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 26 

Abstract 27 

Enterovirus 71 (EV71) accounts for the majority of hand, foot and mouth disease-28 

related deaths due to fatal neurological complications. The clinical observations and 29 

animal models found the early invasion of nervous system, and the demyelinating 30 

phenomenon was observed. As one of the receptors of EV71 structural viral protein 1 31 

(VP1), SCARB2 mainly exists on the myelin sheath. EV71 VP1 can promote viral 32 

replication through inducing autophagy in neuron cells. This study aims to investigate 33 

the role and mechanism of VP1 in autophagy of mouse Schwann cells (MSCs). An 34 

EV71 VP1-expressing vector (pEGFP-C3-VP1) was generated and transfected into 35 

MSCs. Transmission electron microscopy (TEM) and Western blot analysis of the 36 

autophagy marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) 37 

were used to assess autophagy in the cells. Real-time PCR and immunofluorescent 38 

staining were performed to determine the expression of PMP22. Small interfering 39 

RNA against PMP22 was employed to investigate the role of PMP22 in MSCs 40 

autophagy. Selective endoplasmic reticulum (ER) stress inhibitor salubrinal (SAL) 41 

was employed to determine whether PMP22 is mediated by ER stress. Our results 42 

demonstrated that VP1 played a promotive role in MSC autophagy. Overexpression of 43 

VP1 upregulated PMP22. PMP22 deficiency downregulated LC3B and thus inhibited 44 

autophagy. Furthermore, PMP22 expression was significantly suppressed by SAL. 45 

VP1 promotes MSC autophagy through upregulating ER stress-mediated PMP22 46 

expression. VP1/ER stress/ PMP22 axis in autophagy may be a potential therapeutic 47 

target for EV71 infection-induced fatal neuronal damage.  48 
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Introduction 52 

Enterovirus 71, a single-stranded RNA virus, is one of the major causative pathogens 53 

of contagious hand, foot and mouth disease (HFMD)(1, 2) that mainly affects children 54 

under the age of 5. HFMD is an emerging public health issue worldwide, especially in 55 

Asia-Pacific countries(1, 3, 4). Although HFMD is commonly considered as a self-56 

limited disease characterized by ulcerating vesicles in the mouth and viral rashes on 57 

hands and feet(5-7), a small proportion of cases are severe and even fatal due to 58 

cardiopulmonary or neurological complications(8, 9). EV71 infection accounts for at 59 

least 80% of severe cases and 90% of deaths in China according to the recent data 60 

(10). Increasing evidence indicates that EV71 may target human neurons in central 61 

nervous system (CNS), leading to neuronal degeneration and severe neurological 62 

disorders in fatal cases(11-13). Our previous study also showed that neuronal necrosis 63 

and neuronophagia were present in the brainstem in fatal EV71-infected cases(14). 64 

Despite these neurotropic characteristics of EV71 virus, the pathogenesis and 65 

molecular mechanisms of EV71-induced neuronal damage remain largely unknown. 66 

Autophagy is an intracellular process that is mediated by a unique organelle named 67 

autophagosome and transports cytoplasmic components to the lysosomes for 68 

degradation(15, 16). The alteration of autophagy in the nervous system is associated 69 

with various neurodegenerative and neurometabolic disorders such as Alzheimer’s 70 

disease and Niemann-Pick disease(17-19). Autophagy can be observed using 71 

transmission electron microscopy (TEM) and can be assessed by measuring the 72 

conversion of microtubule-associated protein 1 chain 3 (LC3) to 73 

phosphatidylethanolamine (PE)-conjugated LC3 (LC3-II) localized in 74 

autophagosomal membranes, which reflects the number of autophagosomes or the 75 

degree of autophagy(20-22). EV71 has been shown to induce autophagy in infected 76 
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human rhabdomyosarcoma and neuroblastoma cells(23, 24). Our previous study 77 

demonstrates that EV71 structural viral protein 1 (VP1) also induces autophagy in 78 

cultured primary EV71-infected brainstem neurons, which can be inhibited by 79 

endoplasmic reticulum (ER) stress inhibitor salubrinal (SAL)(25), suggesting an 80 

essential role of ER stress in VP1-induced autophagy.  81 

ER stress is triggered by the accumulation of unfolded or misfolded proteins in ER(26, 82 

