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Abstract. Recent advances in experimental methods in neuroscience enable measuring in-vivo

activity of large populations of neurons at cellular level resolution. To leverage the full potential
of these complex datasets and analyze the dynamics of individual neurons, it is essential to

extract high-resolution regions of interest, while addressing demixing of overlapping spatial
components and denoising of the temporal signal of each neuron. In this paper, we propose

a data-driven solution to these challenges, by representing the spatiotemporal volume as a

graph in the image plane. Based on the spectral embedding of this graph calculated across
trials, we propose a new clustering method, Local Selective Spectral Clustering, capable of

handling overlapping clusters and disregarding clutter. We also present a new nonlinear mapping

which recovers the structural map of the neurons and dendrites, and global video denoising.
We demonstrate our approach on in-vivo calcium imaging of neurons and apical dendrites,

automatically extracting complex structures in the image domain, and denoising and demixing

their time-traces.

1. Introduction

Detecting numerous small regions of interest is a prevalent problem in biomedical imaging
applications, where images are composed of hundreds of structures such as cells, organelles or
neurons, acquired in various imaging sensors such as imaging mass cytometry (Cytof), Multiplexed
ion beam imaging (MIBI), hyperspectral microscopy, etc. [1, 2]. In these datasets each pixel in
the image is associated with a high-dimensional vector of measurements and a critical task is the
ability to extract small structures from these datasets. This challenge also exists in biomedical
videos, such as calcium imaging data, where each pixel is associated with a high-dimensional
time-trace of up to tens of thousands of time-frames.

Calcium imaging, based on high resolution genetically encoded calcium indicators combined
with two photon microscopy, has revolutionized the ability to track the activity of neuronal net-
works in awake behaving mammals. These methods not only enable chronic, minimally invasive
recordings of large populations of neurons with cellular level resolution, they also allow recordings
from identified neuronal subtypes [3]. This ability has major significance, and is expected to raise
understanding of neuronal circuits to a new level, since different neuronal populations receive and
send specific inputs associated with distinct network functions.

However, the analysis of this data relies first and foremost on the ability to automatically
extract high-resolution regions of interest (ROI) of each neuron and their corresponding time-
traces. Given these traces it is then possible to recover the spiking activity of each neuron from
the slower dynamics of the calcium indicator for further analysis [4–6]. One challenge of ROI
extraction is the separation of overlapping ROIs, where the overlap is due to the projection of a
3D volume onto a 2D imaging plane. A second challenge is the images themselves, which suffer
both from varying dynamic range, and low signal-to-noise ratio due in part to the activation of
calcium in the neuropil creating a noisy heterogeneous background [7]. In addition the data suffers
from measurement noise and movement artifacts [8].
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Analysis of calcium imaging data has typically relied on the assumption that ROIs are spatially
sparse (occupying a small region of pixels in the image plane), with a sparse temporal signal. Some
methods address only the spatial extraction of the ROIs, without recovering the temporal signal of
each ROI. In [9], ROIs are detected by filtering a local cross-correlation peak image computed from
the temporal correlation of each pixel with its adjacent neighbors. Pachitariu et al. [7] develop a
generative spatial model for biological images based on convolutional sparse block coding. Applied
to calcium imaging, they learn models of somas and dendrites from a single image of the mean
temporal activity.

Other methods address both the spatial and temporal components, identifying both spatial
ROIs and their time-traces. Mukamel et al. [10] proposed spatiotemporal independent component
analysis (ICA), using skewness as a measure of sparsity. Diego and Hamprecht [11] extend convolu-
tional sparse coding to video data, extracting sparse spatial components and their sparse temporal
activity while estimating a non-uniform and temporally varying background. More recent ap-
proaches focus on matrix factorization with different constraints and penalties on the background
component, sparseness of the solution and temporal dynamics [12–15]. Pnevmatikakis et al. [14]
presented a state of the art method based on constrained matrix factorization, which explicitly
models the calcium indicator dynamics. More recent work has deviated from sparsity-based solu-
tions towards general model-free and data-driven approaches [8,16], and our framework detailed in
this paper falls within this line of work. Our extraction does not rely on modeling the fluorescent
calcium activity but takes a general approach to solving clustering of high-dimensional data in the
presence of noisy clutter. It should be noted that despite all these algorithmic advances, manual
segmentation is still commonplace, requiring expensive expert time and yielding unreproducible
data.

In this paper, we develop a graph-based approach for high-dimensional clustering, motivated
from a manifold learning perspective. Our main contribution in this paper is three-fold. First, we
propose a new approach, Local Selective Spectral Clustering (LSSC), that differs from the popular
algorithm and its variations [17–22], by both relying on localized viewpoints in the embedding
space, and by looking deeper into the spectrum. Second, we obtain a structural map of the
neurons, demonstrating a depth-map recovery of the data. We demonstrate that this map is
more informative and cleaner than the typically used correlation image. Finally, we develop
a full framework for ROI extraction and denoising, without imposing sparsity constraints. Our
framework results in ROI extraction of neuronal structures, a temporal denoising of the time-traces
for each ROI and as a by-product, enables spatial denoising which provides an enhanced viewing
of the video itself. In contrast to other methods, we make no assumptions on the morphology of
the ROIs or the statistics of the temporal signal.

Our approach can be applied to both long-running experiments and to datasets following a
fixed-length trial protocol. Such data is especially appropriate as the repetitive nature of the
trials leads to both stronger spatial and temporal connections. We demonstrate our approach
on multi-trial experiments of fixed-length in awake mice, and demonstrate the ability to identify,
extract and demix neurons and apical dendrites from dense fluorescent images.

