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Abstract 
Functional genomics studies, despite increasingly varied assay types and complex experimental designs, 
are typically analyzed by methods that are unable to identify confounding effects and that incorporate 
parametric assumptions particular to gene expression data. We present MAVRIC, a nonparametric 
method to quantify variance explained by experimental covariates and perform differential analysis on 
arbitrary data types. We demonstrate that MAVRIC can accurately associate covariates with underlying 
data variance, deliver sensitive and specific identification of genomic loci with differential counts, and 
provide effective noise reduction of large-scale consortium data sets. 
 
Main text 
Rapid advances in sequencing technology have enabled the development of assays interrogating 
chromatin structure1, DNA methylation2, and DNA/protein interactions3, with data increasingly generated 
by large, multi-institutional projects4. However, analysis pipelines often hew to the paradigms established 
by early microarray and RNA-seq methods, such as limma5 and DESeq6. These workflows involve two 
main steps: First, quality control analysis, often through application of principal component analysis (PCA) 
to verify that variance between samples aligns primarily with the biology of interest. Second, analysis of 
differential expression, quantified using a linear model to individually test genes for nonzero fold-changes 
in expression across samples. Formulating these linear models requires users to explicitly encode every 
term they expect to affect expression, and any interactions thereof. Because of their rigid definitions, the 
linear models can yield misleading results when the appropriate technical covariates are omitted, and they 
will generally fail to provide insight into confounding effects7. 

Sequencing sample and batch heterogeneity, particularly in large research projects, can induce 
complex technical artifacts8, posing a challenge in differential analysis. To correct for technical effects 
more broadly, researchers must employ independent methods that use factor analysis to model latent 
variables9-11. However, such approaches can inadvertently capture and blunt estimates of real biological 
effects12. Moreover, the magnitude and impact of the correction is dependent on the number of factors in 
the model12, which the user is required to specify. 

Additionally, most differential expression analysis tools are poorly suited to the broad range of 
modern sequencing assays, since those methods typically incorporate parametric assumptions particular 
to gene expression data. They thus implicitly require that individual loci be of fixed sequence composition 
and length13. Such assertions are inapplicable to epigenetic data, as the precise boundaries of 
epigenomic features can vary across samples14.  

To provide an integrative, scalable method for identifying technical confounding and performing 
assay-agnostic differential analysis, we have developed MAVRIC (Measuring Association between 
VaRIance and Covariates). MAVRIC is a nonparametric statistical method that quantifies signal-to-noise, 
identifies statistical confounding between experimental covariates, and performs pairwise differential 
analysis. Because MAVRIC does not rely on assumptions about count distributions or model structure, the 
algorithm offers a framework suitable to diverse assay types and expansive experimental designs with 
numerous covariates. MAVRIC extends the use of PCA in quality control analysis, aiming to make PCA 
interpretable and actionable by associating PCs with experimental covariates and defining PC-based 
“axes of variance” for differential analyses. Crucially, in contrast to many other analysis methodologies, 
MAVRIC focuses on quantifying and visualizing the degree to which a data set successfully captures the 
impact of the biological feature being assayed, rather than artifactual or stochastic differences. 
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 As input, MAVRIC takes a P by N data matrix and an N by M design matrix, for N samples, P 
features (e.g. genes or loci), and M known experimental covariates, where each covariate is categorical 
(Fig. 1a) or continuous (see Methods). The data matrix need not contain raw counts. First, MAVRIC 
performs PCA on the data matrix, after (optionally) using a variance-stabilizing transformation to correct 
for the heteroskedasticity of sequencing data13. Unlike common RNA-seq analysis tools, MAVRIC is also 
compatible with arbitrary normalization methods. Next, a built-in gene selection workflow can be used to 
retain only features with high variance in counts. Then, MAVRIC iterates over the covariates in the design 
matrix, greedily associating each covariate with the maximal set of PCs that spatially segregate covariate 
categories more than expected by chance (see Methods, Supplementary Fig. 1a,b). 
 As output, MAVRIC quantifies the variance that the covariates explain, and how those effects are 
confounded, based on the PC associations. Whereas typical workflows use PCA only to visualize the 
biology of interest in the context of the first two PCs, MAVRIC provides a more complete picture of the 
underlying sources of variance and their relationships to lower-rank PCs. As a demonstration of this 
functionality, we re-analyzed RNA-seq data generated across multiple tissues from mouse and human15. 
Previous analysis of this data set indicated that differences between species, rather than tissues, drove 
higher-rank PCs, but concerns about confounding between species and batch effects were subsequently 
raised16. The MAVRIC results support species-specific effects as driving high-rank PCs, with tissue-
specific differences instead associated with lower-rank PCs (Fig. 1b, Supplementary Fig. 1d). Additionally, 
MAVRIC identifies statistical confounding between batch and species effects (Figs. 1c,d). Finally, 
MAVRIC quantifies the relative contributions to count variance of the species, batch, and tissue effects, 
along with the variability that is not significantly attributable to any of those covariates. The residual noise 
could represent stochastic expression differences, variability between tissue donors, or other technical 
effects (“unexplained,” Figs. 1c,d). Thus, MAVRIC’s quantification of variance and confounding, and its 
corresponding Euler diagram output, offers an interpretable analysis that allows researchers to assess 
whether an experiment has effectively captured the biology of interest, and if there are potential technical 
issues. 