27). Although the relationship between ER stress and autophagy is not yet fully 83 

understood, it is well established that there is a dynamic crosstalk between these two 84 

systems, and ER stress either stimulates or inhibits autophagy(26, 28, 29). Since ER 85 

stress and autophagy are commonly concurrent in some human pathologies, such as 86 

cardiovascular diseases, cancers, and neurodegenerative disorders(29-31), it is of 87 

great importance to identify ER stress-associated molecules as positive or negative 88 

regulators of autophagy. Peripheral myelin protein 22 (PMP22) is a transmembrane 89 

glycoprotein highly expressed in the myelinating Schwann cells of peripheral neurons, 90 

and majorly contributes to synthesis and function of myelin sheaths(32). In Schwann 91 

cells, newly synthesized PMP22 is transiently retained in ER and Golgi before 92 

transported to the plasma membrane(33, 34). Under pathological conditions, 93 

excessive mature or premature (unfolded or misfolded) PMP22 accumulates in ER 94 

and interacts with calnexin, a Ca
2+

-binding chaperone, leading to ER retention and 95 

activation of ER stress(35, 36). However, it remains unknown whether the 96 

relationship between PMP22 and ER stress is associated with autophagy. 97 

In this study, we hypothesize that PMP22 is a downstream effector of ER stress and 98 

triggers activation of autophagy in response to EV71 capsid protein VP1. To confirm 99 

this hypothesis, we transfected mouse Schwann cells (MSCs) with VP1-expressing 100 

vectors to explore its effect on MSC autophagy and PMP22 expression. Our results 101 
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showed that ER stress mediates the expression of PMP22 that is essential for MSC 102 

autophagy, suggesting an involvement of VP1/ER stress/PMP22 axis in the regulation 103 

of MSC autophagy. Targeting VP1/ER stress/PMP22 axis in autophagy may be a 104 

novel therapeutic strategy against   EV71 infection-induced neuronal damage. 105 

 106 

Results 107 

Cloning and identification of VP1 cDNA. 108 

To determine if VP1 cDNA was successfully cloned into pEGFP-C3 vector, we 109 

prepared plasmids from transformed bacteria and digested them with BamHI and XhoI. 110 

The results of agarose electrophoresis showed that a band was located between 750 111 

and 1000 bp following enzymatic digestion (Fig. 1), which is consistent with the size 112 

of VP1 cDNA (894 bp) based on the GenBank database. The sequencing results also 113 

indicated that the cloned fragment was identical to the VP1 cDNA sequence 114 

(supplementary Fig. 1), suggesting that VP1 cDNA was successfully cloned into the 115 

vector without any mutation. 116 

Overexpression of VP1 activates MSC autophagy.  117 

To examine whether VP1 has an effect on MSC autophagy, we analyzed the cellular 118 

and subcellular morphology of VP1-overexpressing MSCs using TEM. As shown in 119 

Fig. 2, VP1-overexpressing MSCs exhibited the features of autophagy such as 120 

swelling mitochondria, dilation and degranulation of rough ER, and vesicle-like 121 

dilation of Golgi(37), whereas the organelles in untransfected and GFP-transfected 122 

control MSCs were still morphologically normal. These results suggest that VP1 may 123 

activate autophagy in MSCs. 124 

Overexpression of VP1 markedly upregulates PMP22 expression in MSCs 125 
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Our previous study indicates an essential role of ER stress in VP1-induced autophagy 126 

in primary cultured EV71-infected brainstem neurons(14). In combination with the 127 

findings that PMP22 is abundant in Schwann cells and is closely associated with ER 128 

stress activation(32, 35, 36), we hypothesize that PMP22 might correlate with VP1 129 

and play an important role in VP1-induced autophagy. To test this hypothesis, we 130 

detected the mRNA and protein expression of PMP22 in VP1-overexpressing MSCs. 131 