This paper is organized as follows. We introduce relevant notations and briefly review nonlinear
spectral embeddings in Sec. 2. In Sec. 3 we present the LSSC approach, and its application to
calcium imaging. Sec. 4 introduces a local denoising scheme for the ROIs and a global denoising
scheme for the video itself. In Sec. 5 we present results on in-vivo neuronal recordings of somas
and dendrites.

2. Background

Our approach is general and can be applied to a wide range of high-dimensional biomedical and
remote sensing imagery. Here we focus on calcium imaging where the high-dimensionality arises
from the temporal nature of the measurements. While we derive our notations in the spatiotem-
poral context, our approach can be generalized for multi-channel imagery, such as hyperspectral
images. The notations in this paper follow these conventions: matrices M are denoted by bold
uppercase and vectors v are denoted by bold lowercase.
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(a) (b) (c)

Figure 1. (a) Temporal mean image. (b) Temporal correlation image. (c) Em-
bedding norm image. The clusters visualized in the embedding norm image cor-
respond to the typical “donut” structure of neurons in the temporal mean image.
Dendrites connecting to the soma are also seen with very high resolution, whereas
they are barely visible in the other two images.

Let Z(x, y, t, n) be a spatiotemporal dynamical system where x, y are the spatial coordinates,
t : 0 ≤ t ≤ T is a short time scale representing a trial of fixed length T and n is an index of
the separate trials. Denote by Zn(x, y, t) the measurement at pixel location (x, y) and time t
for the n-th trial. The matrix Zn ∈ Rnp×T is the flattening of the 3D tensor of a single trial
n into a matrix whose rows are indexed by i ∈ {1, ..., np}, and whose columns are indexed by
the time-frames in the trial, where np is the total number of pixels in the image plane. Each
row in the matrix is the time-series of pixel i, or location (xi, yi), denoted by zn,i = zn(xi, yi) =

(Zn(xi, yi, 1), ..., Zn(xi, yi, T ))
> ∈ RT . Specifically, we focus on calcium imaging data, where Z

are fluorescent measurements.
Our goal is to find spatial ROIs, denoted {Ck}, which are subset of pixels in the image plane

that compose a neuronal structure, such that ∀i, j ∈ Ck, zn,i and zn,j are similar for some n. We
assume that there may be overlapping ROIs due to the projection of the 3D volume to the 2D
imaging plane, so that the ROIs are not disjoint, i.e., there may ∃k, k′ such that Ck

⋂
Ck′ 6= ∅.

We require that an ROI Ck is a connected component in the image plane.
Having identified spatial ROIs, the temporal measurements of each pixel in an ROI Ck are

used to calculate a time-trace of its fluorescent activity, denoted Fk(t, n). These time-traces serve
further analysis of the identified ROIs, for example, spike extraction [4–6], or uncovering dynamical
factors in the neuronal activity [23, 24]. To this end, the time-traces of the neurons need to be
demixed (for overlapping neurons) and denoised.

2.1. Nonlinear embedding. We aim to both extract distinct ROIs and denoise the data. Spec-
tral methods have been used successfully for both of these tasks, such as spectral clustering and
diffusion maps, [18,25,26]. Specifically, we will focus on the eigenvectors of a spatial random-walk
affinity matrix on the data. We calculate a global embedding, which we will employ both for
non-local denoising of the video [27] and a spatial clustering for ROI extraction.

Let each pixel i in the image plane be a node in a graph for which we observe a high-dimensional
feature vector: the time series zn,i. To define the weights between nodes, we disregard spatial
proximity but rather focus on similarity of the temporal measurements. For each trial n, we define
the affinity matrix Kn whose elements are the pairwise affinity between the T -length time-series
of two spatial locations zn,i and zn,j :

(1) Kn(i, j) = exp{−‖zn,i − zn,j‖2/σiσj},

where σi, σj are the local self-tuning scale [19] of zn,i and zn,j , respectively. Due to the large size
of the dataset, np pixels, we calculate Kn as a sparse symmetric affinity matrix, using k-nearest
neighbors [28].
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A corresponding row-stochastic matrix is obtained by normalizing the rows of Kn:

(2) Pn = D−1n Kn,

where Dn is a diagonal matrix whose diagonal elements are the degree of each node: Dn[i, i] =∑
j Kn[i, j]. The matrix Pn can be considered the transition matrix of a Markov chain on the

data, where Pn[i, j] is the probability of jumping from zn,i to zn,j . The eigen-decomposition of

Pn yields a a sequence of eigenvalues λ
(n)
i such that 1 = λ

(n)
0 ≥ λ

(n)
1 ≥ ..., and bi-orthogonal left

and right eigenvectors, {φ(n)` }` and {ψ(n)
` }`, respectively.

We calculate the eigenvectors of Pn for each trial n ∈ {1, ..., N}, obtaining N different nonlinear
embeddings of the spatial graph, denoted by Ψn : RT → Rd. Each pixel is associated with its
corresponding elements in the set of right eigenvectors:

(3) Ψn(i) =
(
ψ
(n)
1 (i), ..., ψ

(n)
d (i)

)T
∈ Rd.

Thus, each pixel is no longer represented by a high-dimensional vector of temporal activity, but
rather the values in the embdding space. Note that unlike diffusion maps [26], we do not weight
the eigenvectors by their corresponding eigenvalues. As opposed to principal component analysis
(PCA), which is commonly used in neuroscience and has been used for ROI extraction [10], the
representation here is nonlinear and derived from a sparse row-normalized affinity matrix, and not
the full covariance matrix.

For data that is a long-range experiment and not trial-based, it is possible to divide the data
into N shorter subsets in time. The advantage of this is that short-term correlations are more
accurate in defining similarity and less sensitive to noise.