Unlike highly structured linear models, MAVRIC considers each covariate independently. 
Consequently, adding terms to the design matrix only affects estimates of confounding, without perturbing 
the analysis results of other covariates. Using simulated data, we found that the estimates of variance 
explained provided by MAVRIC were accurate and insensitive to the inclusion of superfluous covariates 
(Figs. 1e,f). We compared these results to those of pvca17, another method for estimating contributions to 
variance, based on linear models. We observed that pvca consistently demonstrated lower accuracy, and 
often attributed variance to modeled terms even when they did not actually affect the simulated count 
variance (Figs. 1e,f). 

MAVRIC further performs differential analyses by defining axes of variance for pairs of categories 
within a covariate. For a pairwise comparison, the axis of variance is the line defined by the centroids of 
the two categories in the subspace of PCs that MAVRIC associated with the covariate. Onto this axis, 
MAVRIC projects the points of all the samples across the entire data set, and those projected values are 
correlated with the original values from the data matrix (Supplementary Fig. 1c; see Methods). Every 
sample type in the analysis contributes to the basis set defining the subspace that best separates the 
covariate’s categories, and likewise all samples are expected to capture information relevant to the 
biological variation of interest. Therefore, MAVRIC uses all the samples in the data set when performing 
pairwise comparisons. While this design does not affect estimated differential effect sizes, it can result in 
greater sensitivity when identifying features correlated with the axis of variance (see Methods). A 
significant correlation between feature values and projected values indicates that the feature variance 
aligns with the patterns detected by PCA on the full data set. Such features are called as differential 
elements for that pairwise comparison. In this sense, unlike traditional RNA-seq methods that calculate 
parameters and perform statistical tests per gene, MAVRIC’s results statistically leverage modules of 
features with coherent changes, since those modules determine the directions of the PC vectors.  
 We evaluated MAVRIC by assessing its differential analyses in comparison to a widely used RNA-
seq method, DESeq213. On simulated data generated using the parametric assumptions of DESeq2, we 
determined that MAVRIC’s performance was competitive across a broad range of simulated expression 
changes, while also finding an order-of-magnitude fewer false positives when no differences were present 
(Figs. 2a,b, Supplementary Fig. 2a). We then tested both methods on real, previously published ATAC-
seq data18, which were not expected to conform to the parametric assumptions used for RNA-seq data. 
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The ATAC-seq data cataloged chromatin accessibility in naive, central memory, and effector memory 
human CD8 T cells, and we applied both MAVRIC and DESeq2 to identify loci more accessible in the 
effector memory than the central memory cells. We found that MAVRIC recapitulated the majority of the 
significant results from DESeq2, while identifying substantially more changes overall (Fig. 2c). We next 
calculated sequence enrichment for transcription factor binding motifs in each of three sets of loci 
identified as differentially accessible: unique to MAVRIC (purple circle, Fig. 2c); unique to DESeq2 (green 
circle, Fig. 2c); and overlapping (brown circle, Fig. 2c), which we considered a gold standard 
(Supplementary Fig. 2b). We compared the gold-standard motif enrichment p-values to those of the two 
other sets and observed that motif enrichment p-values for MAVRIC exhibited a significantly higher area 
under the receiver operating characteristic curve (AUC) than did the p-values for DESeq2 (Fig. 2d). Gene 
ontology enrichment of the differentially accessible peaks also showed high concordance between the 
results for the overlapping peaks and the peaks unique to MAVRIC, while the peaks unique to DESeq2 
produced no statistically significant categories (Supplementary Fig. 2c).  
 Next, we applied MAVRIC to large-scale consortium data, to test its effectiveness at distinguishing 
biological signal from the noise of experimental heterogeneity of data generated by multiple investigators 
at different institutions. Using RNA-seq data of 29 human tissues from the GTEx project, which aims to 
