, 

clouds, and high-performance computing, which limits the scalability of these solutions. 

 

An alternative to plugin-based solutions, software platforms with modular design allow 

integration of already existing solutions into workflows without re-implementing them in a 

specific language and provide methods for optimizing module interaction, re-usage, and 

extension 49. An example of an extensive and feature rich solution for building and executing 

complex workflows is the LONI Pipeline 31,50. This client-server platform enables users to 

efficiently describe atomic modules and end-to-end protocols in a graphical canvas using a large 

library of powerful computational tools. The Pipeline back-end server has extensive support for 

parallel execution on a grid cluster, including automated data converting, formatting, and 

transfer, optimal job submission and management, pausing execution, combining local and 

remote software and data sources. Most importantly for this work, it makes it very easy to create 

new custom modules from any software that supports a command line interface (CLI). This 

allows one to take advantage of a highly diverse set of tools and connect them together as steps 

of a computational protocol that is then executed in a high-throughput, parallel fashion. 

Validated individual modules and end-to-end workflows may be saved, reused in other 

workflows, easily modified and repurposed. Additionally, the LONI Pipeline saves information 

about executed steps (such as software origin, version, and architecture) providing provenance 

information 50,51. 

 

Study aims 
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This study has two complementary aims. The first aim is to assess and validate 3D morphometry 

metrics for nuclear and nucleolar shape description and classification. Improving the 

discriminative performance in terms of statistical metrics has been driving our methodological 

efforts and selection of specific tools in this work. First, surfaces of 3D masks extracted from the 

microscopy data are reconstructed using Laplace-Beltrami eigen-projection and topology-

preserving boundary deformation 26. Then we compute intrinsic and extrinsic geometric metrics, 

that are used as derived signature vectors (shape biomarkers) to characterize the complexity of 

the 3D shapes and discriminate between observed clinical and phenotypic traits. These metrics 

include volume, surface area, mean curvature, curvedness, shape index, and fractal dimension 

30,52,53. Although these methods were previously used in recent neuroimaging studies 31-33, this is 

the first attempt, to our knowledge, to apply robust smooth LB-based surface reconstruction with 

intrinsic and extrinsic morphometric measure extraction to 3D cell nuclear and nucleolar shape 

modeling and morphometry. Suggested modeling and analysis methods are not restricted to 

nuclear and nucleolar shapes and can be used for the shape quantification of other cellular 

compartments, depending on their topology. 

 

The second aim is to develop a reproducible pipeline workflow implementing the entire process 

that can be customized and expanded for deep exploration of associations between 3D nuclear 

and nucleolar shape phenotypes in health and disease. High-throughput imaging (HTI) can 

include automatization of liquid handling, microscopy-based image acquisition, image 

processing, and statistical data analysis 17. Our work focuses on last two aspects of this 

definition. We implemented a streamlined multi-step protocol using a diverse set of tools to 

achieve optimal performance compared to alternatives at each step of analysis. These tools are 
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represented as individual modules seamlessly connected in the LONI Pipeline workflow. This 

workflow meets modern standards for high-throughput imaging processing and analysis and is 

mostly automated with a focus on validity and reproducibility. Our implementation is massively 

parallel, customizable, and provides fully automated execution and data provenance out-of-the-

box. At a final step of the workflow we employ machine learning methods to investigate the 

associations between cell phenotypes and treatment conditions using cell shape morphometric 

measures as features. We show that using a combination of 3D nuclear and nucleolar 

morphometry improves the discrimination between in vitro cell conditions of human fibroblast 

and human prostate cancer (PC3) cell lines. 

 

To promote the reproducibility of results, facilitate open-scientific development, and enable 

collaborative validation we will make the pipeline workflows, together with underlying source 

code, documentation, and derived data from this study available online 54. The workflow will be 

made available via the LONI Pipeline together with publicly available computational resources 

to showcase an online demonstration. 

 

Methods 

Fig. 1 shows a high-level view of the end-to-end protocol. We start with a dataset of 3D binary 

nuclear and nucleolar masks. We model 3D nuclear and nucleolar boundaries by their surface 

reconstruction and extracted derived morphometry measures. Finally, we compute statistical 

differences, identify shape morphometry-phenotype associations, and evaluate the results. 
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Figure 1. High-level schematic flow of the 3D image processing protocol. A: 3D binary mask 

data; B: mathematical representation and modeling of shape and size; C: calculation of derived 

intrinsic and extrinsic geometric measures; and D: machine learning based classification and 

analysis. 