3. ROI Extraction

We propose a novel clustering method based on the spectral embedding of the high-dimensional
data-points. We present our method in the context of ROI extraction in calcium imaging data,
where the clusters represent neuronal structures with distinct temporal activity, however this
method is not tailored to a specific application. Our approach is motivated by spectral clustering,
whose limitations we will briefly discuss.

The eigenvectors corresponding to the smallest eigenvalues of the normalized Laplacian

L = I−D−1K

are employed in classical spectral clustering techniques, which propose selecting the first k eigen-
vectors for identifying k clusters, for example via k-means [18,29]. This is based on the property of
the eigenvectors of the Laplacian to localize on clusters in the data. Various methods try to align
these eigenvectors with the canonical coordinate system, i.e., the axis {ei} [19,22]. It has recently
been established that for well-defined clusters, the first k eigenvectors compose an orthogonal-
cone-structure, where each cone comprises a cluster [21,22]. Note that these eigenvectors are also
eigenvectors of a Markov matrix on the data defined as in (2), motivating our approach.

Yet, for data which varies in density and cluster size, typically the first k eigenvectors will not
identify k clusters. Instead several eigenvectors may “repeat” on the same cluster [20, 30]. An
additional limitation of traditional approaches is that they assume all points belong to a cluster,
whereas in calcium imaging (and other biomedical imaging applications), there are pixels belonging
to the clutter (background), which are not of interest, and whose proportion out of the full image
plane can vary (see Fig. 1 and 2(a)). Applying k-means to the eigenvectors, for example, will
result in these background points being randomly assigned to one of the clusters, as the clutter
will be randomly spread on the unit k-dimensional sphere and clustered along with the objects of
interest.

In Fig. 3(a) we plot the first three eigenvectors of P1: ψ1, ψ2, ψ3, for the first trial in the
dataset corresponding to Fig. 2. Each point in the embedding space corresponds to a pixel in
the image plane. This demonstrates the nature of the eigenvectors to localize on a cluster or
subset of clusters in the data, while tending to zero on the rest of the data. The eigenvectors form
three distinct branches, where each such branch corresponds to a small subset of clusters in the
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(b)

(c) (d)

(a)

Figure 2. (a) Maximum embedding norm image, constructed by aggregating 20
trials where 50 eigenvectors have been calculated for each trial. (b) “Supervised”
embedding norm image, where the embedding norm image has been calculated
using a subset of eigenvectors from all 20 trials which are associated with ROIs we
detected automatically. This enhances structures corresponding to the identified
ROIs and removes interference form the background. (c)-(d) An unsupervised
“random projection” construction of the embedding norm. Instead of using all 50
eigenvectors for each trial, we randomly select 10 out of 50 eigenvectors and cal-
culate the maximum embedding norm of this subset. Both images are a random
realization of this construction, where comparing the two reveals different struc-
tures. Some regions are enhanced while others disappear entirely. This enables a
new multi-view visualization of data.

data, visualized in Fig. 3(b). For each of the three branches, we map a set of points along the
branch, labeled in black, back into the image plane, revealing either single or multiple neurons in
each branch. Meanwhile, the majority of points lies at the origin. Note that these branches mix
different neurons together.

We propose to take advantage of the eigenvectors localizing on different clusters in the data,
but not limit the considered embedding space to only the first k eigenvectors, but rather look
deeper into the spectrum. To this end, we present a novel spectral clustering approach, Local
Selective Spectral Clustering, and apply it to ROI extraction in calcium imaging. We first present
a global construction that visualizes the neuronal structures active in the video data as a 2D
image. This image is used to initialize our clustering algorithm, as a measure for automatically
detecting suspects belonging to clusters.
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Figure 3. First three eigenvectors of a trial corresponding to the dataset in
FIg. 2. Each point corresponds to a pixel in the image plane. The black points
along each branch are visualized as a mask overlaid on the embedding norm image,
revealing that each branch in the 3D embedding localizes on one or more neurons
in the image plane.

3.1. Embedding norm. An image summarizing the activity in a calcium imaging video is useful
for both manually identifying ROIs, ground truth labeling, overlaying identified ROIs to determine
what structure they capture and initializing ROI extraction methods as in [8]. Commonly used
visualizations are the temporal mean image, temporal maximum image or a temporal correlation
image [9] computed by

Icorr(x, y) =
1

T

T∑
t=1

Z(x, y, t)Z̄(x, y, t),

where Z̄n(x, y, t) is a spatial average of the pixels 4-adjacent (or 8-adjacent) neighbors (disregarding
the image boundaries):

Z̄(x, y, t) = h ∗ Z(x, y, t), h(x, y) =
1

4

0 1 0
1 0 1
0 1 0

 ,

where ∗ indicates spatial convolution. Localized regions in the correlation image with high intensity
correspond to strongly active cells, whereas localized regions with lower intensity correspond to
neurons with lower intensity or other non-stationary processes. However, in complicated and noisy
data this method yields a poor representation of the underlying structure.

We present a new 2D visualization based on the eigenvectors of the graph-Laplacian. As
demonstrated in Fig. 3, clusters lie in branches or ideally in cones [21] in the eigen-space, with the
clutter converging to the origin. Furthermore, recent results [31] indicate that a point i attaining

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2018. ; https://doi.org/10.1101/313981doi: bioRxiv preprint 

https://doi.org/10.1101/313981


AUTOMATED CELLULAR STRUCTURE EXTRACTION 7

the maximal magnitude of an eigenvector |ψ(i)| of the Laplacian operator on a graph lies far from
the boundary of its cluster, i.e., close to the center of the cluster. Thus, visualizing the norm of
the embedding as a 2D image serves both to suppress the background (since it has a small norm),
while measuring how far each point is from its cluster boundary.