connect tissue-specific gene expression levels to expression quantitative trait loci (eQTLs)19, we found 
that correlating samples based on raw counts and applying k-means partially separated the samples by 
tissue (Fig. 3a). Repeating this analysis on counts adjusted by sva11, 20, to correct for latent factors 
affecting the expression measurements and identify differentially expressed genes, we observed that the 
clustering more accurately reflected tissue types, while reducing the total data variance by 9.6% (Fig. 3b). 
When we instead applied MAVRIC to the counts, to select for high-variance features and PCs associated 
with the tissue covariate, we determined that the clustering improved more than with sva, while reducing 
variance by 10.4% relative to the raw data (Fig. 3c). The high-variance genes identified by MAVRIC were 
also more likely to be differentially affected by eQTLs across tissues than were the top differentially 
expressed genes identified by sva’s workflow (see Methods, Supplementary fig. 3). Thus, compared to 
sva, MAVRIC offered a data correction that provided superior clarity of the biological differences of 
interest, while retaining a similar fraction of total variance. 
 By associating PCs with experimental covariates, MAVRIC can identify sources of variance, 
perform differential analysis, and reduce artifactual variation, without requiring that the user make explicit 
assumptions about which covariates are impactful. By focusing on data visualization, MAVRIC’s outputs 
maximize interpretability, providing users with a comprehensive overview of the biological and technical 
effects captured by functional genomics experiments. We expect that MAVRIC will provide a valuable 
complement to gene expression-oriented methods, particularly for use with newer assay types and in 
more expansive experimental designs. 
 
Figures and legends 
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Figure 1: Associating PCs with covariates to quantify sources of variance. 
(a) The MAVRIC algorithm: (1) input a data matrix and a covariate matrix, (2) optionally normalize data 
and select high-variance features, (3) perform PCA, (4) associate PCs with covariates to quantify 
contributions to variance, and (5) define “axes of variance” for differential analysis. 
(b) Top three PCs identified by MAVRIC as associated with species-specific and tissue-specific effects in 
previously published RNA-seq data15. Next three PCs depicted in Supplementary Fig. 1d. 
(c) Quantification of variance explained by known covariates across first five PCs of RNA-seq data from 
(b). 
(d) Total variance explained by known covariates, and residual unexplained variance, as aggregated 
across all PCs of RNA-seq data from (b) and (c). Overlaps in Euler diagram represent statistical 
confounding between covariates. 
(e) Accuracy of pvca’s (left) and MAVRIC’s (right) estimation of variance explained by a covariate in 1,000 
simulated RNA-seq experiments. 
(f) Estimates of variance explained by extraneous covariates, as assessed by pvca (top) versus MAVRIC 
(bottom), across 1,000 simulations of RNA-seq data where all variance is stochastic. 
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Figure 2: Evaluation of differential analysis results on simulated and real data. 
(a) False positives from DESeq2 (top) and MAVRIC (bottom), across 1,000 simulated RNA-seq 
experiments, where no genes are differentially expressed. Dashed, vertical line corresponds to an 
adjusted p-value of 0.1. 
(b) Performance of DESeq2 (green) versus MAVRIC (purple) in identifying differentially expressed genes, 
across 1,000 simulated RNA-seq experiments, with counts drawn from negative binomial distributions. Y-
axes give distributions of AUCs, and each pane corresponds to a different average simulated fold-change. 
(c) Venn diagram of ATAC-seq peaks found to be more accessible in human effector memory CD8 T cells 
(EM), as compared to central memory CD8 T cells (CM), as assessed by applying MAVRIC and DESeq2 
to previously published data18. 
(d) Comparison of areas under the receiver operating characteristic curves (AUCs) in recovering 
statistically significant transcription factor binding motif enrichment from gold-standard ATAC-seq peaks 
more accessible in EM than CM (357 peaks in brown overlap from (c)). Purple curve corresponds to 
enrichment p-values in MAVRIC-specific peaks (3,034 peaks in purple in (c)) and green curve 
corresponds to enrichment p-values in DESeq2-specific peaks (194 peaks in green in (c)). P-value 
between AUCs is from DeLong’s test. 
 

