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ABSTRACT 40	

 41	

Background: Several promising live attenuated virus (LAV) dengue vaccines are in 42	

development, but information about innate immune responses and early correlates of protection 43	

are lacking.  44	

Methods:  We characterized human genome-wide transcripts in whole blood from 10 volunteers 45	

at 11 time-points after immunization with the dengue virus type 3 (DENV-3) component of the 46	

NIH dengue vaccine candidate TV003 and from 30 hospitalized children with acute primary 47	

DENV-3 infection. We compared day-specific gene expression patterns with subsequent 48	

neutralizing antibody (NAb) titers.   49	

Results: The transcriptional response to vaccination was largely confined to days 5-20 and was 50	

dominated by an interferon-associated signature and a cell cycle signature that peaked on days 51	

8 and 14, respectively. Changes in transcript abundance were much greater in magnitude and 52	

scope in symptomatic natural infection than following vaccination (maximum fold-change >200 53	

versus 21 post-vaccination; 3,210 versus 286 transcripts with significant fold-change), but 54	

shared gene modules were induced in the same sequence. The abundance of 131 transcripts 55	

on days 8 and 9 post-vaccination was strongly correlated with NAb titers measured 6 weeks 56	

post-vaccination. 57	

Conclusions:  LAV dengue vaccination elicits early transcriptional responses that mirror those 58	

found in symptomatic natural infection and provide candidate early markers of protection against 59	

DENV infection. 60	

 61	

Clinical Trial Registration Number: NCT00831012 (available at clinicaltrials.gov) 62	

Keywords:  dengue; vaccine; innate immune response; gene expression; microarray; correlates 63	

of protection; interferon; neutralizing antibody 64	
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BACKGROUND 66	

Each year, the four dengue virus serotypes (DENV-1-4) infect an estimated 390 million 67	

individuals globally [1]. While most of these infections are asymptomatic, approximately 100 68	

million individuals develop clinically apparent disease ranging from uncomplicated fever to life-69	

threatening illness. Despite the high disease burden, there are no licensed therapeutics for 70	

DENV infection. Several promising candidate dengue vaccines are in Phase III clinical trials, 71	

and the live attenuated chimeric dengue vaccine Dengvaxia™ was recently licensed for use in 72	

children 9 years of age and older in DENV endemic areas. However, the efficacy and duration 73	

of protection were limited or uncertain, and DENV-naïve vaccine recipients were hospitalized for 74	

dengue and severe dengue at a higher rate than placebo recipients, possibly due to antibody-75	

dependent enhancement (ADE) [2].  76	

Studies of natural DENV infection and flavivirus LAVs have identified immune responses 77	

needed for protection against dengue disease.  Pre-existing neutralizing antibody (NAb) titers 78	

correlated with a lack of symptomatic disease in subsequent infections [3–6] and are used as 79	

the primary measure of candidate vaccine immunogenicity. However, the risk of severe disease 80	

is elevated after a second infection with a heterotypic dengue virus [7]. The recognition of 81	

effective homotypic immunity after natural infection has led to a common vaccine development 82	

strategy of inducing homotypic NAbs to all four serotypes simultaneously. 83	

Little is known about the role of early innate immune responses in enhancing NAb 84	

production and promoting protective immune memory against dengue. Studies of innate 85	

immunity have been hampered by the difficulty inherent in identifying individuals with early 86	

infection, when innate immune responses are most active, particularly those with mild or 87	

subclinical infections. Trials of LAVs provide a unique opportunity to examine early immune 88	

responses in a setting where the time, dose, and viral serotype are known. Genome-wide 89	

transcript responses to vaccines have provided important clues about early steps in the 90	

generation of humoral and cellular immunity [8–13]. Transcript profiling of peripheral blood also 91	
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incorporates information from cell populations that are difficult to examine in clinical settings, 92	

and has led to signatures associated with dengue disease severity, identified links between 93	

innate responses and humoral immunity in secondary DENV infection, and illustrated the 94	

dynamic nature of these responses [14–20]. 95	

In this study, we characterized the transcript response to rDEN3Δ30/31, the DENV-3 96	