For pixel i in trial n, we calculate its norm in the embedding space, and view this as an image:

s(n)(xi, yi) =
d∑

`=0

(ψ
(n)
` (i))2 = ‖Ψn(i)‖22.

This image serves as a measure of how active each pixel is in a given trial n. In the case of
multi-trial datasets, this measure is aggregated across all N trials, by calculating the maximum
of {sn}Nn=1:

(4) s(xi, yi) = max
n
{s(n)(xi, yi)}.

In this paper, we employ the embedding norm both globally and locally, on subsets of eigenvec-
tors. The embedding norm has been considered as an object of interest for target detection in a
supervised graph setting [32], and is closely related to the anomaly detection measure in [33].

In Fig. 1, we compare the temporal mean image (a), correlation image (b) and embedding norm
(c) for a publicly available dataset from the Neurofinder Challenge website (http://neurofinder.
codeneuro.org/). This dataset is 1000 seconds long imaged at 8Hz. The embedding norm visu-
alizes multiple structures that are barely visible in the correlation image (if at all), and compared
to the temporal mean image, it has removed all the background activity while visualizing both
somas and dendrites with sharp morphology. Somas visible as “donuts” in the temporal mean
image are visible in the embedding norm as filled in clusters.

Figure 2(a) presents the max embedding norm for a multi-trial dataset consisting of 20 consec-
utive trials, using the first 50 eigenvectors for each trial. This reveals both neurons and dendrites,
with overlapping structures. The embedding norm can be used to reveal and enhance various
structures in the data. In Fig. 2(b) we calculate a “supervised” embedding norm, where we do not
sum over all eigenvectors, but rather only a subset of eigenvectors that are associated with an iden-
tified group of ROIs we extracted with our approach. This image enhances identifies structures,
and removes the background interference. In a similar fashion we can consider, not a supervised
construction but rather an unsupervised one. We randomly select 10 out of 50 eigenvectors for
each trial composing the dataset and calculate the max embedding norm for this subset of eigen-
vectors. We present two such images in Fig. 2(c)-(d). Each image reveals certain structures, while
others have vanished, or have reduced intensity compared to other regions in the image. Thus,
as opposed to the correlation image which is “static”, here we can view the data from multiple
viewpoints, each revealing new information and different levels of detail about the data. Viewing
such random projections of the embedding is a novel construction (to the best of our knowledge)
and its full implications and applications will be further explored in future work.

3.2. Local Selective Spectral Clustering. Having demonstrated the capability of the eigen-
vectors to visualize structure in the data, we present a new clustering approach for ROI extraction,
inspired by spectral clustering [18, 29]. Our approach differs from traditional spectral clustering
techniques in three aspects. First, instead of employing a global embedding of the data, we aim
to find a local subset of eigenvectors, which best separates a cluster from the rest of the points.
Second, instead of clustering all of the data at once, we present a greedy method that iterates over
the different clusters. This allows for a stopping procedure so clustering the clutter can be avoided.
Finally, we allow for multiple cluster membership, thereby detecting overlapping clusters. Since
a point can be “expressed” in different subsets of localized eigenvectors, we can associate a point
with more than one cluster. In calcium imaging, due to the axial resolution and the projection of
a 3D volume onto a 2D plane, high measured intensity in a pixel can be traced to multiple neurons
at the measured depth. For the sake of simplicity we begin with considering only one trial and
neglect the index n in the following derivations.

We begin with composing a list l of the pixels in the image, ranked by a measure of their
activity. Thus, we sort all pixels according to their maximum embedding norm s(x, y) (4) in
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(a)

(b)

Figure 4. Local viewpoints extracting 4 different clusters. (a) The top three
eigenvectors of the selective viewpoint ΨLi

of a suspect i. Each local viewpoints
contains several extending branches with the majority of points clustering at the
origin. (b) The black points extracted from a single branch mapped back into the
image plane, identifying either single neurons or a dendrite.

descending order. Another possibility to construct l is to provide a user-interface with which to
mark suspicious regions, for example, by providing the user with the maximum embedding norm,
however this is outside the scope of this paper. Either ROI candidate initialization proposed
in [8,14] can also be applied to construct l. Since we iterate only over points with high embedding
norm, we essentially ignore the clutter.

For a suspect point i, we find a subset of eigenvectors which form a “selective viewpoint” in
which the suspect point and its corresponding cluster can be separated from the rest of the points.
Starting with the point at the top of the list l, we sort the eigenvectors based on decreasing order
of magnitude on point i:

(5) |ψ`1(i)| ≥ |ψ`2(i)| ≥ |ψ`3(i)| ≥ ...

If the dataset is composed of multiple trials, we rank the eigenvectors from all trials together.
Next, we select only the first di eigenvectors from this sequence, for example by thresholding

the values with respect to |ψ`1(i)|, and set this subset to be Li = {`1, `2, ..., `di
}. We denote the

embedding of the data in this viewpoint as

(6) ΨLi(j) =
(
ψ`1(j), ψ`2(j), ..., ψ`di

(j)
)T

,

and term it a “selective viewpoint”. In this manner we find low-dimensional viewpoints in the
embedding space, which best isolate a specific cluster. Points which belong to the same cluster as
point i, will form a branch in the embedding space, where the maximal endpoint of this cluster
is the centroid of the cluster, as indicated in [31]. Other clusters may occupy branches projecting
into different directions in this space, while most points will collapse to the origin, due to the
localization property of the eigenvectors. By taking into account embeddings from multiple trials,
we leverage the redundancy of eigenvectors localizing on a cluster to better separate it from the
background.