As shown in Fig. 3A, the mRNA expression of PMP22 was dramatically elevated in 132 

VP1-overexpressing MSCs compared with GFP-transfected cells. Immunofluorescent 133 

staining assay also showed similar results (Fig. 3B). These data indicate that VP1 is 134 

an upstream regulator of PMP22, suggesting a possible involvement of PMP22 in 135 

VP1-mediated activation of MSC autophagy. 136 

PMP22 is essential for MSC autophagy.  137 

We next sought to investigate whether PMP22 is involved in MSC autophagy. PMP22 138 

was knocked down by siRNA, which was confirmed by markedly decreased 139 

expression of PMP22 in siPMP22-transfected MSCs (Fig. 4A). Importantly, 140 

compared with siCtrl-transfected groups, knockdown of PMP22 significantly 141 

downregulated the expression of  LC3 isoform LC3B-II, a gold standard autophagy 142 

marker (38),  as shown in Fig. 4B and 4C. Consistently, the ratio of LC3B-II to 143 

LC3B-I in PMP22-deficient MSCs was also significantly lower than that in siCtrl-144 

transfected groups (Fig. 4D). Furthermore, TEM images showed that there was no 145 

observable autophagic structure in siPMP22-transfected MSCs as compared with 146 

siCtrl-transfected cells (Fig. 5). Taken together, these data suggest that PMP22 is 147 

required for activation of autophagy in MSCs.  148 

ER stress mediates PMP22 expression in MSCs.  149 
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Since PMP22 is closely associated with ER stress and both PMP22 and ER stress are 150 

essential for activation of autophagy, we further sought to clarify the relationship 151 

between PMP22 and ER stress in MSCs using selective ER stress inhibitor SAL. As 152 

shown in Fig. 6A, compared with the control groups, mRNA expression of PMP22 153 

was significantly downregulated following SAL treatment. Consistently, markedly 154 

weak fluorescent staining of PMP22 was also observed in SAL-treated MSCs (Fig. 155 

6B), suggesting that PMP22 expression in MSCs is mediated by ER stress. These 156 

results indicate that VP1/ER stress/PMP22 signaling axis is an important component 157 

in MSC autophagy. 158 

 159 

Discussion 160 

In the present study, we investigated the role and mechanism of EV71 capsid protein 161 

VP1 in MSC autophagy, and demonstrated for the first time that VP1 promotes MSC 162 

autophagy through ER stress-mediated PMP22 upregulation, suggesting VP1/ER 163 

stress/PMP22 axis as a novel potential target against EV71-induced neuronal disorder 164 

in severe HFMD cases.  165 

EV71 possesses four structural proteins including VP1, VP2, VP3, and VP4. VP1 166 

homodimers are the main component of the characteristic icosahedral capsid 167 

contributing to the pathogenicity and stability of EV71 virus to survive in the 168 

environment of the gastrointestinal tract(39, 40). In the present study, we 169 

demonstrated that VP1 plays a promotive role in MSC autophagy (Fig. 2), which is 170 

consistent with our previous findings(25). However, the effect of VP1-induced 171 

autophagy on MSC survival still remains unclear because autophagy plays dual roles 172 

in the nervous system. Excessive autophagy may be protective in chronic 173 

neurodegenerative diseases but detrimental in acute neural damages(18, 41). It has 174 
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been reported that inhibition of EV71-induced autophagy in human 175 

rhabdomyosarcoma cells inhibits cell apoptosis at autophagosome formation stage 176 

and autophagy execution stage, but promotes apoptosis at the autophagosome-177 

lysosome fusion stage. Furthermore, the inhibition of autophagy in the autophagsome 178 

formation stage or apoptosis decreases the release of EV71 viral particles, which is an 179 

effective strategy against virus infection(42). On the other hand, EV71-induced 180 

autophagy promotes viral replication in human rhabdomyosarcoma and 181 

neuroblastoma cells, and aggravates physiopathological parameters including weight 182 

loss, disease symptoms, and mortality in mouse models(23, 24). Further in vitro and 183 

in vivo studies are required to clarify the exact role of VP-induced autophagy in 184 

neuron cells. 185 

In the present study, we also found that VP1 overexpression upregulated an important 186 