component of TV003, a tetravalent live attenuated vaccine candidate developed by NIH. TV003 97	

is a single-dose vaccine that has proven to be both safe and immunogenic and is being 98	

evaluated in a Phase III efficacy trial [21,22]. We examined the temporal course of changes in 99	

transcript abundance and identified early signatures correlated with NAb titers measured six 100	

weeks post-vaccination. We also compared these results with the transcript patterns we 101	

observed in patients with symptomatic wild-type primary DENV-3 infection. Despite the 102	

anticipated differences in the magnitude of expression, we observed the induction of common 103	

gene expression programs in the same temporal sequence, with a similar relationship to the 104	

induction of NAb. These results reveal candidate biomarkers of early protective DENV immune 105	

responses against dengue and suggest a path towards validation and deployment. 106	

 107	

METHODS 108	

Vaccine study population.  Samples for this study were collected from a Phase I clinical trial of 109	

the live attenuated dengue vaccine rDEN3Δ30/31-7164 (DENV-3), described previously [23].  110	

Briefly, healthy, flavivirus-naïve adult volunteers were enrolled and randomized to receive a 111	

single 0.5 ml subcutaneous dose of 1,000 PFU of DENV-3 vaccine or a placebo (0.5 ml of 112	

vaccine diluent). Blood samples including whole blood for RNA profiling (PAXgene, Preanalytix) 113	

were collected immediately prior to vaccination and on days 2, 5, 6, 8, 9, 12,14, 20, 29, 42 and 114	

180, and stored at -80°C until used. Samples from each of these time-points were available 115	

from nine of ten vaccinees and from all placebo recipients. Subject 9 had samples available for 116	

all days except days 8 and 12; 166 samples in total were used for analysis. Serum virus titers 117	
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(viremia) were measured using a standard plaque assay as described previously [24].  Serum 118	

NAb titer was determined by 60% plaque reduction (PRNT60) [25].  Seroconversion was defined 119	

by a >4-fold increase in PRNT60 on study day 28 or 42 relative to day 0 and corresponds to a 120	

post-vaccination titer >10 [23]. 121	

 122	

Dengue patient population. Patients presenting with fever and suspected dengue during the 123	

2010 dengue season were enrolled at the Hospital Infantil Manuel de Jesús Rivera (HIMJR) in 124	

Managua, Nicaragua. Inclusion criteria, recruitment, and laboratory testing have been described 125	

previously [26]; a full description is available in the Supplementary Information. Blood samples 126	

from healthy subjects were collected as part of a separate prospective cohort study in which 127	

healthy children in the same general population were enrolled without regard to dengue status 128	

[27].  129	

 130	

Ethics statement.  The trial of rDEN3Δ30/31 was approved by the Committee for Human 131	

Research at the University of Vermont, and written informed consent was obtained from all 132	

subjects following a review of risks and benefits and a comprehension assessment. The study in 133	

Nicaragua was approved by the Institutional Review Boards of the University of California, 134	

Berkeley, and the Nicaraguan Ministry of Health, and by the Stanford University Administrative 135	

Panel on Human Subjects in Medical Research. All clinical research followed human 136	

experimentation guidelines of the United States Department of Health and Human Services 137	

and/or those of the authors' institutions. Parents or legal guardians of all subjects provided 138	

written informed consent, and subjects 6 years of age and older provided assent. 139	

 140	

RNA sample processing and transcriptome analysis. PAXgene RNA was amplified and 141	

hybridized to Human Exonic Evidence Based Oligonucleotide (HEEBO) microarrays [14]. 142	

Microarray data were submitted to the Princeton University MicroArray (PUMA) database for 143	
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normalization and gene filtering and are deposited at Gene Expression Omnibus 144	

(http://www.ncbi.nlm.nih.gov/geo/; accession numbers GSE96656 and GSE98053). Data 145	

analysis was carried out using packages cited in the main text; a full description of both sample 146	

processing and analysis steps is available in the Supplementary Information. 147	

 148	

RESULTS 149	

 150	

Temporal patterns of the transcriptional responses to live dengue vaccination 151	