Having calculated Li, we want to select the points similar to zi, identified by lying along the
same branch as Zi in ΨLi . We extract the points along the branch by comparing the distances of
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all points Zi to their distance to the origin in the selected subspace:

(7) Ck = {j | ‖ΨLi
(i)−ΨLi

(j)‖2 ≤ ‖ΨLi
(j)‖2, j ∈ 1, ..., np},

where k indexes the cluster, and i is the current suspect point. As most points lie at the origin,
their distance to the origin, i.e., their norm, is smaller than their distance to the suspect point.
Points closer to zi are assigned to the cluster Ck.

This is demonstrated in Fig. 4, for four different points and their selective viewpoint. Given
a point we calculate its selective viewpoint, and then extract all points belonging to the branch
that defines the point in this sub-space. In Fig. 4(a) we plot the first 3 leading eigenvectors of the
selected viewpoint ΨLi

. The black points indicate the extracted cluster and are mapped back into
their corresponding pixels in the image plane in Fig. 4(b).

Next, we remove all points from Ck that do not form a connected component with Zi in the
image plane, since we assume that the ROIs are spatially compact. We then remove all points
j ∈ Ck from the list l, and apply the selective clustering to the point at the top of the list. Note
that points already belonging to a cluster Ck cannot initialize their own cluster, but they can
belong to more than one cluster, thus enabling overlapping ROIs. We disregard a cluster Ck if it
is below a certain area threshold, i.e., we expect the ROIs to have a minimal spatial footprint. We
stop once we have found nclust clusters pre-specified by the user.

We next merge clusters based on spatial overlap and temporal correlation [14]. This procedure
does not merge clusters that are spatially overlapping but are characterized by separate time-
traces, i.e., overlapping neurons. The merging operation yields a final set of ROIs. We then
rank the ROIs according to the product of the maximum values of their temporal and spatial
components [14], so that the top-ranking ROIs have compact spatial support and strong temporal
activity. Our clustering algorithm is provided in Alg. 1.

Our approach is related to the method in [34], where local “differential” viewpoints are con-
structed for anomaly detection. However, the viewpoints in [34] are created via random projec-
tions in a low-dimensional embedding space for the purpose of isolating single points from their
neighborhoods to characterize anomalies, whereas we define the local viewpoint in a deterministic
manner for the purpose of clustering, based on the properties of the embedding.

Note that the metric we use in (1) is based on temporal similarity of two pixels. One can adapt
this metric to also incorporate spatial distances to suppress similarity between pixels that are
correlated but spatially removed, however this requires adding a tradeoff parameter between spatial
and temporal distances. In addition, using temporal similarity as in the current construction will
mostly reveal active neurons. To detect non-active neurons, the metric can be further extended
to incorporate spatial image features. Thus, the advantage of our clustering based approach is
that different features and distances can be incorporated into the similarity kernel based on the
structure of the data, and the required output clusters.

3.3. Cluster refinement. Once an initial cluster Ck has been extracted, it can be further refined
in the following way. We calculate a score for each eigenvector as

r
(n)
` =

∣∣∣∣∣∑
i∈Ck

ψ
(n)
` (i)

∣∣∣∣∣ ,
and rank the eigenvectors from all trials in descending value. Note that the absolute value is over
the sum and not the individual values of the points. In this way, eigenvectors that oscillate on
a certain cluster, thereby splitting it in the embedding space, are ranked lower than eigenvectors
that have a smooth value across the cluster.

Selecting the top ranked eigenvectors defines a new viewpoint ΨLk
for cluster Ck. The centroid

of the cluster is set to be the point whose embedding is the tip of the branch in this viewpoint,
i.e., the point in Ck with the highest embedding norm in ΨLk

:

icent = arg max
j∈Ck

‖ΨLk
(j)‖22

A new cluster is now extracted in this viewpoint by thresholding the distances of all points to
icent in ΨLk

. This refinement selects a viewpoint that is not defined by a single suspect point,
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Figure 5. (top) Original extracted clusters from suspect points. (bottom) Re-
fined clusters by calculating a consistent viewpoint and cluster centroid.

but rather consistent across the initial cluster. Furthermore, the distances are not measured with
respect to an arbitrary point in the cluster, but instead, to its centroid (defined as the tip of the
branch).

In Fig. 5 we apply this refinement process to the initial clusters depicted in the top row, and
obtain the clusters in the bottom row. This improves both somatic and dendritic ROIs.

3.4. Large-scale data. In terms of practical considerations, constructing a graph for large-scale
images with high-dimensionality has a high computational complexity. To address this, first we
use approximate nearest-neighbor search [28] to construct a sparse affinity matrix in the spatial
domain. Second, if the size of the image is too large, in order to speed-up and parallelize the
processing, the image can be divided into sub-regions with overlap proportional to the size of
a typical neuron. Since the neuronal structures are local in scale, each sub-region is analyzed
separately. LSSC is applied to each sub-region in parallel and finally all clusters are grouped
together and merged [14]. ROIs that have been split between two sub-regions, or found in both
sub-regions in the overlapping area, will merge together due to their spatial overlap and temporal
correlation. In addition, as in [15], since we do not have a non-negativity constraint [12, 14],
we can preprocess the data to lower the dimensionality in the temporal domain by using a fast
implementation of PCA [35].

In future work, we will explore an alternative construction for large scale datasets, by con-
structing a reference graph and applying out-of-sample-extension methods as in [32, 36, 37]. An
initialization procedure can be used to select a reference set of suspicious points, and the embed-
ding of all points in the image plane is dependent on their affinity to the reference set.