ER stress-associated protein PMP22(35, 36) in MSCs (Fig. 3), suggesting an 187 

involvement of ER stress activation in VP1-induced autophagy. It is well-established 188 

that excessive or premature PMP22 retaining in the ER induces ER stress(35, 36). 189 

However, the effect of ER stress activation on PMP22 expression hasn’t been 190 

investigated yet. Our data revealed for the first time that inhibition of ER stress 191 

significantly downregulated the expression of PMP22 in MSCs (Fig. 6), suggesting 192 

that PMP22 is a downstream effector of ER stress. It seems that there is a positive 193 

feedback loop between ER stress and PMP22 in MSCs. Furthermore, our results 194 

showed that, in PMP22-deficient MSCs, there was no morphological signs of 195 

autophagy and the autophagy marker LC3B-II was remarkably downregulated (Fig. 4 196 

and 5), suggesting that PMP22 is essential for MSC autophagy. Interestingly, in an 197 

EV71-infected mouse model, VP1 was found co-localized with LC3 and/or 198 

autophagosome-like vesicles in neurons, and VP1 expression was positively 199 
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correlated with LC3-II expression, aggregation and autophagosome formation(24). 200 

Upregulation of LC3-II expression was also observed in VP1-transfected HEK293 201 

cells(25). Considering the regulatory role of VP1 in both MSC autophagy and PMP22 202 

expression (Fig. 3), we conclude that VP1/ER stress/PMP22 pathway may play an 203 

important role in activation of MSC autophagy.  204 

In summary, our data demonstrated that MSC autophagy can be activated by EV71 205 

capsid protein VP1. Mechanistically, the expression of ER stress-associated protein 206 

PMP22 was significantly upregulated by VP1, suggesting that ER stress-mediated 207 

PMP22 upregulation is possibly responsible for VP1-induced autophagy activation. 208 

The VP1/ER stress/PMP22 axis may serve as a potential therapeutic target against 209 

EV71 infection.  210 

 211 

Materials and Methods  212 

Cell line and culture  213 

Mouse Schwann cells (MSC) were purchased from ScienCell Research Laboratories 214 

(Carlsbad, CA, USA) and maintained in Schwann cell medium (ScienCell) containing 215 

penicillin (100U/mL)/ streptomycin (100 μg/mL) (Hyclone, Logan, UT, USA) in 216 

poly-L-lysine-coated (2 μg/cm
2
) flasks at 37°C in a humidified atmosphere of 5% 217 

CO2.  218 

Sample collection 219 

EV71 were isolated from clinical specimens including throat, anal swabs and stools of 220 

HFMD patients with EV71 infection, and were provided by the Center for Disease 221 

Control and Prevention of Guangdong Province (Guangzhou, Guangdong, China). 222 

The patient was diagnosed by Guangxi Medical University (Nanning, Guangxi, China) 223 
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based on the pathological analysis by Forensic Identification Center, Zhongshan 224 

School of Medicine, Sun Yat-sen University (Guangzhou, Guangdong, China).  225 

Gene cloning and transfection 226 

Total RNA was extracted from EV71 using Trizol (Invitrogen, Carlsbad, CA, USA). 227 

The 894-bp VP1 cDNA was synthesized by reverse transcription polymerase chain 228 

reaction (RT-PCR) using the primer sets 5’-229 

CCGCTCGAGGCCACCATGGGTGATGGAATTGCAGACATGA-3’ (forward) and 230 

5’-CGCGGATCCTAGTGTTGTTATTTTGTCCCTACTTGTGC-3’ (reverse) 231 

(Genewiz, Suzhou, Jiangsu, China). The PCR products were then subcloned into 232 

pEGFP-C3 (Green Fluorescent Protein, GFP) expression vector (Clontech, Terra., 233 

