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Abstract: 22 

Transposable elements are interspersed repeat sequences that make up much of the human 23 

genome. Conventional approaches to RNA-seq analysis often exclude these sequences, fail to 24 

optimally adjudicate read alignments, or align reads to interspersed repeat consensus sequences 25 

without considering these transcripts in their genomic contexts. As a result, repetitive sequence 26 

contributions to transcriptomes are not well understood. Here, we present Software for 27 

Quantifying Interspersed Repeat Expression (SQuIRE), an RNA-seq analysis pipeline that 28 

integrates repeat and genome annotation (RepeatMasker), read alignment (STAR), gene 29 

expression (StringTie) and differential expression (DESeq2). SQuIRE uniquely provides a locus-30 

specific picture of interspersed repeat-encoded RNA expression. SQuIRE can be downloaded at 31 

(github.com/wyang17/SQuIRE). 32 

Introduction 33 

Transposable elements (TEs) are self-propagating mobile genetic elements. Their insertions have 34 

resulted in a complex distribution of interspersed repeats comprising almost half of the human genome 35 

(Lander et al. 2001; Kazazian 2004). They propagated through either DNA (‘transposons’) or RNA 36 

intermediates (‘retrotransposons’)(Huang et al. 2012; Burns and Boeke 2012). Retrotransposons are 37 

further classified into Orders based on the presence of long terminal repeats (LTR retrotransposons) or 38 

whether they were long or short interspersed elements (LINEs and SINEs)(Wicker et al. 2007). Although 39 

most TEs have lost the capacity for generating new insertions over their evolutionary history and are now 40 

fixed in the human population, a subset of younger subfamilies from the LINE-1 superfamily (i.e., L1PA1 41 

or L1HS) (Beck et al. 2011), the SINE Alu superfamily (e.g., AluYa5, AluYa8, AluYb8, AluYb9) 42 

(Deininger 2011), and composite SVA (SINE-variable number tandem repeat (VNTR)-Alu) elements 43 

(Hancks et al. 2010) remain retrotranspositionally active and generate new polymorphic insertions 44 

(Stewart et al. 2011; Abecasis et al. 2012).  45 
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Due to the repetitive nature of TEs, short-read RNA sequences that originate from one locus can 46 

ambiguously align to multiple copies of the same subfamily dispersed throughout the genome. This 47 

problem is most significant for younger TEs; older elements have accumulated nucleotide substitutions 48 

over millions of years that can differentiate them and give rise to uniquely aligning TE reads (Giordano et 49 

al. 2007).  Because of these barriers, conventional RNA-seq analyses of TEs have either discarded multi-50 

mapping alignments (Chuong et al. 2013) or combined TE expression to the subfamily level (Criscione et 51 

al. 2014; Jin et al. 2015; Lerat et al. 2016).  Other groups have studied active LINE-1s using tailored 52 

pipelines, leveraging internal sequence variation and 3’ transcription extensions into unique sequence 53 

(Philippe et al. 2016; Deininger et al. 2017; Scott et al. 2016). However, these targeted approaches are 54 

unable to provide a comprehensive picture of TE expression. 55 

To analyze global TE expression in conventional RNA-seq experiments, we have developed 56 

the Software for Quantifying Interspersed Repeat Elements (SQuIRE). SQuIRE is the first RNA-seq 57 

analysis pipeline available to date that quantifies TE expression at the locus level. In addition to RNA-seq 58 

providing expression estimations at the TE locus level, SQuIRE quantifies expression at the subfamily 59 

level and performs differential expression analyses on TEs and genes. We benchmark our pipeline using 60 

both simulated and experimental datasets and compare its performance against other software pipelines 61 

designed to quantify TE expression (Criscione et al. 2014; Jin et al. 2015; Lerat et al. 2016). SQuIRE 62 

provides a suite of tools to ensure the pipeline is user-friendly, reproducible, and broadly applicable.  63 

Results  64 

SQuIRE Overview  65 

SQuIRE provides a suite of tools for analyzing transposable element (TE) expression in RNA-seq 66 

data (Fig. 1). SQuIRE’s tools can be organized into four stages: 1) Preparation, 2) Quantification, 3) 67 

Analysis and 4) Follow-up. In the Preparation stage, Fetch downloads requisite annotation files for any 68 

species with assembled genomes available on University of California Santa Cruz (UCSC) Genome 69 
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Browser (Kent et al. 2002). These annotation files include RefSeq (Pruitt et al. 2014) gene information in 70 

BED and GTF format, and RepeatMasker  (Smit, AFA, Hubley, R & Green) TE information in a custom 71 

format. Fetch also creates an index for the aligner STAR (Dobin et al. 2013) from chromosome FASTA 72 

files. Clean reformats TE annotation information from RepeatMasker into a BED file for downstream 73 

analyses. The tools in the Preparation stage only need to be run once per genome build. Because there are 74 

multiple RNA-seq aligners that can produce different results for TE expression estimation, the 75 

Quantification stage includes the alignment step Map to ensure reproducibility. Map aligns RNA-seq 76 

data using the STAR aligner with parameters tailored to TEs that allow for multi-mapping reads and 77 

discordant alignments. It produces a BAM file.  Count quantifies TE expression using a SQuIRE-specific 78 

algorithm that incorporates both unique and multi-mapping reads. It outputs read counts and fragments 79 

per kilobase transcript per million reads (fpkm) for each TE locus, and aggregates TE counts and fpkm for 80 

TE subfamilies into a separate file. Count also quantifies annotated RefSeq gene expression with the  81 

transcript assembler StringTie (Pertea et al. 2015) to output annotated gene expression as fpkm in a GTF 82 

file, and as counts in a count table file. In the Analysis stage, Call performs differential expression 83 

analysis for TEs and RefSeq genes with the Bioconductor package DESeq2 (Love et al. 2014; Huber et al. 84 

2015).  To allow users to visualize alignments to TEs of interest visualized by the Integrative Genomics 85 

Viewer (IGV)(Robinson et al. 2011) or UCSC Genome Browser, the Follow-up stage tool Draw creates 86 

bedgraphs for each sample. Seek retrieves sequences for genomic coordinates supplied by the user in 87 

FASTA format.   88 
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89 
  90 

Figure 1. Schematic overview of SQuIRE pipeline.  
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Count Algorithm 91 