Figure 3: Noise reduction in large-scale consortium data. 
(a) Correlation matrix of RNA-seq samples from the GTEx project19, with samples ordered by k-means 
clustering. Color bar on right represents tissues. AMI refers to adjusted mutual information, which 
measures agreement between tissue annotations and cluster assignments, where 1 represents perfect 
agreement and 0 represents the agreement expected by chance. 
(b) As in (a), for the top differentially expressed genes identified after correction with sva. 
(c) As in (a), for genes identified by MAVRIC as having high variance in expression, and counts corrected 
by dropping PCs not associated with tissue-driven effects. The number of genes used is equal to that in 
(b). 
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Supplementary figures and legends 

Supplementary Figure 1: Connecting variance to experimental covariates 
(a) To statistically quantify the association between a PC and a covariate, MAVRIC uses the average 
silhouette of the points with respect to the category labels. The silhouette measures how segregated the 
categories are within the PC’s subspace (see Methods). MAVRIC then obtains a p-value for the observed 
average silhouette by permuting the coordinates 10,000 times and recalculating the average silhouette, 
forming a null distribution. The p-value of the observed average silhouette with respect to the null 
distribution tests the hypothesis that the PC offers a coordinate space in which the categories are 
segregated more than expected by chance. When more than one PC exhibits a significant p-value (based 
on a user-specified alpha), MAVRIC selects the single PC for which the difference between the observed 
average silhouette and the expected average silhouette is maximal, where the expected average 
silhouette is the mean of the null distribution. 
(b) PCs beyond the first are added to a covariate’s association subspace by forward selection. In 
particular, during the permutations, only the newly added PC’s coordinates are permuted, while those that 
MAVRIC has already associated with the covariate remain constant. Thus, the p-value tests the 
hypothesis that adding another PC to the current subspace improves the segregation between the 
categories more than expected by chance. 
(c) MAVRIC performs differential analysis by defining an “axis of variance” for a particular pairwise 
comparison between categories. The axis of variance is the line given by the two categories’ respective 
centroids in the subspace of associated PCs. Each sample’s coordinate in the associated PC subspace is 
projected onto that axis, yielding a univariate point for every sample in the data set. These projected 
values are then correlated with the values from the original data matrix. A high absolute correlation 
indicates that the variance for a feature aligns with the variance between the two categories, and thus that 
that feature is differentially expressed. 
(d) Fourth- through sixth-ranked PCs identified by MAVRIC as associated with tissue-specific effects in 
previously published RNA-seq data15. 
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Supplementary Figure 2: Comparison of MAVRIC and DESeq2 on ATAC-seq data 
(a) Distributions of estimates of effect sizes of differential expression, in simulated data without any 
differential expression (see Methods), for DESeq2 (left) and MAVRIC (right). For DESeq2, the x-axis is on 
the scale of log2 fold-changes. For MAVRIC, the x-axis is on the scale of correlations. 
(b) Transcription factor (TF) binding motif enrichment, for the top enriched TF motifs in the ATAC-seq 
peaks identified by both DESeq2 and MAVRIC as more accessible in human CD8 effector memory T cells 
than central memory cells (brown circle, Fig. 2c). The results are concordant with those of the original 
study18, and were thus used as a gold standard. 
(c) Gene ontology (GO) enrichment for peaks identified as differentially accessible by both MAVRIC and 
DESeq2 (x-axis; brown circle, Fig. 2c), versus GO enrichment for peaks identified as differentially 
accessible only by MAVRIC (y-axis; purple circle, Fig. 2c). Each point represents a GO category that was 
significantly enriched in at least one of the two peak sets at an alpha of .05 after multiple hypothesis 
correction. Pearson correlation = 0.70. The peaks identified as differentially accessible only by DESeq2 
did not produce any significantly enriched GO categories. 
 