To identify the temporal pattern of the early human transcriptional response to dengue 152	

vaccination, we examined changes in genome-wide transcript abundance in serial whole blood 153	

samples from 10 volunteers infected with 1,000 plaque forming units (pfu) of rDEN3∆30/31, the 154	

dose included in TV003, and four volunteers inoculated with placebo (L-15 medium). Nine of ten 155	

vaccinees seroconverted 28 days post-vaccination, defined as a 60% plaque reduction 156	

neutralization titer (PRNT60 ) >10 (Table 1).  Four of the vaccinees had low-level viremia on one 157	

or more days within the first 10 days post-vaccination, five developed a mild maculopapular 158	

rash, and none were febrile. The four placebo recipients remained seronegative for DENV 159	

serotypes.  160	

We collected whole blood for isolation of RNA immediately before vaccination (day 0), 161	

and on days 2, 5, 6, 8, 9, 12, 14, 20, 29, 42 and 180 post-vaccination from all volunteers and 162	

measured genome-wide transcript abundance levels. Data were available for eight of the nine 163	

participants who seroconverted. For each of these eight subjects, we compared transcript 164	

abundances for each post-vaccination day with those for the matched pre-vaccination sample 165	

(see Supplementary Information). Almost all significant changes in transcript abundance 166	

occurred 5-20 days after vaccination, with a peak of 161 and 156 transcripts changing in 167	

abundance (days 8 and 9, respectively), and 286 transcripts with a significant change in 168	

abundance on at least one day (Figure 1). Fewer transcripts met criteria for significance when 169	
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comparing vaccinees to placebo recipients (n=131), but the direction of change for 271 of the 170	

286 transcripts from vaccinees was the same whether the comparison was with day-matched 171	

placebo recipients or each subject’s baseline sample (Supplementary Figure 1). 172	

To infer the functional implications of these changes in transcript abundance, we used 173	

hierarchical clustering to organize the transcripts and compared gene membership in Gene 174	

Ontology and the KEGG pathways using the DAVID bioinformatics resource [28]. Gene 175	

transcripts were grouped in three clusters (Figure 2 and Supplementary Figure 2). Transcripts in 176	

Cluster 1 were more abundant after vaccination (Figure 2C), peaked on days 8 and 9 post 177	

vaccination, and included canonical interferon-stimulated gene (ISG) transcripts; IFI44, IFI44L, 178	

IFI27, HERC5, IFIT1, USP18, and ISG15 transcripts all increased 10- to 22-fold compared to 179	

baseline. Cluster 1 was strongly enriched for genes involved in the innate immune response to 180	

viruses and highly enriched for genes we previously found to be expressed after treatment of 181	

PBMCs with type I interferon (p<1E-36) [29]. 182	

Gene transcripts in Clusters 2 and 3 showed maximal changes on day 14, with Cluster 2 183	

transcripts increasing and Cluster 3 transcripts decreasing in abundance from baseline (Figure 184	

2A and 2B). Cluster 2 included TYMS, CEP55, CCNA2, and NEK2, whose genes products are 185	

involved in DNA replication and cell division, and other genes associated with mitosis (p<2E-9, 186	

Figure 2C). Genes in Cluster 3 were enriched in both reticulocytes (p=1E-20) and neutrophils 187	

(p=2E-7) [30]. We did not measure reticulocyte counts, but we did measure neutrophils and the 188	

relative neutrophil abundance in vaccinees did not change significantly with time (p=0.55, paired 189	

t-test), suggesting that decreased expression of these genes was not due to decreased 190	

neutrophil abundance. 191	

 192	

Changes observed after vaccination are a subset of those observed in natural 193	

symptomatic DENV-3 infection 194	
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To establish which features of the early response to vaccination are shared with the 195	

response to natural symptomatic infection, we examined transcript responses in Nicaraguan 196	

children hospitalized with acute dengue. We previously demonstrated that a history of previous 197	