SQuIRE’s Count algorithm addresses a fundamental issue with quantifying reads mapping to TEs: 92 

shared sequence identity between TEs from the same subfamily and even superfamily. When a read 93 

fragment originating from these non-unique regions is aligned back to the genome, the read may 94 

ambiguously map to multiple loci (“multi-mapped reads”). This is not a major problem for older elements 95 

that have acquired relatively many nucleotide substitutions, and thus give rise to primarily uniquely 96 

aligning reads (“unique reads”). However, TEs from recent genomic insertions that have high sequence 97 

similarity to other loci may have few distinguishing nucleotides. Among elements of approximately the 98 

same age, relatively shorter TEs also have fewer sequences unique to a locus. Thus, discarding or 99 

misattributing multi-mapped reads can result in underestimation of TE expression.  100 

Previous TE RNA-seq analysis pipelines have been able to quantify TE expression at subfamily-level 101 

resolution. The software RepEnrich (Criscione et al. 2014) “rescued” multi-mapping reads by re-aligning 102 

them to repetitive element pseudogenome assemblies of TE loci and assigning a fractional value inversely 103 

proportional to the number of subfamilies to which each read aligned. These multi-mapped fractions were 104 

combined with counts of unique reads aligned to each subfamily. This approach was an advance in that it 105 

used information from multi-mapped reads. However, this method results in assigning fractions that are 106 

proportional to the number of subfamilies that share the multi-mapped read’s sequence, rather than each 107 

subfamily’s approximate expression level. TEtranscripts (Jin et al. 2015) expanded on this rescue method 108 

by assigning an initial fractional value inversely proportional to the number of TE loci (not subfamilies) 109 

to which each read aligned. This initial fractional value was then used in an expectation-maximization 110 

(EM) algorithm, which iteratively re-distributes fractions of a multi-mapping read among loci (E-step) in 111 

proportion to their relative multi-mapped read abundance estimated from a previous step (M-step).  The 112 

total of multi-mapped reads and unique reads for each loci are then summed by subfamily. However, in 113 

excluding unique reads from the EM algorithm, TEtranscripts does not incorporate empirical high-114 

confidence data to infer TE expression levels from unique TE alignments. Furthermore, in calculating the 115 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/313999doi: bioRxiv preprint 

https://doi.org/10.1101/313999
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

relative expression level of multi-mapped reads, TEtranscripts normalizes read counts based on annotated 116 

coordinates from RepeatMasker. This underestimates TE expression levels for transcripts shorter than the 117 

annotated genomic length.  TEtranscripts then sums the unique and multi-mapping counts for each 118 

subfamily. 119 

In order to accurately quantify TE RNA expression at locus resolution, Count builds on these 120 

previous methods by leveraging unique read alignments to each TE to assign fractions of multi-mapping 121 

reads (Fig. 2). First, Count identifies reads that map to TEs (by at least 50% of the read length) and labels 122 

them as “unique reads” or “multi-mapped reads.” Second, Count assigns fractions of a read to each TE as 123 

a function of the probability that the TE gave rise to that read. Uniquely aligning reads are considered 124 

certain (e.g., probability = 100%, count = 1). Count initially assigns fractions of multi-mapping reads to 125 

TEs in proportion to their relative expression as indicated by unique read alignments. In doing so, Count 126 

also considers that TEs have varying uniquely alignable sequence lengths. To mitigate bias against the n 127 

number of TEs without uniquely aligning reads, these TEs receive fractions inversely proportional to the 128 

number of loci (N) to which each read aligned. Then Count assigns the remainder �1 �
�

�
� to the TEs 129 

with unique reads.  To account for TEs that have fewer unique counts due to having less unique sequence, 130 

Count normalizes each unique count (��) to the number of individual unique read start positions, or each 131 

TE’s uniquely alignable length (��). Among all TEs to which a multi-mapping read aligned, the TEs with 132 

unique reads ( � � 	� are compared with each other. A fraction of a read is assigned to each TE in 133 

proportion to the contribution of the normalized unique count (
��

��
� to the combined normalized unique 134 

count of all of the TEs being compared (∑
��

��
���  �. (Equation 1). The sum of unique counts and multi-135 

mapped read fractions for each TE provides an initial estimate of TE read abundance based on empirically 136 

obtained unique read counts and uniquely alignable sequence.  137 

��	

 

��

��

∑
��

��
���

 � �1 �
�

�
�  Equation 1 138 
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Multi-mapping read assignment to TEs without unique reads is thus initially based on the numbers of 139 

valid alignments for each read. Count next refines this initial assignment by redistributing multi-mapping 140 

read fractions in proportion to estimated TE expression. To estimate expression, Count uses the a TE’s 141 

total read count (��	  = unique read counts + multi-mapped fractions from the previous step) normalized 142 

by the effective transcript length (��	): 
���

���
. The effective transcript length ��	  is calculated as the 143 

estimated transcript length ��	  subtracted by the average fragment length aligned to that TE + 1  (��	 144 

��	 � ��� � 1), as described previously (Li et al. 2010). All of the TEs to which a multi-mapping read 145 

aligned ( � � 	� are compared with each other. A fraction of a read is assigned to each TE in proportion 146 

to the relative normalized total count (
���

���
) compared to the combined normalized total count of all of the 147 

TEs being compared (∑
��

��
��� �, as shown in Equation 2. Count assumes this value is proportional to the 148 

probability that the TE gave rise to the multi-mapping read, and assigns that fraction of a read count to the 149 

TE. Because TEs with a count fraction of less than 1 have a low probability of giving rise to any read, 150 

those TEs are assigned a count fraction of 0.  151 

��	

 

���

���

∑
��

��
���

 Equation 2 152 

After the total counts (unique and multi-mapped) of each TE are re-calculated, multi-mapped reads 153 

can be re-assigned in subsequent iterations of expectation (assigning multi-mapped read fractions to TEs) 154 

and maximization (summation of unique and multi-mapped fraction counts). These iterations can be 155 

repeated until a given iteration number set by the user or until the TE counts converge (“auto”, when all 156 

of the TEs with ≥ 10 counts change by < 1%). An example of Count output is provided in Supplemental 157 

Table S1. Further details of the Count algorithm are in Supplemental Methods.158 
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  159 

Figure 2. Schematic representation of the SQuIRE Count algorithm.  First, Count labels reads as 

unique (filled arrows) or multi-mapping (empty arrows). Second, Count assigns fractions of multi-mapping 

reads in proportion to the normalized unique read expression of each TE. The partially filled arrows reflect 

the proportion of the read assigned to the TE of the corresponding color. Then, Count runs an Expectation-