 

Dataset description 

In this study we use 3D Cell Nuclear Morphology Microscopy Imaging Dataset, one of the 

biggest publicly available 3D cell imaging dataset to the date 18. This dataset consists of two 

collections of 3D volumetric microscopic cell images with corresponding nuclear and nucleolar 

binary masks. Each collection includes images of cells in two phenotypic states, and thus this 

poses a binary classification problem with image-level labels that can be used for the assessment 

of cell nuclear and nucleolar morphometric analysis. Binary masks in each collection are 

obtained by segmentation of the original data. Nuclear masks are extracted from a DAPI (4',6-

diamidino-2-phenylindole) channel, while fibrillarin antibody-stained (anti-fibrillarin) and 

ethidium bromide-stained (EtBr) channels are both used for nucleolar binary mask extraction 

(see 18 for details). Segmented binary masks are represented by 1024×1024×Z 3D TIFF sub-

volumes. For every mask sub-volume, accompanying vendor metadata extracted from the 

original data are available for analysis as well. 
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Robust smooth surface reconstruction 

To model the 3D shape of cell nuclei and nucleoli, boundaries of their 3D masks extracted from 

the microscopy data are modeled as genus zero two-dimensional manifolds (homeomorphic to a 

2-sphere 𝑆") 55 that are embedded as triangulated surfaces in ℝ%, Fig. 1B. Our approach uses 

iterative Laplace-Beltrami eigen-projection and topology-preserving boundary deformation 

algorithm 26. This algorithm performs robust reconstruction of the objects’ surfaces from their 

segmented masks using iterative mask filtering process. First, a mesh representation is 

constructed from the boundary of a binary mask of an object. Then, the boundary is projected 

onto the subspace of its Laplace–Beltrami eigen-functions 27, which allows the algorithm to 

automatically locate the position of spurious features by computing the metric distortion in 

eigen-projection. LB eigen-functions are intrinsically defined and can be easily computed from 

the boundary surface with no need of any parameterizations. They are also isometry invariant, 

and thus, are robust to the jagged nature of the boundary surface, which is desired for biomedical 

shape analysis 56. In our prior experience 26, the discretized LB spectrum captures intrinsic shape 

characteristics (e.g., global shape transformations will preserve the spectral signature). The 

magnitude of the eigenvalues of the LB operator intuitively corresponds to the frequency in 

Fourier analysis, thus it provides a convenient mechanism to control the smoothness of the 

reconstructed surface. Using this information, the second step is a mask deformation process that 

only removes the spurious features while keeping the rest of the mask intact, thus preventing 

unintended volume shrinkage. This deformation is topology-preserving and well-composed such 

that the boundary surface of the mask is a manifold. The last two steps iterate until convergence 

and the method generates the final surface as the eigen-projection of the mask boundary, which 
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is a smooth surface with genus zero topology 26. These properties allow application of this 

algorithm to any shape, including, for example, crescent-shaped, multi-lobed, and folded, as long 

as shape topology is homeomorphic to a sphere. The exemplar results of this step performed on 

nuclear and nucleolar masks are shown in Fig. 2.  

 

 

Figure 2. Robust smooth surface reconstruction. 3D visualization of: (A) a binary mask 

representation of a nucleus segmented from a Fibroblast cell image; (B) a mesh representation of 

a reconstructed smooth surface of a nucleus; (C) three binary masks for nucleoli segmented 

within this nucleus; and (D) three mesh representations of nucleolar surfaces, color-coded along 

the Z axis. Visualizations are produced with SOCR Dynamic Visualization Toolkit web 

application 57. 
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Morphometric measures 

In this study, we use six shape measures as features quantifying geometric characteristics of the 

3D surfaces, Fig. 1C. To calculate these measures, first the principal (min and max) curvatures 

(𝜅' ≤ 𝜅") were compute using triangulated surface models representing the boundaries of genus 

zero solids 58. Then, shape morphometry measures can be expressed in terms of principal 

curvatures: mean curvature as 𝑀𝐶 = ,-.,/
"