DENV exposure is the most prominent source of variation in gene expression in dengue 198	

patients [14]. To ensure that DENV immune status, as well as serotype, did not confound our 199	

analysis, we identified 30 children diagnosed with acute primary DENV-3 infection during a 200	

single year (Supplementary Table 1), and compared transcript abundance in whole blood with 201	

measurements from 9 healthy individuals. Principal components analysis confirmed previous 202	

findings that there are significant day-to-day changes in the transcript response to natural 203	

infection [14,31] (Supplementary Figure 4); thus, we subsequently performed analyses stratified 204	

by day of fever. 205	

Despite having fewer days available for comparison and lacking baseline samples for 206	

each patient, we identified many more transcripts with significant changes in abundance post-207	

infection compared to those found in vaccinees: among the 20,623 transcripts measured in both 208	

datasets, we identified 3,210 transcripts that differed significantly on at least one day of fever, 209	

compared with 278 transcripts following vaccination (Figure 3A and Supplementary Figure 5A). 210	

The magnitude of the maximum change in abundance post-infection was also nearly 10-fold 211	

greater: there was a 200-fold difference post-infection compared to a maximum 21-fold 212	

difference post-vaccination (Figure 3B).  The transcripts with the greatest differences in relative 213	

abundance during natural infection were MT2A (242-fold) and USP18 (183-fold), both of which 214	

are interferon-induced; HESX1 (150-fold), which is expressed in activated dendritic cells; and 215	

SPAT2SL (137-fold), which may be involved in activation and differentiation of multiple cell 216	

types. 217	

Despite differences in response magnitude and number, the response following natural 218	

symptomatic infection included 90% (250/278) of transcripts that changed after vaccination, and 219	

the direction of change was the same for 96% of these transcripts (240/250) (Figure 3C). The 220	
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transcripts that changed the most post-vaccination (IFI44, IFI44L, IFI27 and HERC5) were 221	

among the 20 transcripts with the biggest differences in abundance following natural infection, 222	

and relative increases in transcript abundance were strongly correlated across the two groups 223	

(Spearman r2 = 0.75).  224	

 225	

Responses to dengue vaccination and symptomatic natural infection share a common 226	

temporal sequence 227	

We used gene set enrichment analysis and information from all measured transcripts to 228	

identify 141 blood transcript gene modules that changed in abundance following either 229	

immunization or infection [8] (FDR<1%).  Many of these modules demonstrated similar changes 230	

in both vaccinees and patients (Figure 4A). Modules enriched for ISG expression were elevated 231	

on days 5-14 post-vaccination and were also persistently elevated after natural DENV infection.  232	

Modules representing monocyte-associated transcripts were elevated on days 1-3 of natural 233	

infection and on days 8-9 post-vaccination, while modules associated with the mitotic cell cycle 234	

were elevated on later days in both groups, with the highest levels on day 5 of natural infection 235	

and on day 14 post-vaccination.  When we compared the overall profiles of the gene modules in 236	

the two groups, we found that the responses to natural infection on fever days 1-3 were most 237	

similar to responses to vaccination on days 8-9 (Pearson’s r ≥0.60; peak on day 9), while fever 238	

day 4 was most similar to vaccination day 12 (r>0.75, peak on day 12), and fever day 5 was 239	

most similar to vaccination day 14 and subsequent time-points (r≥0.70, peak on 14) (Figure 4B, 240	

Supplementary Dataset 1). Thus, the enrichment of common modules in the same sequence 241	

indicates a similar progression in the early host response to vaccination and to natural infection.   242	

We note there was also a cluster of 16 gene modules, six associated with platelet 243	

activation and cytoskeletal remodeling, that were elevated in natural infection but not vaccinees 244	

(Figure 4A and Supplementary Dataset 1). Previous studies have demonstrated that platelet 245	
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activation and TGFβ expression are elevated in DENV infection and higher in patients with more 246	

severe disease [32]. TGFβ, which is expressed at high levels in platelets [33], was elevated on 247	

fever days 1-2 in dengue patients but was never elevated post-vaccination (Supplementary 248	

Figure 6). 249	

 250	

Early transcriptional responses linked to neutralizing antibody production  251	

DENV-specific NAbs are the primary endpoint for assessing vaccine responses in clinical trials 252	

and are associated with protection from both symptomatic infection and severe disease [3–5]. 253	

To determine whether changes in host transcript patterns predicted differences in NAb titer we 254	

calculated the correlation between the change in abundance of each transcript on each day and 255	

the NAb titer on post-vaccination day 42, when NAbs are generally at peak titer (Table 1, 256	