USA) and sequencing was performed by Sangon Biotech (Shanghai, China). The 234 

results were compared with VP1 cDNA sequence reported by GenBank database. 235 

Cells were transiently transfected with plasmids using Lipofectamine 2000 236 

(Invitrogen) following the manufacturer’s instruction. 237 

Small interfering RNA (siRNA)  238 

siRNA against PMP22 (siPMP22) was from Santa Cruz Biotechnology (Dallas, TX, 239 

USA) and transfected using siRNA transfection reagent (Santa Cruz Biotechnology). 240 

Scramble siRNA (siCtrl) was used as a negative control.  241 

Quantitative real-time PCR (qPCR) 242 

Total RNA was extracted from cells using Trizol (Invitrogen) following the 243 

manufacturer’s instructions and was reversely transcribed into cDNA using reverse 244 

transcriptase (Promega, Madison, WI, UDA). Real-time PCR was performed using 245 

SYBR Green qPCR SuperMix (Invitrogen) and the primers as shown in Table 1, 246 

following the manufacturer’s instruction. GAPDH was used as an internal control. 247 

Data were analyzed using the 2
−ΔΔCt

 method. 248 
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Western blot analysis 249 

MSCs were lysed and the lysates were collected. Protein concentration was 250 

determined using BCA protein assay reagent (?). 50 ng of proteins were separated by 251 

10% SDS-PAGE gel and transferred to polyvinylidene fluoride membranes. The 252 

membranes were then blocked with 5% nonfat milk powder in Tris-buffered saline 253 

and Tween 20 (TBST), and then incubated with anti-GAPDH (1:1000; Abcam, 254 

Cambridge, UK) or anti-LC3B (1:1000; Abcam) for 1–2 h at room temperature. 255 

Following 3 washes with cold TBST, the membranes were incubated with peroxidase-256 

conjugated secondary antibody (1:4000; Thermo Fisher Scientific, Rockford, IL 257 

61105 USA) for additional 1 h at room temperature. After 3 washes with TBST, the 258 

protein expression was detected using enhanced chemiluminescent development 259 

reagent (GE Healthcare, Little Chalfont, UK) and X-ray films. 260 

Immunofluorescence staining 261 

MSCs were seeded on sterile coverslips 48 h after transfection and incubated 262 

overnight at 37 °C. Cells were then fixed with 4% paraformaldehyde for 30 min, 263 

followed by incubation with 0.2% Triton-X 100 at 4 °C for 5 min. After phosphate-264 

buffered saline (PBS) washes, cells were blocked with 10% normal goat serum 265 

(Jackson ImmunoResearch, West Grove, PA, USA) for 30 min and incubated with 266 

anti-PMP22 antibody (Abcam) overnight at 4 °C. Cells were then incubated with 267 

fluorescence-conjugated secondary antibodies (Thermo Fisher Scientific, Waltham, 268 

MA, USA) for 1 h at room temperature. The images of stained cells were captured 269 

with a Leica camera (Leica, Wetzlar, Germany). 270 

Transmission electron microscopy (TEM) analysis 271 

MSCs were prefixed with 2.5% glutaraldehyde for 2 h and postfixed with 1% osmic 272 

acid for additional 2 h at 4 °C, followed by gradient dehydration in 30%, 50%, and 70% 273 
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ethanol (10 min each), 80%, 90%, and 95% acetone (10 min each), and 100% acetone 274 

(10 min twice). Cells were then embedded in the resin and stained with lead citrate. 275 

The stained cells were observed and imaged under a Hitachi H-7500 transmission 276 

electron microscope (Hitachi, Tokyo, Japan). 277 

Statistical analysis 278 

All experiments were repeated at least three times. Data were expressed as the mean ± 279 

standard error (SE). Statistical significance was assessed using Student’s t test or one-280 

way ANOVA with SPSS16.0 statistical software (SPSS Inc, IL, USA). P < 0.05 was 281 

considered statistically significant. 282 
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Figure legends 421 