, shape index as 𝑆𝐼 = "
1
arctan	(,-.,/

,/9,-
), and 

curvedness as 𝐶𝑉 = ,-/.,//

"
. The principal curvatures of a surface are the eigenvalues of the 

Hessian matrix (second fundamental form), which solve for 𝑘	 𝐻 − 𝑘𝐼 = 0, where 	𝐼 is the 

identity matrix. If 𝑆 is a surface with second fundamental form 𝐻(𝑋, 𝑌), 𝑝 ∈ 𝑀 is a fixed point, 

and we denote an orthonormal basis 𝑢, 𝑣 of tangent vectors at 𝑝, then the principal curvatures are 

the eigenvalues of the symmetric Hessian matrix, 𝐻 =	
𝐻G,G 𝐻G,H
𝐻H,G 𝐻H,H

= 𝐻GG𝜕𝑢" +

2𝐻G,H𝜕𝑢𝜕𝑣 + 𝐻H,H𝜕𝑣", a.k.a. shape tensor. Let 𝑟 = 𝑟(𝑢, 𝑣) be a parameterization of the surface 

𝑆 ⊆ 𝑅%, representing a smooth vector valued function of two variables with partial derivatives 

with respect to 𝑢 and 𝑣 denoted by 𝑟G and 𝑟H, Fig. 3. Then, the Hessian coefficients 𝐻O,P at a 

given point (𝑝) in the parametric 𝑢, 𝑣-plane are given by the projections of the second partial 

derivatives of 𝑟 at that point onto the normal to 𝑆, 𝑛 = RS×RU
RS×RU

, and can be computed using the 

dot product operator: 𝐻G,G = 𝑟G,G ⋅ 𝑛, 𝐻G,H = 𝐻H,G = 𝑟G,H ⋅ 𝑛, 𝐻H,H = 𝑟H,H ⋅ 𝑛, Fig. 3.  
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Figure 3. The (local) geometry of 2-manifolds. Per vertex definitions of curvature, relative to a 

local coordinate framework. 

 

Volume is the amount of 3D space enclosed by a closed boundary surface and can be expressed 

as 𝑉 = 𝐼W(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧ℝ\ , where 𝐼W(𝑥, 𝑦, 𝑧) represents the indicator function of the region 

of interest (𝐷) 59. If 𝑟(𝑢, 𝑣) is a continuously differentiable function and the normal vector to the 

surface over the appropriate region 𝐷 in the parametric 𝑢, 𝑣 plane is denoted by 𝑟G×𝑟H, then 

𝑆^: 𝑟	 = 	𝑟(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝛺, is the parametric surface representation of the region boundary 60. 

Then surface area can be expressed as 𝑆𝐴 = 𝑟G×𝑟H 𝑑𝑢𝑑𝑣b . The fractal dimension 

calculations are based on the fractal scaling down ratio, ρ, and the number of replacement parts, 

𝑁 61. Accurate discrete approximations of these metrics are used to compute them on a mesh-

represented surfaces as described in 53,62. These discrete metrics were first introduced as a part of 

the shape analysis protocol 31 and were further applied in neuroimaging studies 32,33. 
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The extracted 3D morphometric measures serve as features for training a number of machine 

learning algorithms in order to assess classification performance, Fig. 1D. The number of 

detected nucleoli per nucleus is included as an individual feature. We merge nucleoli-level 

features within each nucleus by computing sample statistics (e.g., average, minimum, maximum, 

and higher moments) for each morphometry measure, similarly to 18. These statistics are used to 

augment the signature feature vectors of the corresponding parent nuclei such that all feature 

vectors are of the same length. Correspondingly, nuclei that do not have any automatically 

detected internally positioned nucleoli were excluded from further analysis, such that for each 

nucleus there was at least one nucleolus. 

 

Visual analytics and machine learning for morphometric analysis 

We perform exploratory visual analysis of extracted features using SOCRAT 49, a web platform 

for interactive visual analytics. The goal of visual analytics is to support analytical reasoning and 

decision making with a combination of highly interactive visualizations and data analysis 

techniques 49,63. SOCRAT implements a visual analytics workflow that encompasses an iterative 

process, in which data analysts can interactively interrogate extracted morphometric measures in 

the form of interactive dialogue supported by visualizations and data analysis components. In 

order to assess the variability of extracted morphometry data, we include t-Distributed Stochastic 

Neighbor Embedding (t-SNE) 64 visualizations of the feature space generated by SOCRAT 49. 

We also use SOCRAT to demonstrate interactions between the top-3 important features 

according to the best-performing classification algorithm. All derived morphometric datasets are 

made available within SOCRAT Web Demo application 65. Finally, we provide an ability to 
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visualize volumetric images and extracted meshes online via SOCR Dynamic Visualization 

Toolkit web application 57. 

 

In general, correct classification of every single cell (type, stage, treatment, etc.) is a challenging 

task due to significant population heterogeneity of the observed cell phenotypes. For example, 

the same sample may contain a close mixture of intertwined “cancerous” and “non-cancerous” 

cells phenotypes or both classes may include apoptotic cells exhibiting similar shapes or sizes. 