4. Temporal denoising

Our approach separates detecting spatial ROIs from calculating the temporal traces of each
ROI, i.e., we do not solve a matrix factorization problem as in other methods. Thus, the temporal
traces can be calculated based on the extracted spatial components using different methods. Here
we present a greedy, local denoising scheme for calculating the temporal trace of each ROI. In
addition, we leverage having calculated the spatial eigenvectors of the data to perform non-local
diffusion filtering of the video data for enhanced viewing.

4.1. Local greedy temporal demixing and denoising. The time-traces of the ROIs suffer
from two interferences. The first is the background activity due to the neuropil. The second is
due to mixing in the signal when pixels belong to more than one ROI, i.e., a source separation
problem. As opposed to a blind source separation problem, here we have knowledge of what pixels
belong to more than one ROI and what pixels are unmixed.
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Algorithm 1 Local Selective Spectral Clustering

Input Embedding of all pixels {Ψ(Zi)}
nxny

i=1 , s(xi, yi), number of clusters nC
1: Create list l of all pixels sorted by decreasing value of s(xi, yi)
2: k = 0
3: while k < nC do
4: Select i = arg maxj∈l{s(xj , yj)}
5: Select subset Li = {`1, `2, ..., `di

} such that |ψ`1(i)| ≥ |ψ`2(i)| ≥ |ψ`3(i)| ≥ ...
6: Ck = {j | ‖ΨLi

(i)−ΨLi
(j)‖2 < ‖ΨLi

(j)‖2}
7: Optional: refine Ck

8: l← l \ Ck

9: if |Ck| < τarea then
10: discard Ck

11: else
12: k ← k + 1
13: end if
14: end while
15: Merge clusters based on spatial overlap and temporal correlation
Output Clusters {Ck}

Given an ROI with no overlap, we apply a wavelet denoising scheme to denoise the temporal
signal while maintaining the spiking profile of the activation potentials. We first calculate a
weighted average of the ROI time-trace using all the time-traces of pixels belonging to the ROI

(8) Fk :=
∑
i∈Ck

wk(i)zn,i,

where we calculate the weights wk(i) based on the distance of point i form the cluster centroid
icent in the local selective subspace ΨLk

of cluster Ck

wk(i) :=
‖ΨLk

(i)‖22∑
j∈Ck

‖ΨLk
(j)‖22

.

We then apply a wavelet denoising to fk using ‘db4’ wavelets, and hard-thresholding. We also

apply spin-cycling for translation invariance, and denote the denoised time-trace by f̂k,n. For ROIs
with overlaps, we develop a greedy PCA-based demixing algorithm. We view the time-traces of
the pixels belonging to the ROI as different noisy realizations of the clean fluorescence signal of the
neuron. Therefore, the first principal component captures the main temporal activity of the ROI.
We sort the ROIs with ascending value of the amount of overlap. Beginning with a cluster with low
overlap, we extract only its np “pure” (unmixed) pixels. This defines a sub-matrix Zk,p ∈ Rnp×T ,
of the time-traces belonging to the pure pixels. We apply an SVD

Zk,p = USVT,

and calculate a projection matrix Pk = vvT ∈ RT×T , where v is the first left singular vector in
V. We then project all of the time-traces Zk ∈ R|Ck|×T :

Z̃k = ZkPk.

Thus, all the orthogonal components arising from the mixture with the other ROIs are suppressed.
The time trace is calculated using weighted averaging (8) and wavelet denoising. We remove the
mixture components from Z for all points belonging to Ck:

Z(j) =

{
Z(j)(I−Pk), if j ∈ Ck

Z(j), otherwise
.

Therefore, when analyzing ROI Ck′ which overlaps with Ck, we have removed the interference
from the mixed pixels, so that only the signal associated with Ck′ remains.
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(a) (b)

Figure 6. (a) Two overlapping ROIs overlaid on the embedding norm image. (b)
The ROI time-traces, where the top plot corresponds to the left ROI (outlined in
yellow) and the bottom plot corresponds to the right ROI (outlined in orange).
We compare the average of all the time-traces belonging to the ROI (red) to
the weighted average time-trace we extract after demixing and denoising (black).
Applying the PCA demixing, interference from the left ROI has been suppressed
in the overlapping pixels when calculating the time-trace of the right ROI. The
wavelet denoising scheme yields smooth time-traces, with respect to the fixed-
length trials of length 120 frames.

In Fig. 6(a) we plot two overlapping ROIs, and in Fig. 6(b) we plot their time-traces, where
the top plot corresponds to the left ROI (outlined in yellow) and the bottom plot corresponds to
the right ROI (outlined in orange). The red plot is the average of the time-traces belonging to all
pixels in the ROI. The left ROI has a higher intensity, so in the average trace of the right ROI, it
is apparent that the few overlapping pixels greatly distort its time trace. Applying our demixing
and denoising procedure yields the black time-traces, where the interference from the left ROI has
been suppressed.

After the signal has been denoised, we calculate ∆F/F . The baseline florescence for Ck in a
single trial n is calculated using a subset of time frames Sk corresponding to the florescent averages
Fk(t) with the 10% lowest values F̄k =

∑
t∈Sk

Fk(t). Finally, the neuron measurement at each
time frame is set as:

(9)
∆F

F
=
Fk(t)− F̄k

F̄k
.

4.2. Global diffusion denoising. In addition to denoising the ROIs, we also propose a global
denoising of the entire video volume using non-local diffusion filtering and employing the global
spatial eigen-decomposition (3). Applying Pn (2) to the time-series zn,i corresponds to applying
a single denoising step by calculating the non-local mean of zn,i [27]

(Pnzn(t))i =
1

Di

nxny∑
j=1

Kn(i, j)zn,j(t).