Supplementary Figure 3: Representation of genes affected by eQTLs following correction of GTEx data by 
sva versus by MAVRIC 
(a) Odds ratios for likelihood that a selected gene had expression affected by an eQTL, for MAVRIC (left) 
and sva (right), as compared to all genes in the GTEx data set19. For MAVRIC, selected genes are those 
identified by its feature selection workflow as having high variance (see Methods). For sva, selected 
genes are an equal number of the top genes (as measured by smallest p-value) with significantly 
differential expression across tissues following data correction (see Methods). 
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(b) Distributions of numbers of tissues in which gene expression is affected by an eQTL. Sets of genes 
used for MAVRIC (purple) and sva (gold) are as in (a). Dotted black line gives distribution across all genes 
in the GTEx data. 
 
Methods 
Inputs to MAVRIC 
MAVRIC has two required inputs, a data matrix and a design matrix (Fig. 1a). The data matrix is of 
dimension P x N, for P features measured across N samples. For RNA-seq, the features would represent 
genes; for ChIP-seq or ATAC-seq, the features would represent peaks. The design matrix is of dimension 
N x M, for M covariates annotated across the same set of samples. The covariates reflect biological and 
technical attributes of the sample (e.g. treatment, sex, RIN), and can represent either categorial or 
continuous variables. MAVRIC requires that each categorical covariate has at least two categories, and 
that each category has at least two samples. 
 
Data preprocessing in MAVRIC 
The data matrix is optionally initially processed with a variance-stabilizing transformation to reduce 
heteroskedasticity, thereby likewise reducing the extent to which features with high means act as the 
primary drivers of the directions of the PC vectors. To avoid any parametric assumptions, the logarithm 
can be applied, or the user can employ a normalization with parametric assumptions particular to RNA-
seq. Next, MAVRIC attempts to improve statistical power by eliminating features with low variance, which 
are unlikely to be differential. For the feature selection process, MAVRIC fits, to the mean versus variance 
trend, an iteratively reweighted loess function, with weights given by a redescending M-estimator (Tukey’s 
biweight) based on the residuals. For point i with residual r(i), the weight w(i) is: 

𝑤(𝑖) = 1 −
𝑟(𝑖)
𝑘

! !

, 𝑟(𝑖) ≤ 𝑘 

𝑤(𝑖) = 0, 𝑟(𝑖) ≥ 𝑘 
The constant k controls robustness and here is set to the typical value of 4.685, which provides desirable 
asymptotic efficiency. Thus, features with high residuals are assigned lower weights, yielding a fit where 
high-variance features have low statistical leverage. Features with variance above the 95% confidence 
interval of the loess fit are considered to have higher than expected variance given their means; the 
remaining features are discarded. 
 The normalization and feature selection steps described above are both optional and flexible: The 
user is also able to normalize the data prior to inputting it to MAVRIC, and may further decide whether or 
not to employ a variance-stabilizing transformation. For feature selection, the user has the option of 
specifying that MAVRIC retain the v features with the highest variance (after normalization), rather than 
using the loess fit to control for any residual mean/variance dependence. 
 
Using MAVRIC to associate PCs with experimental covariates 
On the normalized data matrix, MAVRIC performs PCA, and then iterates over the covariates in the 
design matrix, associating each covariate with a subset of the PCs. Certain PCs are discarded at the 
outset, according to a user-specified eigenvalue threshold: Any PC that explains less variance than the 
threshold is discarded without evaluating its associations with the covariates. 