Given the nature of cell samples, culturing, preparation and collection, we have considered 

classification of cell sets rather than single cells. The idea of classifying sets of cells, rather than 

individual samples, is not new and has been used in recent biomedical image classification 

studies 12,66. The rationale behind this is based upon the observation that even if an algorithm 

misclassifies a few cells in a sample, the final (cell set) label will still be assigned correctly, as 

long as majority of cells are classified correctly. Using this strategy, we performed classification 

on small groups of cells, ranging from 3 to 19 cells per set. During each fold of the internal 

cross-validation, these small cell sets are randomized by bootstrapping procedure with 1,000 

repetitions. Due to the possible presence of batch effects in data, we employ the Leave-2-

Opposite-Groups-Out (L2OGO) cross-validation scheme 18. L2OGO ensures that: (1) all masks 

derived from one image fall either in the training or testing set, and (2) testing set always 

contains masks from 2 images of different classes. We use scikit-learn, a popular Python 

machine learning toolkit 67, to evaluate a number of supervised classification algorithms. 

 

High-throughput workflow protocol 
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While the LONI Pipeline is a popular tool in neuroimaging and bioinformatics, it has been so far 

overlooked by the bioimage analysis community. In this work, we utilized the LONI Pipeline for 

the implementation of a streamlined multi-step protocol that relies on a diverse set of tools and 

solutions seamlessly connected in the LONI Pipeline workflow, Fig. 4. From a high-level 

perspective, every step of data processing and analysis protocol is wrapped as an individual 

module in the workflow that provides input and output specifications that allow the Pipeline to 

automatically connect and manage atomic modules. The modular structure of our 

implementation makes it highly flexible and not limited to specific tools included in the 

workflow. It can be repurposed for a wide range of different experiments by adjusting 

parameters, adding, removing, or replacing individual modules, while preserving high-

throughput capabilities as presented in the Discussion section. Every module represents an 

independent component that can be used in a stand-alone fashion. As a result, a distributed, 

massively parallel implementation of our protocol makes it possible to easily process thousands 

of nuclei and nucleoli simultaneously. The workflow does not depend on the total number of 3D 

objects, biological conditions, or a number of running instances since its execution is completely 

automated once the workflow configuration is fixed, including job scheduling and resource 

allocation. During the execution, our workflow provides a researcher with real-time information 

about progress, allows the viewing of intermediate results at every individual step and failed 

modules may easily be restarted. 

 

The workflow is configured in a way that it can consume data in the format that we use to share 

it, i.e. a 1024×1024×Z 3D volumes in different channels as 16-bit 3D TIFF files. Each volume is 

processed independently, in parallel fashion, such that workflow automatically defines how 
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many processes are needed to analyze all of the input data. 3D shape modeling and 

morphometric feature extraction are performed on individual masks independently, which allows 

us to simultaneously run up to 1,200 jobs on the cluster during our experiments, effectively 

reducing the computing time. Finally, the workflow collects morphometry information from each 

individual mask and combines them in the results table that is further used as an input to 

classification algorithm. These capabilities allow the user to take advantage of modern 

computational resources, lift the burden of low-level configuration from researchers, make it 

easier to control the execution process, and improve reproducibility of the whole process. 

 

 

Figure 4. Screenshots of the exemplar graphical workflow in the LONI Pipeline client interface 

that includes: (left) overview of the validated workflow protocol showing nested groups of 

modules; (A) expanded Volume to Shape group that includes modules that perform 3D shape 

modeling refinement; and (B) expanded Morphometry group that includes a module that 

performs morphological measure extraction. 
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Results 

Validation on synthetic data 

To validate the shape morphometry metrics, we first apply them to synthetically generated 3D 

masks. We use the scikit-image Python library 68 to create 3D solids representing cubes, 

octahedra, spheres, ellipsoids, and 3 overlapping spheres with linearly aligned centers 

(Supplementary Fig. S1 online). We process these objects and compare the resulting shape 

morphometry measures. Specifically, we aim to confirm the expected close relation between the 

analytically derived measures of volume and surface area computed using the corresponding 

shape parameters (e.g., radius, size), and their computationally derived counterparts reported by 

the processing pipeline workflow. Our results illustrate that for nucleus-like shapes, e.g., spheres 

and ellipsoids, the computational error is within 2%. For faceted objects, e.g., cubes and 

octahedrons, the calculation error is within 6%. The increased error in the latter case can be 

explained by the mesh smoothing the surface reconstruction algorithm applies at the shape 

vertices to resolve points of singularity (e.g., smooth but non-differentiable surface boundaries). 