Maximization loop that estimates transcript length and reassigns multi-mapping reads for each TE (E-step), 

then re-estimates total read counts (M-step) until convergence.  
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Assessing Count Accuracy in simulated data 160 

To test the performance of Count, we simulated RNA-seq data from 100,000 randomly selected TEs 161 

from the human GRCh38/hg38 (hg38) RepeatMasker annotation (see Methods). TEs were simulated with 162 

read coverages of ranging from 2-4000X and simulated counts ranging from 2-4588.We first evaluated 163 

accuracy by how closely SQuIRE Count output corresponded to the simulated read counts (i.e., % 164 

Observed/Expected). However, using this calculation is not meaningful for TEs with low simulated 165 

counts: a TE with 0 counts gives an infinite value, and a reported count of 1 for a TE with 2 simulated 166 

reads gives a low 50% Observed/Expected. Thus, we were primarily interested in ‘expressed’ simulated 167 

TEs, considering only the 99,567 TEs with at least 10 simulated reads. Second, we evaluated SQuIRE by 168 

how often it correctly detected simulated TE expression (i.e., true positives) or misreported unexpressed 169 

TEs (i.e., false positives). 170 

To test how well SQuIRE performed leveraging only uniquely aligning read information, we first 171 

evaluated the % Observed/Expected of TE counts with 0 E-M iterations. We found that SQuIRE 172 

accurately assigned read counts to most TEs, with a mean % Observed/Expected of 98.79% 173 

(Supplemental Fig. S1). We predicted that this accuracy would be lower for TEs with less uniquely 174 

alignable sequence. Indeed, SQuIRE was less accurate for elements with less than 10% divergence (mean 175 

of 77.35 % Observed/Expected). The most frequently retrotranspositionally active TEs (i.e., AluYa5, 176 

AluYa8, AluYb8, AluYb9, and L1HS) had counts ranging from 48-70% Observed/Expected, with a range 177 

of 79-92% Observed/Expected at the subfamily level (Supplemental Table S2). This illustrates that even 178 

without the EM-algorithm, SQuIRE is sensitive for highly homologous subfamilies at the subfamily level. 179 

Given the low recovery of simulated counts for younger elements when relying solely on uniquely 180 

aligning reads, we next evaluated how much adding the EM-algorithm improved Count’s performance. 181 

We anticipated that the counts for most TEs would not change, but that younger elements with less 182 

divergence would have improved recovery of simulated reads. Indeed, the overall % Observed/Expected 183 

counts of TE loci increased only slightly by 0.14% to a total of 98.93%. However, the change in % 184 
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Observed/Expected of TEs was much greater for the most homologous active elements, improving by 185 

20.47% for young Alu elements and by 21.1% for L1HS loci (Fig. 3). At the subfamily level, the % 186 

Observed/Expected of active TEs was improved by 8.1% for young Alu elements and by 2.2% for L1HS 187 

(Supplemental Table S2). Using updated transcript information in the EM-algorithm is thus particularly 188 

useful for TE biologists interested in younger elements that have previously been problematic to quantify 189 

by RNA-seq.  190 

We also wanted to evaluate SQuIRE’s ability to distinguish whether a TE is expressed or not. To 191 

examine how well Count detected expressed TEs, we calculated the true positive rate (TPR) as the 192 

percentage of TEs with at least 10 simulated reads that SQuIRE also reported to have ≥ 10 counts. 193 

Conversely, we evaluated how often SQuIRE falsely reports TE expression by calculating the positive 194 

predictive value (PPV) as the percentage of TEs with ≥ 10 reported counts that were in fact simulated to 195 

have ≥10 reads.  The true negative rate, or how often SQuIRE correctly reports that a TE is not expressed, 196 

is less informative for evaluating TE estimation accuracy because the number of TEs in the hg38 genome 197 

is so high (>4 million TEs) that the true negative value would outweigh the false positive value (Saito and 198 

Rehmsmeier 2015). Overall, SQuIRE had both a high TPR of 98.5% and high PPV of 99.4%. These 199 

values were lower for frequently retrotranspositionally active Alus (TPR=68.75-83.33%, PPV= 64.29-200 

100% ) and L1HS (TPR=100%, PPV=62.86%) using only unique reads for TE expression estimation 201 

(Supplemental Table S3). However, using the EM algorithm improved the TPR for Alus (TPR=85.22%-202 

100%) by reducing false negative reports and the PPV for L1HS (PPV=78.57%) by reducing false 203 

positives. 204 

  205 
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  206 

Figure 3. Running EM iterations improves the % Observed/Expected for SQuIRE 

Count for the frequently retrotranspositionally active Alu (AluYa5, AluYa8, AluYb8, 

AluYb9) and L1 (L1HS) subfamilies compared to no EM iterations (i=0), and does not 

degrade with increasing iterations (i=100). By default  (i=”auto”), SQuIRE Count continues 

the EM-algorithm until each TE with more than 10 reported read counts changes by less 

than 1%.  
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Endogenous LINE-1 detection with Count 207 

To assess Count’s ability to detect endogenous LINE-1 expression using biological data, we 208 

evaluated the expression level of L1 at loci previously characterized by other methods. Because L1s often 209 

become 5’ truncated upon insertion (Perepelitsa-Belancio and Deininger 2003), Deininger et al. 210 

performed 5’ rapid amplification of cDNA ends (RACE) on cytoplasmic HEK293 RNA to enrich for full-211 

length L1 RNA. They also performed RNA-seq on polyA-selected cytoplasmic HEK293 RNA to identify 212 

L1 loci that have downstream polyadenylation signal. We filtered their findings for L1 loci that had > 5 213 

mapped RNA-seq reads from both 5’RACE and poly-A selected RNA libraries (Deininger et al. 2017) to 214 

compare with SQuIRE. We then examined the expression reported by SQuIRE at these 33 loci in paired-215 

end, total RNA from HEK293T cells (GSE113960). We found that 31 (93.4%) had > 10 SQuIRE read 216 

counts, confirming their expression (Supplemental Table S4).  This suggests that Count can detect L1 217 

expression in RNA-seq libraries that are not enriched for L1 loci. 218 

Only a subset of the L1s evaluated by Deininger et al. belonged to L1HS, the youngest family of L1s. 219 

Because L1HS loci can be retrotranspositionally active, they can generate insertions that are 220 

polymorphic or novel compared to the the reference human RepeatMasker annotation. Reads from TE 221 

insertions that are not present in the RepeatMasker annotation can be misattributed to unexpressed, fixed 222 