For categorical covariates, MAVRIC uses forward selection to establish the maximal set of PCs for 
which the spatial separation between the categories is greater than expected by chance. The use of 
forward selection helps reduce average run-time, particularly for large-scale consortium data with many 
samples, because the majority of PCs are generally expected to correspond to inter-sample differences 
and stochastic variability, with only a small number of PCs attributable to variance associated with each 
covariate. In the forward selection workflow, for each PC, the silhouette statistic21, averaged across all 
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samples, is used to quantify the separation between the categories. For a sample i in category A, the 
silhouette, s(i), assesses how close i is to the others in its category, relative to the samples in the spatially 
nearest category: 

𝑑(𝑖,𝐶) =
1
𝐶

!∈!;!!!

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) 

𝑎(𝑖) = 𝑑(𝑖,𝐴) 
𝑏(𝑖) = 𝑚𝑖𝑛!!!𝑑(𝑖,𝐵) 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥 𝑏(𝑖), 𝑎(𝑖)
 

The function distance(i,j) refers to the Euclidean distance between points i and j in the current PC 
subspace. The observed average silhouette is compared against the null distribution generated by 
average silhouette statistics calculated on 10,000 permutations of the PC coordinates. If there is a PC for 
which the one-sided p-value for the observed average silhouette is significant, that PC is considered to be 
associated with the covariate; if there is more than one such PC, only the single PC with the greatest 
difference between the observed average silhouette and the expected average silhouette is taken. The 
process then repeats on the remaining PCs, with null distributions calculated by permuting only the newly 
added coordinates, to test whether adding that dimension to the current PC subspace improves the 
separation more than expected by chance, given the current subspace. When there are no further PCs 
that can be added to improve the separation, the process ends, and the next covariate is considered. 

For continuous covariates, significant associations are established using the lasso. The lasso is 
not likewise used with categorical covariates for compatibility with the small sample sizes characteristic of 
sequencing experiments. In the lasso, For responses y and PC coordinates X, the regression coefficients, 
β, are given by: 

𝑚𝑖𝑛!
1
2𝑁

𝑦 − 𝑋𝛽 !
! + 𝜆 𝛽 ! 

The regularization parameter, λ, is determined by cross-validation. The number of folds in the cross-
validation is set such that there are at least three samples in each fold, up to a maximum of 10 folds. 
When fewer than 15 samples are supplied, leave-one-out cross-validation is employed. 
 
Estimating covariates’ contributions to data variance with MAVRIC 
Using the associations between PCs and covariates, MAVRIC calculates each covariate’s contribution to 
the total data variance. To determine contributions to variance, MAVRIC calculates a weighted sum of 
eigenvalues for each covariate, where the eigenvalues are those that correspond to the PC vectors. For 
PCs associated with the covariate, the weight is the within-group sum-of-squares (WGSS) divided by the 
total sum-of-squares (TSS), within that PC coordinate’s subspace; for PCs not associated with the 
covariate, the weight is 0. The contribution to variance V(A) for covariate A with categories C is as follows: 

𝑊𝐺𝑆𝑆(𝑆, 𝑖) =
!∈! !∈!

𝑝! −
1
𝐶

!∈!

𝑘!

!

 

𝑇𝑆𝑆(𝑖) =
!

𝑗!! 

𝑉(𝐴) =
!∈!"#

𝐼(𝐴, 𝑖)
𝑊𝐺𝑆𝑆(𝐴, 𝑖)
𝑇𝑆𝑆(𝑖)

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑖)  
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I(A,i) is an indicator variable that takes value 1 if PC i is associated with covariate A, and 0, otherwise. The 
function eigenvalue(i) returns the variance explained by PC i. Confounding between covariates is given by 
the variance shared across overlapping associated PCs: 

𝐽(𝐴,𝐵) =
!∈!"#

𝐼(𝐴, 𝑖)𝐼(𝐵, 𝑖) 𝑚𝑖𝑛
𝑊𝐺𝑆𝑆(𝐴, 𝑖)
𝑇𝑆𝑆(𝑖)

,
𝑊𝐺𝑆𝑆(𝐵, 𝑖)
𝑇𝑆𝑆(𝑖)

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑖)  

 
Residual variance is considered to be unexplained by the supplied covariates: 

!∈!"#

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝑖) −
!