To demonstrate the detection of shape differences between different types of 3D objects, we also 

compare overlapping spheres against circumscribed ellipsoids. As expected, the average mean 

curvature and curvedness measures are lower and shape index values are higher for spheres 

compared to ellipsoids. We observe the similar trend when comparing changes in these shape 

morphometry measures for spheres, ellipsoids, and overlapping spheres. For example, average 

mean curvature and curvedness are highest for overlapping spheres and lowest for spheres, 

which is expected based on definitions of these measures (see Supplementary Table S2). This 

simulation confirms our ability to accurately measure size and shape characteristics of 3D 
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objects, which forms the basis for machine-learning based object classification based on 

boundary shapes. Exemplar results of synthetic data morphometry are available in 

Supplementary Table S1. 

 

Comparison with SPHARM for fibroblast nuclei shape classification 

To assess chosen shape morphometry metrics as discriminatory features we compare them and 

SPHARM coefficients 16,25 in classification of single cell nuclei from the fibroblast collection of 

the 3D Cell Nuclear Morphology Microscopy Imaging Dataset 18. It includes images of primary 

human fibroblast cells that were subjected to a G0/G1 Serum Starvation Protocol that is used for 

cell cycle synchronization 69  and has previously been shown to alter nuclear organization, which 

was reflected in morphology changes, for example, nuclear size and shape 70. As a result, this 

collection contains 962 3D nuclear binary masks in the following phenotypic classes: (1) 

proliferating fibroblasts (PROLIF), and (2) cell cycle synchronized by the serum-starvation 

protocol cells (SS). We use these binary nuclear masks to calculate both SPHARM and 

morphometric features. 

 

To obtain SPHARM coefficients we use the popular SPHARM-MAT toolbox 71 that implements 

surface reconstruction and spherical parametrization using the CALD algorithm 25, followed by 

the expansion of the object surface into a complete set of spherical harmonic basis functions of 

degree 𝑙 = 13 (default setting). Finally, SHREC method 72 is used to minimize the mean square 

distance between corresponding surface parts. SPHARM shape descriptors are computed as 

described in Ducroz et al. 25 and used as feature vectors for classification. 
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We employ the open-source Python package scikit-learn 0.17.0 67 to test a number of commonly 

used machine learning classification methods on derived feature vectors with default parameters 

for each method. Performance is compared using the L2OGO cross-validation scheme and the 

area under the receiver operating characteristic curve (AUC) as a performance metric. As shown 

in Table 1, 3D shape morphometric measures not only demonstrate comparable discriminative 

performance to SPHARM coefficients, but outperform them using all tested algorithms. 

 

Table 1. Comparison of SPHARM coefficients and our morphometry descriptors for single cell 

fibroblast nuclei classification 

Classification algorithm 
SPHARM coefficients, 

mean AUC 

Surface morphometry measures, 

mean AUC 

k-Nearest Neighbors 0.556±0.103 0.629±0.204 

Linear SVM 0.593±0.165 0.677±0.354 

Gaussian SVM 0.677±0.354 0.682±0.264 

Random Forest 0.619±0.175 0.645±0.200 

AdaBoost 0.612±0.246 0.663±0.252 

Gradient Boosting 0.620±0.234 0.674±0.229 

 

Fibroblast cell classification 

The full collection of fibroblast masks for binary classification consists of total 965 nuclei (498 

SS and 470 PROLIF) and 2,181 nucleoli (1,151 SS and 1,030 PROLIF). Figure 5A demonstrates 

the variability of the extracted morphometry measures in a t-SNE projection visualized in 
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SOCRAT. Although there is a small degree of grouping, there is no clear separation between 

classes.	

	

Table 2. Fibroblast single cell and 9-cell sets classification accuracy 

Measure 
Single cell, 

mean (± SD) 
9 cells set, mean (± SD) 

Accuracy 0.754 (± 0.037) 0.951 (± 0.029) 

Precision 0.769 (± 0.047) 0.968 (± 0.035) 

Sensitivity 0.731 (± 0.055) 0.935 (± 0.049) 

AUC 0.754 (± 0.037) 0.951 (± 0.029) 

 

The best result by a single classifier is achieved using a stochastic gradient boosting classifier 

with 1,500 base learners, maximum tree depth 8, learning rate 0.01, subsampling rate 0.5, and 

minimum number of samples at a leaf node 3. Hyper-parameters are fine-tuned using a cross-

validated grid search. To evaluate these classification results, we measured accuracy, precision, 

sensitivity and AUC over L2OGO cross-validation, which are presented in Table 2 for single cell 

and 9-cell-set classifications. Figure 5B shows mean AUC values for set sizes from 3 to 19 cells. 