Supplementary Figure 7). During the first 6 days post-vaccination, we found no significant 257	

correlations with NAb titer, but by day 8, expression of the ISGs in Cluster 1 positively correlated 258	

with the day 42 NAb titer (p<0.01; Figure 5). This correlation was equally strong on day 9, and 259	

131 transcripts were significantly correlated with day 42 NAb titer on both days. Among the 260	

individual ISG transcripts most strongly correlated with day 42 NAb titer on both days 8 and 9 261	

(r>0.8) was IFI44, the transcript whose abundance changed the most post-vaccination.  IFI44 262	

was also elevated at one time-point in each of two placebo recipients, but the timing of elevated 263	

expression was different and correlated with unrelated respiratory viral infections in each 264	

instance (Supplementary Figure 8). Twelve of the 131 transcripts were also associated with 265	

subsequent development of a rash, which was the only significant correlate with positive NAb 266	

titer in a clinical trial of TV003 [21] (Supplementary Figure 9). Interestingly, the one vaccinee 267	

who failed to develop neutralizing antibodies showed little evidence of increased abundance in 268	

Cluster 1 genes (Supplementary Figure 3).  The association of interferon-related transcript 269	

abundance and later NAb titer diminished on days 12 and 14, but BUB1 (r=0.9) and other 270	
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transcripts associated with the mitotic cell cycle were correlated with subsequent NAb titers on 271	

day 14 (Figure 5).  272	

When we performed similar comparisons for naturally infected patients, we found no 273	

transcript clusters significantly correlated with either convalescent or three month NAb titer 274	

(Supplementary Figure 5B and 5C).  However, the pattern of blood transcript module 275	

enrichment indicated a similar relationship between day-specific gene expression and later 276	

production of NAb; gene enrichment for both interferon-stimulated and cell cycle-associated 277	

gene modules was associated with higher NAb titer in both vaccinees and patients (Figure 6), 278	

albeit more weakly in patients, and cell cycle-associated modules were correlated with NAb titer 279	

later in both groups.  280	

There are at least three subpopulations of monocytes with distinct transcript profiles [34]; 281	

Kwissa et al. identified an increase in CD14+CD16+ intermediate-phenotype population after 282	

secondary DENV infection, and showed that in vitro these cells stimulated formation of the 283	

plasmablasts that secrete antibodies weeks after infection, mediated in part by secretion of the 284	

ISG cytokine BAFF [19]. In our study, gene set enrichment analysis indicated enrichment of 285	

transcripts for both intermediate and nonclassical monocytes at multiple time-points in both 286	

vaccinees and patients, while BAFF transcripts were most abundant on fever days 1 and 2 in 287	

the patients and days 8 and 9 in the vaccinees (Supplementary Figure 10). 288	

 289	

DISCUSSION 290	

In this study, we used intensive longitudinal sampling to characterize the transcriptional 291	

response to dengue vaccination, compared results with those from natural infection with the 292	

same DENV serotype, and identified early features that may predict a protective immune 293	

response.  We found that vaccination and natural infection induced common gene expression 294	

programs, and the abundance of individual interferon-stimulated transcripts 8 days post-295	
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vaccination was correlated with NAb titers measured five weeks later, representing the earliest 296	

identified correlates of a protective adaptive immune response following dengue vaccination. 297	

An interferon response signature has been observed in other studies profiling viral 298	

vaccine transcriptional responses. Inactivated influenza and meningococcal vaccines both 299	

induce a mild interferon response during the first week post-vaccination, but the response is 300	

particularly strong after vaccination with live attenuated vaccines [9,12,35]. We reported that 301	

ISG expression was much stronger in cynomolgous macaques infected with wild-type DENV 302	

compared to live attenuated virus [35]. Here, we found that ISG expression was much stronger 303	

in symptomatic dengue patients than vaccinees, presumably due to higher viral load after 304	

infection with wild-type virus. Expression of ISGs was correlated with viral load in the patients, 305	

as seen in other studies [19,36].  However, this association did not persist when patients were 306	

stratified by day of fever, highlighting the importance of temporal variation in the innate immune 307	

response and in viral load, and suggesting that factors in addition to viral replication influence 308	