𝑉(𝐴) −
1
2

! !!!

𝐽(𝐴,𝐵)  

  
Performing differential analysis with MAVRIC 
MAVRIC leverages associations between covariates and PCs to perform pairwise differential analysis 
between categories within a covariate. Having identified a PC subspace providing separation between the 
categories, MAVRIC seeks to identify features for which the variance in counts across samples matches 
the locations of the samples within that subspace. To achieve this goal, MAVRIC first reduces the spatial 
position of each sample within the PC subspace to a univariate value. That value corresponds to whether 
the sample is more similar to the average of one category versus the other. MAVRIC then correlates those 
values to the original data, for each feature in the data matrix, attaining estimates of whether the original 
count variance for a feature aligns with the spatial distances between samples within the PC subspace 
associated with the covariate. 

Specifically, to evaluate pairwise differential expression, MAVRIC begins by defining an “axis of 
variance” for each pair of categories, for each covariate. For a given pair of categories, the axis of 
variance is the line given by the pairs’ respective centroids in the subspace of PCs associated with the 
covariate. The zero point of the line is defined to be the midpoint between the centroids. Onto that line, 
MAVRIC projects the each sample’s point, generating a univariate value for each sample. This procedure 
is carried out for every sample, including those that are not members of the categories in the pairwise 
comparison. This design leverages the full data set when identifying elements that vary along the axis of 
variance, thus increasing statistical power (without affecting estimates of effect sizes; see below). The 
projection of point p onto the line defined by centroids c and d, with midpoint m, is given by: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚, 𝑐 +
< 𝑝 − 𝑐,𝑑 − 𝑐 >
< 𝑑 − 𝑐,𝑑 − 𝑐 >

𝑑 − 𝑐  

The unsigned distances are converted to signed values based on to which of the two centroids the 
projected point is closer. The signed values are then correlated with each feature from the original data 
matrix. Features for which that correlation is statistically significant are considered to be differential for that 
pairwise comparison. 
 Effect sizes are determined as typical fold-changes, except that, rather than using the original data 
matrix, they are calculated based on a reconstructed data matrix retaining only those PCs that MAVRIC 
identified as being associated with the covariate. By dropping out irrelevant PCs, MAVRIC estimates 
effect sizes that are natively corrected for unwanted variation. 
 
Analysis of ENCODE RNA-seq data 
ENCODE RNA-seq data across 13 tissues from mouse and human, covering 14,744 genes, were drawn 
from a previously published study15. The counts were translated to RPKMs and log-transformed, after 
which they were inputted to MAVRIC. To facilitate a direct comparison between MAVRIC’s results and the 
previously published analysis, MAVRIC’s feature selection was not used. 
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Data simulations 
Simulations were generated in sets of 1,000, across 27 samples and 1,000 features, annotated with 3 
covariates, each with 3 categories. For all simulations, the framework was derived from the DESeq2 
function makeExampleDESeqDataSet, which simulates counts from a negative binomial distribution, 
where each gene has a randomly generated mean and fold-change, with overdispersion as a function of 
the mean. This function was generalized to allow for fold-changes across multiple categories and 
covariates, and Gaussian noise was added both to the final counts, as well as per sample to the means 
and overdispersion parameters, such that each sample was generated from a negative binomial 
distribution with slightly different parametrization. The Gaussian noise parameters were chosen such that, 
after adding noise, the perturbation was +/- 10% of the original value, on average. For feature j of sample 
i, in a category v with average log2 fold-change k relative to the baseline simulated expression level, the 
counts c are distributed as: 

𝑚!,! ∼ 𝑁(4,2) 

𝑡!,! ∼ 𝑁 𝑘, . 1
2
𝜋

!!

𝑘 ∗ 𝑠𝑖𝑔𝑛(𝑣, 𝑗) 

𝜇!,! = 2!!,!!!!,! ∗ 𝑁 1, .1
2
𝜋

!!

 

𝑜!,! =
4

2!!,!
+ .1

!!
∗ 𝑁 1, .1

2
𝜋

!!