This amounts to a non-local spatial average of measurements zi[t] at time t. The denoising step
can also be written as an eigen-basis expansion:

(Pnzn(t))i =

nxny−1∑
`=0

λ`〈φ`, zn(t)〉ψ`(i).

Due to the spectrum decay, we can discard the eigenvalues below a certain threshold and obtain
an approximation by retaining only d eigenvalues and vectors:

(Pz)i ≈
d∑

`=0

λ`〈φ`, zn(t)〉ψ`(i).
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(a) Noisy trial 1 (b) Noisy trial 2

(c) Denoised trial 1 (d) Denoised trial 2

Figure 7. Spatial non-local diffusion denoising of two trials. (Top) Several
frames from two trials (after preprocessing of the dynamic range). Then neu-
ronal regions are highly contaminated by noise. (Bottom) The same frames after
global diffusion denoising. The regions of interest remain as sharp bright struc-
tures while the noisy background has been suppressed.

As with the embedding norm, since we discard the eigenvectors with low eigenvalues, which are
typically related to noise, we suppress the noise in the images. Note that the global denoising we
apply is a spatial denoising, where we leverage having calculated the eigen-decomposition of the
spatial graph. Thus, we are averaging the measurements across different pixel locations at the
same time-frame t.

In Fig. 7(a)-(b), we present images from several time-frames of the videos of two trials (after
preprocessing of the dynamic range). Note the noisy nature of these images. In Fig. 7(c)-(d) we
display the same time-frames after denoising, where the structure of neurons and dendrites has
been preserved with sharp edges, while the background has been suppressed and smoothed out.
The residual video z − Pz can be used to identify remaining neuronal activity not captured by
the calculated eigenvectors, and to estimate the background signal.
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(a) (b) (c)

Figure 8. Analysis of 20 trials of length 12 seconds (10 Hz). The contours of the
extracted ROIs are superimposed on the max embedding norm image, comparing
LSSC approach (a) to CNMF [14] (b) and Suite2p [15] (c).
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Figure 9. (a) First 40 ROIs extracted by LSSC. (b) Temporal traces reshaped
as an image where each row is the temporal trace of a single trial consisting of
120 time frames (columns).

5. Experimental Results

Our experimental data consists of repeated trials from a large population of primary motor
cortex neurons from layers 2/3 and layer 5 acquired with two photon in-vivo calcium imaging.

5.1. Preprocessing. Before performing the spatial ROI extraction, we perform a preprocessing
of the data to overcome the varying dynamic range across the image plane. We consider two
possible preprocessing procedures: The first is normalizing the time-series of every trial zn,i such
that the lowest and highest 5 percent of values over times 0 ≤ t ≤ T are saturated, and the
dynamic range is then mapped to [0, 1]. An alternative option is to z-score each time-series zn,i
by subtracting its mean and normalizing by its standard deviation (std). In either case, we then
apply a 3× 3× 3 median filter to the volume, and flatten it into the matrix Zn.

5.2. Somatic Imaging. We focus on neuronal measurements from the primary motor cortex
(M1) acquired in a single day of experimental trials. The data is composed of N = 20 consecutive
trials, where each trial lasted 12 seconds and is acquired at a frame rate of 10Hz, so that T = 120
for each trial. We analyze a region comprising 200× 200 pixels.
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1

2 4

3
1

2 4

3

Figure 10. Analysis of large-scale images. The image is split into 4 sub-regions
with horizontal and vertical overlaps (dashed lines). Each sub-region is analyzed
separately (1-4) and the ROIs are then merged in the full image (center). An
example of an ROI identified in sub-regions 3 and 4 is marked in cyan, and a
group of ROIs identified fully in 2 and 4 and partially in 1 and 3 is marked in
white.

The results are shown in Fig. 8. The number of clusters was set to nclust = 200, and we
calculated 50 eigenvectors for each trial, resulting in 1000 eigenvectors overall. We apply LSSC
to extract the ROIs and after merging identified clusters and discarding those with area less than
50 pixels, 82 ROIs remained. The overall number of eigenvectors that were identified in different
selective viewpoints is 693. The embedding norm using only these eigenvectors is displayed in
Fig. 2(b).

The ROI contours are depicted in Fig. 8(a), superimposed on the maximum embedding norm
image. LSSC identifies neurons and dendrites with few visually-apparent false positives. The first
40 detected ROIs are shown in Fig. 9(a), superimposed on the max embedding norm image and
demonstrating detailed morphological structures of both somas and dendrites. In Fig. 9(b) we plot
the denoised time-traces of each ROI corresponding to Fig. 9a, where we reshape the time-traces
as an image of size N × T . LSSC detects ROIs with various activity across trials, including ROIs
with sparse support who rarely fire.

5.2.1. Comparison. We compare LSSC to CNMF [14] in Fig. 8(b) and Suite2p [15] in Fig. 8(c).
CNMF was initialized to detect 140 clusters and identified 86 ROIs after a post-processing proce-
dure that includes merging and discarding components with a classifier. As both CNMF and LSSC
require as input a number of clusters, both were initialized to output a similar number of ROIs
to best identify differences between the methods in terms of what are the leading ROIs extracted
by each method. For Suite2p, the number of ROIs is inferred by the algorithm and it detected
61 ROIs. We note that in our experiments both Suite2p and CNMF were sensitive to an input
parameter each method requires regarding the expected size of the neurons, with the number and
shape of output ROIs varying with slight changes of the parameter. LSSC on the other hand does
not require an estimated neuron size for detection.