ISG expression. Several studies have found stable inter-individual differences in the response to 309	

interferon, suggesting that genetic and environmental features may affect the relationship 310	

between viral infection and the interferon response [37,38]. 311	

The links between type I interferon production and NAb production are likely to involve 312	

multiple cell types. Plasmacytoid dendritic cells (pDCs) contribute to B cell differentiation and 313	

antibody production after viral infection [39]. In this study, increases in monocyte-associated 314	

gene expression coincided with ISG expression, and we found features related to multiple 315	

monocyte phenotypes in both natural infection and vaccination (Supplementary Figure 10C). 316	

Gene module analysis also suggested that T cells were responsible for the increase in cell 317	

cycle-associated transcripts two weeks after vaccination that was linked to NAb titers. Future 318	

targeted studies of pDCs, monocytes, and T cell populations during the first two weeks post-319	

vaccination will help clarify their role in establishing long-lasting antibody responses. In addition, 320	

the link between an early interferon response and later NAb titer was only apparent in natural 321	
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infection when we used a module analysis approach. This may indicate a plateau, or saturation 322	

effect, in the relationship between ISG expression and antibody titer. Alternatively, it may reflect 323	

the variability in pathogen dose, prior health status and/or days of infection absent in clinical 324	

trials but inherent in observational studies. 325	

Comparison with LAV vaccination also provides a framework for identification of features 326	

associated with pathogenic versus non-pathogenic infection. A recent study compared PBMC 327	

gene expression in asymptomatic and clinically significant secondary DENV infection and 328	

identified differences in antigen presentation and lymphocyte activation [36].  In this study 329	

examining whole blood gene expression during primary infection, we found an increased 330	

abundance of transcripts associated with platelet activation in natural (pathogenic) infection but 331	

not vaccination (non-pathogenic infection), consistent with the hypothesis that platelet activation 332	

contributes to dengue pathogenesis [40].  333	

Neutralizing antibody titers were used as an endpoint for these vaccine studies because 334	

many studies have shown that these antibodies play an important role in protective immunity. 335	

However, recent work has demonstrated that NAbs measured in vitro are an imperfect correlate 336	

of in vivo protection [37,38]. Immunity mediated by NAbs may be neither life-long nor sterilizing 337	

[43,44] and will be affected by the quality as well as the quantity of NAbs [5,26,45]. Recent 338	

studies also highlight a likely role for cytotoxic T cells in mediating protection against DENV 339	

reinfection and severe disease [46–49]. The NIH tetravalent vaccine, of which rDEN3Δ30/31 is 340	

a component, elicits CD4+ T cell responses similar to those seen in natural infection [50]. It will 341	

be important to establish whether the early transcript-based features we measured in this study 342	

are associated with DENV-specific responses in memory T cell populations. 343	

Our findings should be validated using a tetravalent dengue vaccine formulation. We 344	

previously studied transcript-based responses to a different tetravalent dengue vaccine in 345	

nonhuman primates and found that the interferon response was associated with antibody 346	

formation [35]. We believe it is likely that the same relationship between early transcriptional 347	
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responses and neutralizing antibodies will exist in humans immunized with tetravalent LAV 348	

dengue vaccines. The initiation of Phase 3 clinical trials of TetraVax-DV-TV003 provides the 349	

opportunity to establish whether specific transcriptional profiles can be used as early surrogate 350	

markers of both immunogenicity and protection. 351	
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Figure Legends 503	

 504	

Figure 1. Significant differences in transcript abundance post-vaccination (FDR<1%; minimum 505	

2-fold change compared to pre-vaccination sample). 506	

 507	

Figure 2.  Changes in transcript abundances over time in vaccinees. A)  Hierarchical clustering 508	

of the 286 transcripts whose abundance was significantly different from baseline on more 509	

than one day. Lines and numbers to the right of the heatmap mark sets of co-expressed 510	

genes (average cluster r>0.5). B) Change over time in abundance for each transcript in 511	

each gene cluster.  Heavy line indicates median expression of all genes in each cluster. C) 512	