A 95% accuracy is reached when classifying sets with 9 cells and 98% for sets with 15 or more 

cells. 
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Figure 5. Fibroblast morphometric analysis: (A) SOCRAT visualization of t-SNE projection of 

morphometric feature space; (B) mean AUC for various cell set sizes; (C) top-10 features for 

classification by importance score (right, nucleolar feature names start with Avg, Min, Max or 
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Var, feature names that were also reported in top-10 for PC3 cells are shown in blue font); and 

(D): SOCRAT visualization of interactions between top-3 features. 

 

The gradient boosting classifier also computes and reports cross-validated feature importance 

(Fig. 5C). These allow us to evaluate which measures differ between two cell conditions, and 

potentially propose novel research hypotheses that can be testing using prospective data. 

Previous analysis has reported quantifiable changes in both nuclear size and shape under serum-

starvation70. In our results, both nuclear (top-3, 5 out of top-10) and nucleolar (4 of top-10) 

morphometric size and shape features are reported to be of high importance for distinguishing SS 

fibroblasts from PROLIF (Fig. 5C). We also visualize the relationship between top-3 features 

using SOCRAT, see Fig. 5D. Visualizations suggest the smaller variation of morphometric 

measures in SS fibroblast nuclei compared to their PROLIF counterparts. This result may 

provide insights in further downstream analysis of potential underlying mechanisms that lead to 

these morphometric changes. We have made the fibroblast morphometry data publicly available 

within SOCRAT for further analysis and validation 65. 

 

PC3 EPI/EMT cell classification 

The second collection contains images of human prostate cancer cells (PC3). Through the course 

of progression to metastasis, malignant cancer cells undergo a series of reversible transitions 

between intermediate phenotypic states bounded by pure epithelium and pure mesenchyme9. 

These transitions in prostate cancer are associated with quantifiable changes in both nuclear and 

nucleolar structure10,73. PC3 cells were cultured in: (1) epithelial (EPI), and (2) mesenchymal 
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transition (EMT) phenotypic states. The collection includes 458 nuclear (310 EPI and 148 EMT) 

and 1,101 nucleolar (649 EPI and 452 EMT) 3D binary masks. Random uniform sub-sampling is 

used to resolve the large sample-size imbalance between the 2 classes. Figure 6A demonstrates 

the variability of the extracted morphometry measures in a t-SNE projection visualized in 

SOCRAT. Similar to fibroblasts, the projection of the PC3 morphometric feature space does not 

demonstrate clear separation between classes. 

 

Table 3 PC3 single cell and 9-cell sets classification accuracy 

Measure 
Single cell, 

mean (± SD) 

9 cells set, 

mean (± SD) 

Accuracy 0.764 (± 0.059) 0.954 (± 0.059) 

Precision 0.761 (± 0.080) 0.943 (± 0.085) 

Sensitivity 0.787 (± 0.080) 0.978 (± 0.043) 

AUC 0.764 (± 0.059) 0.954 (± 0.059) 
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Figure 6. PC3 morphometric analysis: (A) SOCRAT visualization of t-SNE projection of 

morphometric feature space; (B) mean AUC for various cell set sizes; (C) top-10 features for 

classification by importance score (right, nucleolar feature names start with Avg, Min, Max or 
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Var, feature names that were also reported in top-10 for Fibroblast cells are shown in blue font); 

and (D): SOCRAT visualization of interactions between top features (1st, 2nd, and 4th). 

 

In this case, the best classification by single classifier is the result of applying a random forest 

model (1,000 trees, maximum tree depth 12, maximum number of features for the best split 

40%). Hyper-parameters fine-tuning, accuracy metrics, and cross-validation procedures are 

identical to the ones reported in the previous fibroblast experiment. Similar to the fibroblast cell 

classification, classification of sets of 9 cells achieves a mean accuracy of 95.4%, which 

increases to 98% for sets of 15 or more cells, Table 3. Figure 6B reports the AUC for different 

group sizes to show how the classification accuracy increases with the cell-set size and reaches 

98% for sets of 13 cells. In this experiment, we also examine the classifier-reported feature 

importance, Fig. 6C. The top-10 important features in this classification included nuclear (3 of 

top-10, 2 of which are also Fibroblast top-2) and nucleolar (top-5) shape morphometry features. 