TEs, which can result in “false positive” reports of expression at silent loci. To test how this affects 223 

Count, we transfected HEK293T cells with an empty pCEP4 plasmid or with a plasmid containing L1RP, 224 

an L1HS with known retrotransposition activity (Schwahn et al. 1998; Kimberland et al. 1999). The 225 

transfection of L1RP resulted in increased L1HS-aligning reads (254,681 reads) compared to L1HS loci 226 

in L1RP-negative cells (2,671 reads) (Supplemental Fig. S2). The differences in L1HS expression in 227 

L1RP-transfected cells was higher than what we would expect from endogenous, polymorphic insertions 228 

based on previous estimates of polymorphic and fixed L1HS expression in HEK293T cells using unique 229 

reads within 1kb downstream of L1HS loci (Philippe et al. 2016). Because Philippe et al. suggested that 230 

polymorphic L1HS insertions were transcribed at levels similar to fixed full-length L1HS loci, we sought 231 
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to mimic polymorphic L1HS expression levels more consistent with previously reported levels.   To 232 

determine comparable fixed L1HS expression levels in our control HEK293T RNA-seq data, we 233 

examined the Count output at loci with reported expression by Phillipe et al. (145 read counts). We then 234 

downsampled the L1RP-aligning reads from L1RP transfected HEK293T cells to a similar number (153 235 

reads). To simulate a range of polymorphic L1HS expression levels, we also downsampled RNA-seq 236 

reads that aligned to the L1RP plasmid to 2X and 20X the fixed active L1HS expression level (302 and 237 

3,091 reads). For these downsampled reads, we identified their other, off-target alignments to the 238 

reference genome. To control for potential biological effects of L1RP transfection on TE counts, we 239 

‘spiked in’ these downsampled reads from L1RP-transfected cells into RNA-seq data from HEK293T 240 

cells transfected with an empty pCEP4 plasmid. We then calculated the number of false positive L1 loci 241 

that became ‘expressed’ with > 10 counts after the in silico spike-in. We focused on the 3 youngest L1 242 

subfamilies that share the greatest homology with the L1RP sequence (i.e., L1HS or L1PA1, L1PA2, and 243 

L1PA3) (Smit et al. 1995; Boissinot et al. 2000; Lee et al. 2007) and compared their false positive rates to 244 

older L1 loci (Fig. 4). When the alignments of 153 reads were spiked in, we found that the false positive 245 

rate (FPR) of the youngest L1 subfamilies were comparable to each other, ranging from 34-38%. 246 

However, as the spiked in alignments increased to 302 and 3091 reads, the FPR increased for L1HS to 247 

50.68% but not the other subfamilies. This indicates that polymorphic L1HS expression primarily affects 248 

the alignments to L1HS loci, and not the loci of closely related subfamilies.  249 

L1-mapping methods (Upton et al. 2015; Rodić et al. 2015; Iskow et al. 2010; Ewing et al. 2010) and 250 

TE insertion detection software for whole genome sequencing (Gardner et al. 2017; Lee et al. 2012; 251 

Keane et al. 2013; Stewart et al. 2011; Sudmant et al. 2015; Ewing et al. 2011) can identify locations of 252 

non-reference TE insertions.  Validating these insertions by PCR and Sanger sequencing can provide not 253 

only unique sequence flanking the insertion but potentially also the TE sequence. Users can input a 254 

custom table to SQuIRE Map and Clean (Supplemental Table S5) to add non-reference TEs and their 255 

flanking sequence to the alignment index and RepeatMasker BED file. We evaluated how incorporating 256 
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the non-reference table containing information about the L1RP plasmid affected the FPR in HEK293T 257 

cell data. We found that the FPR for L1HS only increased from 36.67% with 153 reads spiked in to 258 

39.34% with 3091 reads spiked in. Thus, adding L1RP information improved Count’s accuracy at higher 259 

L1RP in silico expression levels.   260 
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   261 

Figure 4. False positive rate (FPR) of L1 loci expression in 
HEK293T cells when spiking in L1RP-aligning reads. False positive 
expression is implicated a locus that previously had <10 reads has ≥ 10 
reads after spike-in. % FPR is the percentage of loci with false positive 
loci relative to the total number of loci with ≥ 10 SQuIRE read counts. 
The number of spike-in reads (153, 302, 3091) represents 1X, 2X and 
20X predicted endogenous polymorphic L1HS expression levels based 
on findings from Phillipe et al. 2016. The FPR is robust for older L1 
subfamilies with increased spike-in reads. The addition of L1RP 
annotation in a non-reference table reduces the change in false positive 
rate for L1HS after increasing spike-in reads. 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/313999doi: bioRxiv preprint 

https://doi.org/10.1101/313999
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

Comparison to other software 262 

 Currently published TE analysis software include RepEnrich, TEtranscripts, and TETools 263 

(Criscione et al. 2014; Jin et al. 2015; Lerat et al. 2016). We used the simulated hg38 TE data described 264 

above to compare the recovery of simulated reads to the correct subfamily among TE quantification 265 

software (% Observed/Expected). For mapping, we ran each software’s recommended aligner: STAR 266 

(used by SQuIRE and TEtranscripts), Bowtie 2 (used by TETools), and Bowtie 1 (used by RepEnrich). 267 

We found that SQuIRE (99.86% ±1.46 %), TETools (100.14 ± 2.21%), and TEtranscripts (95.89 ± 268 

16.41%) had comparable % Observed/Expected rates (Supplemental Fig. S3). In contrast, RepEnrich 269 

(108.77 ± 40.67%) was less accurate in terms of % Observed/Expected. This is likely attributable to 270 

RepEnrich’s recommended use of Bowtie 1, which discards discordant reads and limits the number of 271 

attempts to align both paired-end mates to repetitive regions. To support this, we compared how often 272 

each aligner mapped a uniquely aligning simulated read to the correct location. We indeed found that 273 

Bowtie 1 failed to report unique reads more often in a paired-end library compared to single-end 274 

(Supplemental Table S6).  275 

To compare SQuIRE to other TE analysis tools with biological data, we ran each pipeline on 276 

publically available adult C57Bl/6 mouse tissue RNA-seq data (Brawand et al. 2011) using 277 

GRCm38/mm10 (mm10) TE annotation. We compared the expression of subfamilies in testis compared 278 

to pooled data from brain, heart, kidney, and liver tissues. To independently evaluate the fold-changes of 279 