 

𝑐!,! ∼ 𝑁𝐵 𝑜!,! ,
𝜇!,!

𝜇!,! + 𝑜!,!
∗ 𝑁 1, .1

2
𝜋

!!

 

The function sign(v,j) controls whether the feature is down- or up-regulated relative to the baseline mean, 
and takes on values 1 and -1 with equal probability. Because the ci,j are intended to represent count data, 
the final values are rounded to the nearest integer. 
 When benchmarking accuracy relative to pvca, counts were first simulated with all fold-changes 
between categories set to zero. Then, for each simulation, 333 genes were randomly selected and had 
their counts redrawn such that, with respect to one of the covariates, all three categories were of different 
mean. The new counts were then scaled such that the new overall mean across all samples equalled the 
mean of the original parametrization. For both MAVRIC and pvca, the values plotted for estimates of 
variance explained were with respect to the covariate for which the categories’ means had nonzero fold-
changes. 
 When comparing the baseline false positives rates of MAVRIC to those of pvca and DESeq2, 
simulations were generated with nonzero fold-changes across all categories for every covariate. 
Estimates of variance explained were summed across all covariates. False positive rates for differential 
expression were with respect to a single pairwise comparison for one covariate. 
 AUCs for differential expression were calculated across four sets of simulations, each with a 
different average pairwise fold-change across categories from a single covariate. For each gene in these 
simulations, a category was selected with .2 probability to have a mean different from the baseline mean. 
The AUCs plotted were with respect to a single pairwise comparison within the covariate for which the 
categories’ means had nonzero fold-changes. 
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Analysis of ATAC-seq data 
Previously published ATAC-seq data from human CD8 T cell subsets18 were reanalyzed using MAVRIC. 
These results were compared to those of DESeq2, the method used for differential analysis in the original 
study. The pairwise comparison for which the results were compared was for ATAC-seq peaks more 
accessible in effector memory (EM) cells than central memory (CM) cells; this pairwise comparison was 
chosen because DESeq2 was unable to discover many significant changes in the published results. Here, 
changes were considered to be statistically significant based on an alpha of .01, after multiple hypothesis 
correction with the Benjamini-Hochberg procedure. 
 Transcription factor (TF) binding motif enrichment was assessed with HOMER22, using non-
significant peaks as the background set. True positives for the AUCs were considered to be those motifs 
that were significantly enriched in the peak set identified as differentially accessible by both MAVRIC and 
DESeq2. 
 Gene ontology (GO) analysis was performed using GREAT23. Categories were considered to be 
significantly enriched based on an alpha of .05. 
 
Analysis of GTEx RNA-seq data 
RNA-seq data and annotations of tissue-specific eQTLs from version 6 of the GTEx project were 
downloaded via the GTEx portal19. To fulfill the requirements for running MAVRIC, samples were 
discarded if they were members of categories for which there were fewer than three samples. This 
preprocessing yielded a total of 6,152 samples. 
 When running MAVRIC, the counts were first log-transformed, with a pseudocount of 1 added. 
MAVRIC’s feature selection workflow retained 7,594 genes with greater variance than expected by 
chance, given their respective means. To calculate the correlation matrix, PCs were discarded if they were 
not found to be associated with differences across tissues, and only those genes retained by feature 
selection were used. 
 When running sva, the method designed for sequencing data (svaseq) was used, parametrized to 
preserve variance across tissues. An F-test was used, in accordance with sva’s user guide, to quantify the 
likelihood that a gene was differentially expressed across some pair of tissues. To enable a direct 
comparison with MAVRIC, only the top 7,594 genes (as defined by smallest p-value) were used to 
calculate the correlation matrix. 
 Samples were clustered based on the correlation matrix using k-means clustering, with k set to 29. 
The fixed cluster number was chosen to be equal to the number of tissues represented in the data set. 
Adjusted mutual information was calculated for clusters with respect to the tissue annotations. This 
measure was chosen based on prior work demonstrating that it is the preferred statistic for comparing 
clusterings when there are unbalanced and small class sizes24, as is the case for the tissue annotations 
used. 
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