All the ROIs identified by Suite2p are identified by at least one of the other two methods,
where the contours of the the ROIs detected by Suite2p tend to extend beyond those of the other
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Figure 11. (a) First 21 ROIs. (b) Temporal traces reshaped as an image
where each row is the temporal trace of a single trial consisting 360 time frames
(columns).

two methods and capture more of the background. ROIs detected by LSSC have a finer contour
adapting to the underlying structure. For CNMF, the high ranked ROIs have a fine morphology,
but as indicated in [14], low ranked CNMF ROIs fail to converge to specific structures. Indeed,
increasing the initial number of clusters in CNMF results in more and more overlapping ROIs and
random ROIs with loose boundaries in the background. For LSSC, on the other hand, increasing
the number of clusters is equivalent to examining structures with lower embedding norm, but the
extraction of these structures is accurate. Note that the ROIs LSSC failed to detect all have low
intensity in the embedding norm image.

Regarding identifying overlapping ROIs, CNMF had the best success rate, where in three cases
it correctly identified overlapping ROIs that LSSC identified as a single ROI. Of these three cases,
Suite2p failed to identify the overlapping ROIs in one of them. However, CNMF also tends to
over-estimate overlapping ROIs, and in four cases detected at least 2 ROIs when there is only one.

Regarding dendrites, LSSC displays capabilities of identifying fine dendritic structures in the
data, even if they overlap other dendrites or soma. Suite2p detected three ROIs containing den-
drites. In all of these cases, the dendrites extend from cell bodies that are present in the image
plane and Suite2p split these into two separate ROIs, whereas LLSC identified them as a single
ROI. As with the somas, these Suite2p ROIs extend beyond the dendritic structures into the
background. CNMF did not detect individual dendrites.

5.2.2. Large-scale images. Fig. 10 presents the analysis of a 512× 512 of neuronal activity, across
20 fixed length trials lasting 12 seconds, acquired at 10 Hz. The video is split into 4 sub-regions
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in the image plane with horizontal and vertical overlaps, indicated by the dashed lines. Each sub-
region (whose embedding norm is shown in images 1-4) is analyzed separately for ROI extraction,
where around 100 ROIs where found in each sub-region, identified by the red contours. The ROIs
are then merged in the full image (center) into 340 ROIs, and denoised. The sub-regions are
overlapping in order to detect ROIs that may have been split between two or more regions, such
as the examples indicated by the cyan and white ellipses. It should be noted that the image can be
split into smaller sub-regions for the sake of improving run-time by constructing a smaller graph.

5.3. Dendritic Imaging. We also analyze the extraction of apical dendrites. The data is com-
posed of 35 consecutive trials, where each trial lasted 12 seconds. The image plane is 512 × 512
pixels acquired at a frame rate of 30Hz. In Fig. 11(a) we display the top 21 extracted ROIs ,
where each ROI is superimposed on an image of the temporal standard deviation. We plot the
denoised temporal time-traces in Fig. 11(b), where we reshape the time-traces as an image of 35
trials × 360 times frames. Some dendrites share the same temporal structure; these sub-graphs
can be automatically grouped and analyzed in a multi-scale organization method such as the one
we presented in [23].

In Fig. 12-13 we display two sub-regions of the dendritic image, with superimposed contours of
the detected ROIs and their corresponding time-traces. The dendrites are partially overlapping,
but detected as distinct ROIs. Again note the similarity between sub-groups of dendrites.

Figure 12. Sub-region of the dendritic image. Three partially overlapping den-
drites (left) and their corresponding denoised and demixed time-traces (right).

6. Conclusions and future work

In this paper we presented local spectral methods for the processing of high-dimensional imaging
datasets, and applied our framework to two photon calcium imaging data. We presented a new
clustering method, Local Selective Spectral Clustering, inspired by classical spectral clustering,
and capable of distinguishing overlapping clusters and disregarding clutter. We proposed using
the low-dimensional embedding norm to visualize neuronal structure in calcium imaging videos.
Finally, we developed a demixing and denoising scheme for the ROI temporal traces, employing
wavelets and a greedy PCA-based source separation.

Two algorithmic choices we made that remain to be further formalized and explored are how
to select the number of eigenvectors the selective viewpoint Li, and when to stop the greedy
clustering process. Currently these are open questions allowing for flexibility in fulfilling the goals
of ROI extraction. For the first question, we threshold the magnitude of the eigenvectors in
comparison to the eigenvector with maximal value on the suspect point. One can also select a
fixed number L of the large magnitude eigenvectors for each trial, yielding a selective viewpoint
of size LT . Eigenvectors can be also selected based on mutual information, local linear regression,
etc. [30]. Regarding the number of clusters, at present the user inputs a maximal number of
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Figure 13. Sub-region of the dendritic image. Eight partially overlapping den-
drites (center) and their corresponding denoised and demixed time-traces (left
and right). Some of the dendrites share similar time-traces, which can be auto-
matically grouped and analyzed in a multi-scale organization method such as [23].

clusters, however a stopping criteria can be introduced; for example, once the embedding norm
s(xi, yi) of the remaining clusters is below a certain threshold, indicating the remaining points are
clutter.

In this paper we have highlighted the low-dimensional point-wise embedding norm as an object
of interest, briefly touching on possible supervised and unsupervised constructions of the norm that
reveal various structures in the data. This will be further explored in a general high-dimensional
data setting. We have also proposed a new clustering approach that can be applied to general
datasets, beyond calcium imaging. We believe this approach has applications in other biomedical
imagery, and even in other fields, such as demixing of substances in hyperspectral remote sensing
imaging.

In the specific context of calcium imaging, one direction we intend to pursue in future work is
extending our approach to the imaging of long-ranging dendrites, such as tuft dendrites. In this
case the compactness of the support of the ROI and connectedness of all pixels no longer applies.
A second direction is ROI extraction in one-photon data, which poses greater challenges due to
high correlation of the neurons with the background.
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