TE RNA between testis and somatic tissues, we also used our previously published adult C57Bl/6 mouse 280 

Nanostring results (Gnanakkan et al. 2013). Unlike RNA-seq analysis, which infers transcript levels by 281 

counting reads, Nanostring uses uniquely mapping probes to capture and count RNA molecules. We 282 

compared the Nanostring log2 fold changes (log2FC) of TE subfamily expression in testis and pooled 283 

somatic tissue to the log2FC values found by SQuIRE, RepEnrich, TEtranscripts, and TETools 284 

(Supplemental Fig. S4). We first looked at how often the direction of fold change corresponded between 285 

each tool and Nanostring. For the 16 subfamilies queried, SQuIRE and TETools shared the same direction 286 
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of fold change as Nanostring more often than the other tools (SQuIRE: 12, TETools: 12, TEtranscripts: 9, 287 

RepEnrich: 8). Moreover, compared to TETools, SQuIRE reported log2FC values closer to the expected 288 

values from Nanostring (mean absolute differences in log2FC from Nanostring– SQuIRE: 0.965, 289 

TETools: 1.34, TEtranscripts: 1.16, RepEnrich: 1.11). 290 

 With SQuIRE, we can closely examine the mouse RNA-seq data at the locus level. For the 16 291 

subfamilies analyzed by Nanostring and the TE analysis tools, we found that the reported subfamily-level 292 

expression could be attributed to fewer than 7% of each subfamily’s loci (Supplemental Fig. S5). This 293 

suggests that regulation of TE transcription is not necessarily shared across all TEs from the same 294 

subfamily. On the other hand, whereas the other subfamilies studied by Nanostring have only 1-4 295 

significantly differentially expressed loci (log2FC >1, padj < 0.05), the IAPLTR3 subfamily has 11 loci 296 

that are all differentially expressed in testis compared to somatic tissues (Fig. 5A). To test whether this 297 

was an enrichment relative to the representation of IAPLTR3 in the mouse genome, we performed a 298 

Fisher’s exact test and found that IAPLTR3 loci were 10-fold more likely than expected to be 299 

differentially expressed in testis (OR: 10.56, 95%CI: 5.25-18.97, padj < 1.61 e-08). This suggests that a 300 

subset of TE locus expression may still be impacted by subfamily-specific regulation. 301 

 To further investigate the interplay between genomic context and TE subfamily, we identified the 302 

closest genes to each differentially expressed locus and clustered the loci by their expression levels, as 303 

shown in Figure 5A. We found a cluster of 3 loci exhibiting broad expression across somatic tissues from 304 

the IAP1, MERVL, and MURVY LTR retrotransposon subfamilies. When we examined the genomic 305 

context of these 3 loci, we found that all were located within genes with known broad tissue expression 306 

(Gpbp1, Csnk2a1, Kyat1, respectively) (Yue et al. 2014), with examples shown in Supplemental Figure 307 

S6. Another locus from the MURVY subfamily is in a cluster of TEs exhibiting high testis-restricted 308 

expression. In examining the transcript overlapping the MURVY locus, we see that the transcript initiates 309 

outside of the locus and find that the transcript is an alternative splicing isoform with splice donors from 310 

the third and fourth exons of a gene ~5kb away (Fig. 5B). The gene, Gm11981, is a long noncoding RNA 311 
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(lncRNA) known to exhibit testis-restricted expression (Yue et al. 2014). The different MURVY-312 

containing transcripts illustrate how the relationship between TE expression and neighboring transcription 313 

can vary across loci from the same subfamily. We also examined ERVB4-1B and IAPLTR3, the two LTR 314 

retrotransposon subfamilies that exhibited the highest fold change by Nanostring. These subfamilies were 315 

represented in the high-expressing, tissue-restricted loci cluster (Fig. 5A). While the transcription of the 316 

ERVB4-1B locus on chr13 did not extend beyond annotations for that subfamily (Fig. 5C), the IAPLTR3 317 

loci on chr14 (Fig. 5D) and chr18 are part of longer transcripts that initiate outside of the annotated TE. 318 

Unlike the MURVY locus on chr11, there is no evidence of splicing into the IAPLTR and ERVB4-1B 319 

loci. Thus, TEs from different subfamilies may be subject to different mechanisms of transcriptional 320 

regulation as evidenced by expression within different transcript structures. Altogether, this stresses the 321 

utility of using SQuIRE to analyze TE transcription at the locus level.  322 

  323 
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324 
  325 

Figure 5.  Differentially expressed TE loci belonging to subfamilies previously analyzed by 
Nanostring a. The X-axis represents replicates of somatic and testis tissue samples from adult 
C57Bl/6 mouse. The Y-axis represents differentially expressed TE loci. The heatmap colors represent 
the log2 of total read counts +1 for each TE locus. b-d. Examples of intergenic TE loci differentially 
expressed in testis compared to somatic tissues.  Tracks from brain, heart, kidney and liver replicates 
were collapsed into a single track. The scales of count expression are shown in brackets. The RefSeq 
track represents annotated genes. The RepeatMasker track represents transposable elements annotated 
in the reference genome. Transposable elements colored in red belong to the subfamily indicated; 
dark red indicates that that RepeatMasker entry meets significant differential expression thresholds 
(log2FC > 2, padj < 0.05).  
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Benchmarking for SQuIRE’s Memory Usage and Running Time 326 

 To benchmark SQuIRE’s memory usage and running time for RNA-seq data of different 327 

sequencing depths, we subset the high-depth (mean 263 million reads across 8 lanes) HEK293T cell line 328 

RNA-seq data into 1, 2, and 3-lane libraries with a mean sequencing depth of 32, 65, and 98 million 329 

reads. We evaluated the speed and memory performance of each Quantification and Analysis stage tool 330 

for each sequencing depth (Fig. 6) using 8 parallel threads and 64 Gb of available memory. We found that 331 

sequencing depth had the greatest effect on Count, taking 8.6 hours to complete the 3-lane library 332 

compared to 2.4 hours for the 1 lane library. The other tools took much less time and were less affected 333 

by sequencing depth. Map took 1-2 hours for the different libraries. Call running time was also 334 

independent of library size, but it was greater when including all TE counts (10 minutes) compared to 335 

subfamily counts (2 minutes). We found that the memory usage of each tool was largely independent of 336 

sequencing depth, taking between 39-40Gb of Memory for Map, 30-32Gb for Count, and 7-8Gb for 337 