Top feature interactions visualized using SOCRAT demonstrate the important changes in 

distributions of nucleolar morphometric measures, Fig. 6D. For example, it seems that the EPI 

nucleoli tend to have a higher average volume, while also having more variability in minimal 

curvedness and maximum fractal dimension, compared to EMT nucleoli. Previously reported 

PC3 morphological analyses73 only used simple 2D nuclear form measures, such as diameter 

and the size of the bounding box. While we also confirm the importance of nuclear form in our 

results, we also suggest that further investigation of other highly ranked features, such as 

nucleolar curvedness, shape index and fractal dimension, may provide interesting mechanistic 
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insights. PC3 morphometry data are made publicly available within SOCRAT for further 

analysis and validation 65. 

 

Discussion 

In this study, we propose, implement and validate a solution for 3D modeling, morphological 

feature extraction, analysis and classification of cells by treatment conditions. Compared to other 

studies using 2D projections, this approach operates natively in 3D space and takes advantage of 

extrinsic and intrinsic morphometric measures that are more representative of the real, 

underlying nuclear and nucleolar geometry and allow easy human interpretation. Given the 

limitations of using 3D voxels for accurate shape representation, we employ 3D surface models 

to extract more informative size and shape measures to improve the morphology classification 

performance. Robust surface reconstruction allows accurate approximation of 3D object 

boundaries that was validated on synthetic data. Suggested shape morphometric measures 

outperforms another popular approach and demonstrated their universality across different cell 

types, conditions, and even domains 31-33.  

 

Our computational protocol implementation is highly parallel with throughput limited only by 

the number of available computing nodes, and it can process thousands of objects simultaneously 

with minimal human intervention. This pipeline workflow integrates a number of open-source 

tools for different steps of data processing and analytics. Every module in our workflow 

represents an individual component that can be easily modified, removed, or replaced by an 

alternative. Such modular software platform architectures have been shown to enable high 

reusability and ease of modification 49. This allows the user to use the same workflow or 
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customize and expand it (e.g., specification of new datasets, swapping of specific atomic 

modules) for other purposes that require the analysis of a diverse array of cellular, nuclear, or 

other studies. The live demo available via the LONI Pipeline demonstrates the simplicity of use 

and high efficiency of parallel data processing. LONI also provides guest access (see 

Supplementary Information) and an opportunity to utilize a 4,500-core LONI cluster after 

applying for a collaboration account. 

 

We test our approach on the 3D Cell Nuclear Morphology Microscopy Imaging Dataset 18, 

which includes a total of ~1,500 nuclear and ~2700 nucleolar masks. The classification results on 

these data comparing epithelial vs. mesenchymal human prostate cancer cell lines and serum-

starved vs. proliferating fibroblast cell lines demonstrate the high accuracy of cell type prediction 

using 3D morphometry, especially when applied to sets of cells. Although different classification 

algorithms appear to be optimal for different experiments, we observe that both nuclear and 

nucleolar morphometric measures are important features for discriminating between treatment 

conditions or cell phenotypes. In the case of fibroblast classification, the results show the 

importance of nuclear morphometry, the number of nucleoli per nucleus, and various internal 

nucleolar morphometric measures. These observations confirm and extend previously reported 

results. For PC3 cells, the most important classification features are the moments of the 

distributions of various nucleolar morphometric measures, along with nuclear size and shape. 

Interestingly, there were 3 common morphometric features among the top-10 most important 

ones for both cell lines. This confirms previously reported observations 73, suggests new 

important morphological characteristics, and demonstrates that our method extracts relevant 

information from cell forms to successfully classify cells using a combination of criteria. In 
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addition, this also demonstrates the importance of sophisticated shape metrics, compared to 

volume and surface area that alone, were not the most informative features for the classification 

results. The use of SOCRAT enables interactive interrogation of morphometric data in a visual 

manner, supported by analytical tools. This method of interactive ‘visual analytics’ provides 

insights into feature dependencies and interactions, and can be used for result interpretation. We 

also provide an ability to visualize 3D volumetric images and extracted meshed online using 

SOCR Dynamic Visualization Toolkit web application 57. 