 422 

Figure 1. Cloning and identification of VP1 cDNA. Agarose electrophoresis for 423 

intact (lane 1) and restriction enzyme-digested (lane 2) VP1 cDNA cloning vector 424 

pEGFP-C3 plasmids. M: DNA marker.  425 

 426 

 427 

Figure 2. The effect of VP1 overexpression on MSC autophagy. MSCs were 428 

transfected with pEGFP-C3-VP1 plasmids for 48 h. Untransfected and pEGFP-C3-429 

trasfected cells were used as blank and negative controls, respectively. Representative 430 

transmission electron microscopic images depict subcellular structures of MSCs. N: 431 

nucleus, M: mitochondrion, L: lysosome, AP: autophagosome, AL: autolysosome, 432 

DV: degradation vesicles, GA: Golgi apparatus, ER: endoplasmic reticulum, SV: 433 

secretory vesicles. MSC, mouse Schwann cell. 434 

 435 

 436 

Figure 3. The effect of VP1 on PMP22 expression in MSCs. MSCs were 437 

transfected with pEGFP-C3-VP1 plasmids for 48 h. Untransfected and pEGFP-C3-438 

trasfected cells were used as blank and negative controls, respectively. A. The mRNA 439 

expression of PMP22 was detected by qPCR. Data are expressed as the mean ± SE; 440 

***P < 0.001 vs. untransfected group; n = 3. B. Immunofluorescent staining for 441 

PMP22 in pEGFP-C3- or pEGFP-C3-VP1-transfected MSCs. GFP expression was 442 

used to monitor the transfection efficacy. Magnification: 400×. MSC, mouse Schwann 443 

cell; SE, standard error.  444 

 445 
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 446 

Figure 4. The effect of PMP22 knockdown on autophagy marker LC3B-II in 447 

MSCs. MSCs were transfected with siPMP22. Untransfected and scramble siRNA-448 

trasfected cells were used as blank and negative controls, respectively. mRNA and 449 

proteins expression of LC3B were detected by real-time PCR (A) and Western blot 450 

assay (B), respectively. (C) Quantification of Western blot assay. (D) Ratio of LC3B-451 

II to LC3B-I. Data are expressed as the mean ± SE; ***P < 0.001 vs. untransfected 452 

group; n = 3. MSC, mouse Schwann cell; SE, standard error. 453 

 454 

 455 

Figure 5. The effect of PMP22 knockdown on cellular and subcellular 456 

morphology of MSCs. MSCs were transfected with siPMP22 for 48 h. Untransfected 457 

and scramble siRNA-trasfected cells were used as blank and negative controls (siCtrl), 458 

respectively. Representative transmission electron microscopic images depict 459 

subcellular structures of MSCs. N: nucleus, M: mitochondrion, L: lysosome, AP: 460 

autophagosome, AL: autolysosome, DV: degradation vesicles, GA: Golgi apparatus. 461 

MSC, mouse Schwann cell. 462 

 463 

 464 

Figure 6. The effect of ER stress activation on PMP22 expression in MSCs. MSCs 465 

were treated with 15 µM of selective ER stress inhibitor salubrinal (SAL) for 48 h. 466 

Untreated and DMSO-treated cells were used as blank and negative controls. (A) The 467 

mRNA level of PMP22 was detected by real-time PCR. Data are expressed as the 468 

mean ± SEM; ***P < 0.001 vs. untransfected group; n = 3. (B) Immunofluorescent 469 

staining (red) for PMP22 in DMSO- or SAL-treated MSCs. Furo 8-AM in SAL 470 
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showed green fluorescence. Magnification: 400×. ER, endoplasmic reticulum; MSC, 471 

mouse Schwann cell; SE, standard error. 472 

 473 

 474 
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Table 1 Real-time PCR primers 

Gene Forward primer (5’–3’) Reverse primer (5’–3’) 

PMP22 CTGCCAGCTCTTCACTCTCA GTTGACATGCCACTCACTGT 

GAPDH GGCCTCCAAGGAGTAAGAAA GCCCCTCCTGTTATTATGG 
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