Call.   338 

Implementation 339 

Our efforts at making SQuIRE easy to use has resulted in a simple installation process in which the 340 

user can copy and paste lines of code to install all prerequisite software and set up SQuIRE (Table 1). In 341 

addition, SQuIRE is the only program that downloads reference annotation for assembled genomes 342 

available on UCSC, allowing it to be easily adaptable to a variety of species. For genomes from non-343 

model organisms or organism strains with high divergence from the reference annotation, SQuIRE can 344 

also use RepeatMasker software output for even wider compatibility. To ensure that the pipeline is 345 

streamlined and that the outputs are reproducible, SQuIRE also implements alignment and differential 346 

expression for the user. In making SQuIRE as user-friendly as possible, we intend to improve the 347 

reproducibility of bioinformatics in the TE field. 348 
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  349 

Figure 6. Usage data for the main modules of SQuIRE. Time (Hours) 

and Memory for SQuIRE Count, Map and Call. Mean library sizes for 

RNA seq data were 1 lane= 32,912,528 reads, 2 lanes= 65,573,850 reads, 

3 lanes= 98,757,439 reads. 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/313999doi: bioRxiv preprint 

https://doi.org/10.1101/313999
http://creativecommons.org/licenses/by-nc/4.0/


23 
 

  350 

  SQuIRE RepEnrich TEtranscripts TETools 

Provides Locus-level TE 
RNA quantification  YES -- -- -- 

Provides TE transcript 
information YES -- -- -- 

Copy-and-paste 
installation YES -- -- -- 

Provides prerequisite 
annotation files for any 
species 

YES  -- -- -- 

Can incorporate non-
reference TEs YES -- -- YES 

Performs alignment YES – uses 
STAR 

Recommends 
Bowtie 1 

Recommends 
STAR 

YES – uses 
Bowtie 1 or 
Bowtie 2 

Uses genome for 
alignment YES 

YES - Genome + 
TE 
pseudogenome 

YES  -- 

Provides gene expression 
quantification YES -- YES -- 

Performs differential 
expression YES -- YES YES 

Table 1. Feature comparison of RNA-seq Analysis tools for TEs. 
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Discussion 351 

We have developed Software for Quantifying Interspersed Repeat Expression (SQuIRE) to 352 

characterize TE expression using RNA-seq data. TEs are highly repeated in the genome, which can pose 353 

challenges for mapping reads unambiguously to specific transcribed loci. SQuIRE is the first RNA-seq 354 

analysis software that provides locus-specific TE expression quantification while also outputting 355 

subfamily-level expression estimates (Table 1). Our approach uses unambiguously mapping reads and an 356 

Expectation-Maximization algorithm to estimate levels of TE transcripts. SQuIRE additionally provides 357 

information on the structure of each TE transcript, which can be shorter or longer, sense or antisense 358 

compared to the annotated repeat. We have shown that SQuIRE can correctly attribute a high percentage 359 

of reads originating from TEs using simulated data. Although this percentage is lower for frequently 360 

retrotranspositionally active, less divergent TEs (e.g., AluYa5, AluYa8, AluYb8, AluYb9, L1HS), we 361 

found that implementation of an Expectation-Maximization (EM) algorithm (Jin et al. 2015; Li and 362 

Dewey 2011) improves accuracy and lowers both false positive and false negative estimations of whether 363 

a TE is expressed. This finding also holds in biological settings, where SQuIRE is able to correctly 364 

identify instances of full-length L1 expression in total RNA RNA-seq data from cell lines wherein 365 

previous studies had identified these loci using a combination of 5’RACE and 3’ primer extension 366 

methods (Deininger et al. 2017). This confirms that SQuIRE can detect the expression of TEs in the 367 

reference genome that have in the past been problematic for global TE RNA expression analysis. 368 

The ongoing activity of TEs also results in a significant number of mobile element insertion variants 369 

(MEI) (Beck et al. 2010; Sudmant et al. 2015; Stewart et al. 2011). Numerous commonly occurring 370 

structural variants owed to retrotransposition are missing in reference genome assemblies. SQuIRE 371 

provides users with two options to query transcription of these repeats. First, it can detect their 372 

transcription at the subfamily level. We have shown that SQuIRE can detect expression of L1HS elements 373 

when we express an ectopic sequence. It maintains a low false positive rate of misattributing these reads 374 

to endogenous L1HS loci. Thus, SQuIRE can be useful for detecting altered regulation of young TE 375 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/313999doi: bioRxiv preprint 

https://doi.org/10.1101/313999
http://creativecommons.org/licenses/by-nc/4.0/


25 
 

subfamilies even when specific loci that are expressed are unknown. Secondly, SQuIRE can use 376 

sequences of known, non-reference TE insertion polymorphisms to detect locus-specific expression when 377 

these are available. For example, in the human genome, L1HS element sites and sequences can be 378 

obtained by targeted TE insertion mapping (Upton et al. 2015; Rodić et al. 2015; Iskow et al. 2010; 379 

Ewing et al. 2010) or whole genome sequencing (Gardner et al. 2017; Lee et al. 2012; Keane et al. 2013; 380 

Ewing et al. 2011). Polymorphic TE insertions have been reported to databases such as euL1db (Mir et al. 381 

2015), dbRIP (Wang et al. 2006) and 1000 Genomes Project (Sudmant et al. 2015). If the polymorphic 382 

insertions have been verified and sequenced in the user’s samples, SQuIRE is capable of incorporating 383 

user-provided, non-reference TE sequence to estimate TE expression at these loci. This may be a useful 384 

feature for understanding functional consequences of these insertion variants (Payer et al. 2017). 385 

The SQuIRE algorithm builds on strategies used by previous TE analysis software (Criscione et al. 386 

2014; Jin et al. 2015; Lerat et al. 2016). Here, we show that SQuIRE provides additional features and 387 

improves on the accuracy of these methods, as assessed using both simulated reads and orthogonal 388 

approaches to measure log2 fold changes in mouse tissue comparisons. Our findings suggest that 389 

important biologic insights can be gained by examining TE transcription at the locus level.  390 

To date, locus-specific studies of TE expression and activity have mostly focused on identifying 391 

transcriptionally and retrotranspositionally active L1s in the human genome (Deininger et al. 2017; 392 