Gene ontologies associated with gene clusters described in (A) and (B). There were no 513	

significant gene ontologies for Cluster 3. 514	

 515	

Figure 3.  Comparison of post-vaccination and post-infection transcript abundance changes.  A) 516	

Transcripts with significant changes on days 2, 3, 4, or 5 of fever in patients with primary 517	

DENV-3 infection (blue circle) and on any day post-vaccination (green circle).  Numbers 518	

indicate transcripts unique to vaccination, infection, or shared (overlap, n=246). B) 519	

Maximum fold-change in transcript abundance following vaccination (red circles) or during 520	

infection (blue diamonds). C) Maximum fold-change in abundance for transcripts with 521	

significant changes post-vaccination or during infection.  Dotted diagonal line at equal fold 522	

change included for reference. 523	

 524	

Figure 4.  Gene modules affected by DENV vaccination and natural infection.  A) Blood 525	

transcript modules with transcripts that were significantly up- or down-regulated on at least 526	

one day (FDR <1%) were hierarchically clustered.  NES; normalized enrichment score.  527	

Vertical lines on right denote module clusters described in the text.  B) Hierarchical 528	
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clustering of each day post-vaccination or post-infection using the NES from (A).  Days in 529	

bold italics represent days of fever for infected patients; days preceded by “v” represent 530	

days post-vaccination. 531	

 532	

Figure 5.  Correlation of transcript abundance and day 42 PRNT60 among vaccine recipients.  A) 533	

Average fold change in abundance by day for all transcripts with significant differences 534	

from baseline post-vaccination.  Transcripts are ordered and clusters labeled as in Figure 535	

2. Asterisk marks IFI44. B) Spearman correlation of each transcript and day 42 PRNT60 536	

using a moving average of window size 9. Solid lines indicate days post-vaccination on 537	

which a significant correlation was identified (p<0.01, indicated by vertical dotted grey line). 538	

 539	

Figure 6.  Gene modules correlated with subsequent neutralizing antibody response.  A) Blood 540	

Transcript Modules that were significantly enriched for transcripts positively correlated with 541	

day 42 PRNT60 (vaccinees) or convalescent NT50 (patients) on at least one day (FDR<1%) 542	

were hierarchically clustered. NES; normalized enrichment score. Vertical lines delineate 543	

module clusters described in the text.  B) Significant modules (FDR<1%) are marked in red. 544	

Modules and samples are organized as in (A). C) Hierarchical clustering of gene module 545	

expression from each day post-vaccination or post-infection using the NES from (A). Day 546	

labels in bold italics represent fever day for infected patients; day labels preceded by “v” 547	

represent day post-vaccination. 548	

  549	
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Table 1. Characteristics of subjects in vaccine trial 550	

 551	

  Subject Age Sex Viremiaa Rashb 

Day 28 

PRNT60
c 

Day 42 

PRNT60
 c 

Day 180 

PRNT60
 c 

  1 (Vaccine) 19 F -- Days 12-20 54 70 30 

  2 (Vaccine) 26 F -- -- 22 15 <5 

  3 (Vaccine) 25 M Days 8-9 -- 52 106 22 

  4 (Vaccine) 20 M Days 8-9 Days 12-16 26 32 <5 

  5 (Vaccine) 20 M Day 6 Days 12-20 33 19 <5 

  6 (Vaccine) 22 M -- -- <5 <5 <5 

  7 (Vaccine) 19 M -- -- 18 8 8 

  8 (Vaccine) 22 F Days 5-8 Days 12-20 34 29 8 

  9 (Vaccine) 19 F -- -- 25 33 <5 

10 (Vaccine) 46 F -- Days 12-16 70 152 64 

11 (Placebo) 18 F -- -- <5 <5 <5 

12 (Placebo) 19 M -- -- <5 <5 <5 

13 (Placebo) 45 M -- -- <5 <5 <5 

14 (Placebo) 21 F -- -- <5 <5 <5 

 552	

a Virus detected in serum from tissue culture plaque formation assay  553	

b First and last day on which maculopapular rash observed  554	

c Reciprocal serum dilution providing 60% reduction in plaque formation 555	

	556	
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