 

Our computational approach is scalable and capable of processing various complex big 3D 

imaging data, and is not limited to nuclear and nucleolar shapes. With some changes, it can be 

applied to other cellular and nuclear compartments of interest. More specifically, the robust 

smooth surface reconstruction algorithm can be directly applied to any 3D shapes as long as their 

topology is sphere-like. Together with molecular level techniques, such as Hi-C, our 3D shape 

morphometry workflow can form a powerful combination for the investigation of DNA 

architecture in the spatial and temporal framework of the 4D nucleome 6,74. One example of the 

many possible future applications of this workflow is to study asymmetric cell division. Stem 

and progenitor cells are characterized by their ability to self-renew and produce differentiated 

progeny. A balance between these processes is achieved through controlled asymmetric divisions 

and is necessary to generate cellular diversity during development and to maintain adult tissue 

homeostasis. Disruption of this balance may result in premature depletion of the stem/progenitor 

cell pool, or abnormal growth 75,76. In many tissues, dysregulated asymmetric divisions are 

associated with cancer. Whether there is a causal relationship between asymmetric cell division 
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defects and cancer initiation is unknown. We propose that our shape analysis pipeline will be 

useful in studying the 4D nucleome topology of morphogenesis and cancer initiation. 

 

As one of the approach limitations we point out that other geometric measures can be used to 

characterize shapes of interest, such as intrinsic shape context, compactness, symmetry, 

smoothness, convexity, etc. In the current representation, analyzable shapes are limited to genus 

zero surfaces, which is a fair assumption when modeling objects like nuclei or nucleoli. 

However, it might be not trivial when considering other nuclear structures, for example, 

chromosome territories or interchromosomal loops, since their topologies may not be 

homeomorphic to a sphere, or may not appear to be genus zero under some imaging conditions 

and modalities. It is also conceivable, yet not very likely for the discretized LB, that 2 different 

shapes may have the same spectra, in which case, we may fail to detect the intrinsic differences 

between them due to false-negative error. Even though our workflow only requires little 

intervention (classifier selection and tuning), further improvements would involve adaptive 

implementations with even less manual intervention, as well as extraction of additional features. 

Another option is to use deep learning-based methods that alleviate the need to define features 

and allow to learn relevant patterns directly from data 77,78. For example, textural features could 

possibly increase discriminatory power of the method and provide more information on 

chromatin reorganization. Since nuclear deformation serves as a proxy to underlying processes, 

the importance of particular features and the method’s ability to classify nuclei does not provide 

direct insights into fundamental biological mechanism driving the observed morphometric 

differences between cell phenotypes or environmental conditions. The computational results 
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should be further tested and externally validated using other experimental conditions and 

prospective data. 

 

Conclusions 

Quantification of cell nuclear morphology enables more subtle characterization  of cellular 

phenotypic traits, which can be associated with functional changes coupled to underlying 

biological processes. Using the new methodology described in this paper, we compared the 

morphology of serum-starved vs. proliferating fibroblast cells as a control, follow by a 

comparison of epithelial with mesenchymal human prostate cancer cell lines. In the case of 

fibroblast classification, our results show the importance of nuclear morphometric change, along 

with the number of detected nucleoli per nucleus, and various internal nucleolar morphometric 

measures. Results for PC3 cells demonstrate that the changes in nucleolar morphology are the 

most informative. However, in both cell lines both nuclear and nucleolar morphometric measures 

contribute to the discriminative power of the classification algorithms. To the best of our 

knowledge, this study is the first where a 3D morphometric assay could easily distinguish 

between the epithelial and mesenchymal cell nuclei. We also suggest that further investigation of 

highly ranked features that were not previously reported, such as nucleolar curvedness, shape 

index and fractal dimension, may provide interesting mechanistic insights. 

 

The ability to automate the processes of specimen collection, image acquisition, data pre-

processing, computation of derived biomarkers, modeling, classification, and analysis can 

significantly impact clinical decision-making and fundamental investigation of cell deformation. 

To our knowledge, this is the first attempt to combine 3D cell nuclear shape modeling by robust 
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smooth surface reconstruction and extraction of shape morphometry measures into a highly 

parallel pipeline workflow protocol for morphological analysis of thousands of nuclei and 

nucleoli in 3D. This approach allows efficient and informative evaluation of cell shapes in the 

imaging data and represents a reproducible technique that can be validated, modified, and 

repurposed by the biomedical community. This facilitates result reproducibility, collaborative 

method validation, and broad knowledge dissemination.  

 

Availability of materials and data 

The documentation supporting the conclusions of this article together with the pipeline 

workflows and underlying source code are made available online on the project webpage SOCR 
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