Philippe et al. 2016; Scott et al. 2016; Brouha et al. 2003; Beck et al. 2010; Tubio et al. 2014; Pitkänen et 393 

al. 2014). In applying SQuIRE to study locus-specific TE expression genome-wide in mouse tissues, we 394 

can see that this paradigm is not unique to L1s or humans. It seems a very limited subset of TE loci are 395 

transcribed with complex patterns of tissue-specific expression. Furthermore, we found that the tissue 396 

expression patterns of TE loci were driven by a variety of transcriptome contexts: broadly expressed 397 

mRNA transcripts, testis-specific lncRNA and authentic TE ‘unit’ transcripts. How these TEs affect 398 

genome regulation remains an open question. Prior to SQuIRE, the inability to map TE expression limited 399 

genome-wide analysis  of TEs to the effects of cis-acting elements on transcriptional (Faulkner et al. 400 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/313999doi: bioRxiv preprint 

https://doi.org/10.1101/313999
http://creativecommons.org/licenses/by-nc/4.0/


26 
 

2009; Kalitsis and Saffery 2009; Le et al. 2015; Xie et al. 2013) and post-transcriptional (Stower 2013; 401 

Sorek et al. 2002; Ecco et al. 2016; Athanasiadis et al. 2004) regulation. Further, the effects of 402 

neighboring genes on TE transcription are not well-understood. In providing locus-level TE transcript 403 

estimations, SQuIRE can enable studies that dissect the regulatory impacts of TE and gene expression. 404 
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Methods 405 

Implementation of STAR aligner in Map 406 

Map uses parameters tailored to the alignment of TEs. By default STAR only reports reads that map 407 

concordantly and to 10 or fewer locations. Map retains more reads mapped to TEs by reporting reads that 408 

map to 100 or fewer locations (--outFilterMultimapNmax 100 –winAnchorMultimapNmax 100). For 409 

paired-end reads, Map also reports paired reads that map discordantly (--chimSegmentMin 410 

<read_length>) and single reads with unmapped mates (--outFilterScoreMinOverLread 0.4 –411 

outFilterMatchNminOverLread 0.4). Map can incorporate the non-reference TE sequences and generate a 412 

FASTA file that STAR adds to the genome index with the option “—genomeFastaFiles <fasta> ”. To 413 

provide splicing information to the tools in the Analysis Stage, Map also uses the UCSC RefSeq gene 414 

annotation and assesses reads overlapping splice junctions with the options “—sjdbGTFfile <gtf> --415 

sjdbOverhang <read_length -1> --twopassMode Basic”. Map produces a sorted BAM file that includes 416 

intron and splicing information for downstream transcriptome assembly analysis. 417 

Implementation of StringTie in Count 418 

Count runs StringTie (Pertea et al. 2015)using these default settings guided by RefSeq gtf obtained 419 

from UCSC with Fetch. Count uses the “-e” StringTie option to quantify expression only to annotated 420 

transcripts without assembly of novel transcripts. We convert the fpkm values to counts by multiplying 421 

the per-exon coverage by exon length normalized by read length. 422 

DESeq2 Implementation in Call 423 

Call incorporates the Bioconductor package DESeq2 (Love et al. 2014; Huber et al. 2015) with its 424 

suggested parameters. Users input the sample names and experimental design (ie which samples are 425 

treatment or control), which Call uses to find Count data and create a count matrix for annotated RefSeq 426 

genes, StringTie transcripts and TEs. Call outputs differential expression tables and generates MA-plots, 427 

data quality assessment plots, and volcano plots. 428 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/313999doi: bioRxiv preprint 

https://doi.org/10.1101/313999
http://creativecommons.org/licenses/by-nc/4.0/


28 
 

STAR implementation in Draw 429 

 To visualize the distribution of reads across the TE, Draw runs STAR (Dobin et al. 2013)with the 430 

parameters “–runMode input AlignmentsFromBAM –outWigType bedGraph” to provide visualization of 431 

read alignments. It will output bedgraphs of all reads (“multi”) and only uniquely (“unique”) aligning 432 

reads. Draw also compresses the bedgraphs into bigwig format for IGV (Robinson et al. 2011) and UCSC 433 

Genome Browser (Rosenbloom et al. 2014) viewing. If the RNA-seq data is stranded it will output unique 434 

and multi bedgraphs for each strand.   435 

RNA-seq simulation 436 

We randomly selected 100,000 TEs from the hg38 Repeatmasker annotation downloaded by Fetch. 437 

We limited our list of potential TEs to those included in TEtranscripts (Jin et al. 2015) and RepEnrich 438 

(Criscione et al. 2014) to enable comparisons between these different programs. Using the selected TE 439 

coordinates we generated a BED file using Clean and obtained Fasta sequences using Seek. From these 440 

TE sequences, we used the Polyester package from Bioconductor (R version 3.4.1, Huber et al. 2015) 441 

(Huber et al. 2015)to simulate 100bp, paired-end, stranded RNA-seq reads  with normally distributed 442 

fragment lengths around a mean of 250bp. We simulated a uniformly distributed sequencing error rate of 443 

0.5%. TEs were simulated with a mean read coverage of 20X, with 250 TEs deviating from that mean 444 

between 2-100 fold.  445 

HEK293T Cell Culture, Transfection and Sequencing 446 

Tet-On HEK293TLD (293T) cells (Taylor et al. 2013) were grown at 37C, 5% CO2 in DMEM with 447 

10% Tet-Free FBS (Takara, Mountain View, CA) and passaged every 3-5 days as needed. 448 

LINE expression constructs were cloned into the pCEP4 backbone (Thermo Fisher Scientific, 449 

Waltham, MA) modified to confer puromycin resistance. Plasmids encoded either L1RP (MT302) or had 450 

no insert (Taylor et al. 2013). For transfection, 300,000 293T cells were plated in 2 mL volume. 24 hours 451 

later, cells were transfected using a cocktail of 2 ug plasmid DNA and 6 uL Fugene HD (Promega), and 452 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/313999doi: bioRxiv preprint 

https://doi.org/10.1101/313999
http://creativecommons.org/licenses/by-nc/4.0/


29 
 

puromycin was added 24 hours later for a total of 3 days of selection. 500,000 cells were then plated in 3 453 

wells each, and doxycycline was added 2 hours later (final concentration of 1 ug/ml) to induce L1 454 

expression. RNA was collected after 72 hours of L1 expression using the Zymo Quick-RNA MiniPrep kit 455 

(Zymo Research, Tustin, CA). The RNA libraries of transfected 293T cells were prepared using the 456 

Illumina TruSeq Stranded Total Library Prep Kit with Ribo-Zero Gold (San Diego, CA) to provide 457 

stranded, ribosomal RNA depleted RNA. The libraries were sequenced on an Illumina HiSeq 2500, using 458 

6 samples per lane across 8 lanes with paired-end 100bp reads. We generated a mean of 263,127,067 459 

paired reads per sample. The raw sequencing data were deposited to the NCBI Genome Expression 460 

Omnibus (GEO) with accession number GSE113960. 461 

HEK293T Cell RNA-seq Analysis and In Silico Spike-in Experiment 462 

For detection of fixed L1 expression identified by Deininger et al. by 5’RACE and poly-A selected 463 

RNA sequencing in HEK293 cells, we ran SQuIRE Map, Count, and Call on HEK293T cell samples 464 

transfected with empty L1RP vector (DA5 and DA6). To determine the effect of L1RP transfection on the 465 

false positive rate of L1 RNA estimation, we ran Map and Count on HEK293T cells transfected with 466 

L1RP and vector. To simulate the effect of polymorphic TE expression on typical RNA-seq samples, we 467 

downsampled a transfected (DA1) and control (DA5) sample to a single lane per sample (average 32 468 

million reads). To identify L1RP aligning reads in the L1RP-transfected cell, we used SAMtools (Li et al. 469 

2009) to identify reads that align to the chromosome construct provided by the non-reference table 470 

(Supplemental Table S5). To downsample the L1RP-aligning reads, we used the SAMtools “-s 471 

 <INT.FRAC> ” option with 0.01, 1.001, and 3.0004 as inputs. The integer before the decimal indicates 472 

the seed value and the number after the decimal indicates the fraction of total alignments desired for 473 

subsampling. We then identified all alignments to the genome sharing the same Read IDs as the down-474 

sampled L1RP-aligning reads. We used SAMtools merge to combine the alignments of L1RP-aligning 475 

reads with the BAM file of the HEK293T cell sample transfected with empty vector (DA5).  476 

TE RNA-seq tool Comparison 477 
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Adult C57BL/6 mouse RNA-seq data were obtained from GEO with accession number GSE30352. 478 

All pipelines were run on a server with a maximum of 128 GB memory available and 8 threads (-p 479 

setting).  480 

RepEnrich (Criscione et al. 2014)– We obtained the hg38 annotation for RepeatMasker from the 481 

RepEnrich GitHub website. For the mm10 annotation, we obtained the mm10.fa.out.gz RepeatMasker 482 

(Smit, AFA, Hubley, R & Green) annotation from the RepeatMasker website. We ran the setup for 483 

RepEnrich following instructions from the website for each genome build. We then mapped the data to 484 

the genome using Bowtie 1 (Langmead et al. 2009) according to RepEnrich’s instructions to generate 485 

separate uniquely mapping sam and multi-mapping read .fastq files. These were then used for the 486 

RepEnrich software with the “–pairedend TRUE” parameter for simulated human data, and “—pairedend 487 

FALSE” for mouse data. 488 

TETools (Lerat et al. 2016)– We generated rosette files for hg38 and mm10 for TETools by taking 489 

the Repeatmasker annotation from Clean for the first column and the repeat taxonomy for the second 490 

column (subfamily:family:superfamily). We used the BED file from Clean with Seek to obtain TE 491 

FASTA sequences for generation of a pseudogenome for TETools. TETools was run with the “-bowtie2”, 492 

“–RNApair” and “–insert 250” parameters for simulated human data and “-bowtie2”,”-insert 76” for 493 

mouse data. 494 

TEtranscripts (Jin et al. 2015) –We obtained hg38 and mm10 GTF annotation from the TEtranscripts 495 

website. We aligned the data to the genome with STAR using “--winAnchorMultimapNmax 100”,”--496 

outFilterMultimapNmax 100” parameters for multi-mapping. We then ran TEtranscripts with the “--mode 497 

multi” setting to utilize its expectation-maximization algorithm for assigning multi-reads for the resulting 498 

SAM file.  Since TEtranscripts analyzes TE and gene expression together, we used refGene annotation 499 

obtained by SQuIRE Fetch for the required gtf file. We used the parameters “--format SAM”, “--mode 500 

multi”, “--stranded yes” for simulated human data, and “--format SAM”, “--mode multi”, “--stranded no” 501 

for mouse data. 502 
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Aligner Comparison 503 

We ran the aligners Bowtie1 (Langmead et al. 2009), Bowtie2 (Langmead and Salzberg 2012), and 504 

STAR (Dobin et al. 2013) on the simulated TE RNA-seq data described above. We set each aligner to 505 

output a maximum of 2 valid alignments to quickly identify uniquely aligning reads with the parameter “-506 

m2” for Bowtie 1, “-k2” for Bowtie 2, and “--outSAMmultNmax 2” for STAR. We also ran STAR with 507 

the parameters “--outFilterScoreMinOverLread 0.4 --outFilterMatchNminOverLread 0.4 --508 

chimSegmentMin 100” to allow for discordant alignments, which STAR excludes by default. Bowtie2 509 

reports discordant alignments by default, while Bowtie 1 can only report paired alignments. We used 510 

BEDTools (Quinlan and Hall 2010) to intersect the BAM outputs to RepeatMasker annotation to identify 511 

the TEs to which the aligners mapped the reads. Reads that only appeared once as “uniquely aligning”. 512 

We assessed whether the mapped TE matched the templating TE for the simulated read to determine if 513 

the uniquely aligning reads mapped to the correct location. 514 

Data Access 515 

The raw sequencing data and SQuIRE Count output for HEK293T cell transfection were deposited to 516 

the NCBI Genome Expression Omnibus with accession number GSE113960. SQuIRE was written in 517 

Python2 and is available at the website https://github.com/wyang17/SQuIRE and PyPI. It was developed 518 

for UNIX environments. We provide step-by-step instructions on our README to install the correct 519 

versions of all software. These instructions include using the package manager Conda (conda.io) to 520 

download the correct versions of prerequisite software for SQuIRE (e.g., Python, R (R Development Core 521 

Team 2011), STAR, BEDTools, StringTie, SAMtools (Li et al. 2009), UCSC tools and Bioconductor 522 

packages. The README also instructs users how to create a non-reference table with the exogenous or 523 

polymorphic TE sequences and coordinates that they would like to add to the reference genome. Bash 524 

scripts to run each tool in the SQuIRE pipeline are also included. Users can fill in crucial experiment 525 

information (raw data, read length, paired, strandedness, genome build, sample name and experimental 526 
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design) into the “arguments.sh” file, which the other scripts reference to run each step with the correct 527 

parameters.  528 
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