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Abstract

Real-world agents, humans as well as animals, observe each other during interactions and choose their own
actions taking the partners’ ongoing behaviour into account. Yet, classical game theory assumes that players
act either strictly sequentially or strictly simultaneously without knowing each other’s current choices. To
account for action visibility and provide a more realistic model of interactions under time constraints, we
introduce a new game-theoretic setting called transparent game, where each player has a certain probability
of observing the partner’s choice before deciding on its own action. By means of evolutionary simulations, we
demonstrate that even a small probability of seeing the partner’s choice before one’s own decision substantially
changes evolutionary successful strategies. Action visibility enhances cooperation in an iterated coordination
game, but disrupts cooperation in a more competitive iterated Prisoner’s Dilemma. In both games, “Win–stay,
lose–shift” and “Tit-for-tat” strategies are predominant for moderate transparency, while “Leader-Follower”
strategy emerges for high transparency. Our results have implications for studies of human and animal social
behaviour, especially for the analysis of dyadic and group interactions.

Author summary

Humans and animals constantly make social decisions. Should an animal during group foraging or a human at
the buffet try to obtain an attractive food item but risk a confrontation with a dominant conspecific, or is it
better to opt for a less attractive but non-confrontational choice, especially when considering that the situation
will repeat in future? To model decision-making in such situations game theory is widely used. However, classic
game theory assumes that agents act either at the same time, without knowing each other’s choices, or one after
another. In contrast, humans and animals usually try to take the behaviour of their opponents and partners into
account, to instantaneously adjust their own actions if possible. To provide a more realistic model of decision
making in a social setting, we here introduce the concept of transparent games. It integrates the probability of
observing the partner’s instantaneous actions into the game-theoretic framework of knowing previous choice
outcomes. We find that such “transparency” has a direct influence on the emergence of cooperative behaviours
in classic iterated games. The transparent games contribute to a deeper understanding of the social behaviour
and decision-making of humans and animals.

Introduction 1

One of the most interesting questions in evolutionary biology, social sciences, and economics is the emergence 2

and maintenance of cooperation [1–5]. A popular framework for studying cooperation (or the lack thereof) is 3

game theory, which is frequently used to model interactions between “rational” decision-makers [6–9]. A model 4

for repeated interactions is provided by iterated games with two commonly used settings [2]. In simultaneous 5

games all players act at the same time and each player has to make a decision under uncertainty regarding the 6

current choice of the partner(s). In sequential games players act one after another in a random or predefined 7
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order [10] and the player acting later in the sequence is guaranteed to see the choices of the preceding player(s). 8

Maximal uncertainty only applies to the first player and – if there are more than two players – is reduced with 9

every turn in the sequence. 10

Both classical settings simplify and restrict the decision context: either no player has any information about 11

the choices of the partners (simultaneous game), or each time some players have more information than others 12

(sequential game). This simplification prevents modelling of certain common behaviours, since humans and 13

animals usually act neither strictly simultaneously nor sequentially, but observe the choices of each other and 14

adjust their actions accordingly [1]. Indeed, the visibility of the partner’s actions plays a crucial role in social 15

interactions, both in laboratory experiments [3, 11–16] and in natural environments [4, 17–20]. 16

For example, in soccer the penalty kicker must decide where to place the ball and the goalkeeper must 17

decide whether to jump to one of the sides or to stay in the centre. Both players resort to statistics about the 18

other’s choices in the past, making this more than a simple one-shot game. Since the goalkeeper must make the 19

choice while the opponent is preparing the shot, a simultaneous game provides a first rough model for such 20

interactions [21,22]. However, the simultaneous model ignores the fact that both players observe each other’s 21

behaviour and try to predict the direction of the kick or of the goalkeeper’s jump from subtle preparatory 22

cues [15], which often works better than at chance level [21–23]. Using instantaneous cues should not only affect 23

one-shot decisions but also iterative statistics: Learning from a keeper over iterations that he has the tendency 24

of jumping prematurely encourages strategies of delayed shots by the kicker, and vice versa. While the soccer 25

example represents a zero-sum game, similar considerations apply to a wide range of different interactions in real 26

life, see for instance Fig. 1. Yet a framework for the treatment of such cases is missing in classical game theory. 27

Fig 1. Real-life example of transparent two-player game: group foraging in monkeys. Two
monkeys are reaching for food in two locations that are at some distance so that each monkey can take only one
portion. At one location are grapes (preferred food), at the other - a carrot (non-preferred food). (A) Initially
both monkeys move toward grapes. (B) Monkey 1 observes Monkey 2 actions and decides to go for the carrot to
avoid a potential fight. (C) Next time Monkey 1 moves faster towards the grapes, so Monkey 2 swerves towards
the carrot. Coordinated behaviour in such situations has the benefit of higher efficiency and avoids conflicts.
This example shows that transparent game is a versatile framework that can be used for describing decision
making in social contexts.

To better predict and explain the outcomes of interactions between agents by taking the visibility factor 28

into account, we introduce the concept of transparent games, where players can observe actions of each other. 29

In contrast to the classic simultaneous and sequential games, a transparent game is a game-theoretic setting 30

where the access to the information about current choices of other players is probabilistic. For example, for a 31

two-player game in each round three cases are possible: 32

1. Player 1 knows the choice of Player 2 before making its own choice. 33

2. Player 2 knows the choice of Player 1 before making its own choice. 34
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3. Neither player knows the choice of the partner. 35

Only one of the cases 1-3 takes place in each round, but for a large number of rounds one can infer the probability 36

pisee of Player i to see the choice of the partner before making own choice. These probabilities depend on the 37

reaction times of the players. If they act nearly at the same time, neither is able to use the information about 38

partner’s action; but a player who waits before making the choice has a higher probability of seeing the choice of 39

the partner. Yet, explicit or implicit time constraint prevents players from waiting indefinitely for the partner’s 40

choice. In the general case transparent games impose an additional uncertainty on the players acting first: they 41

cannot know in advance whether the other players will see their decision or not in a given round. 42

The framework of transparent games is generic and includes classic game-theoretical settings as particular 43

cases: simultaneous games correspond to p1see = p2see = 0, while sequential games result in p1see = 0, p2see = 1 for 44

a fixed order of decisions in each round (Player 1 always moves first, Player 2 – second) and in p1see = p2see = 0.5 45

for a random sequence of decisions. Here we ask if probabilistic access to the information on the partner’s 46

choice in transparent games leads to the emergence of different behavioural strategies compared to the fully 47

unidirectional access in sequential games or to the case of no access in simultaneous games. 48

To answer this question, we consider the effects of transparency on emergence of cooperation in two-player 49

games. To draw a comparison with the results for classic simultaneous and sequential settings, we focus here 50

on the typically studied memory-one strategies [9, 24] that take into account own and partner’s choices at the 51

previous round of the game. Since cooperation has multiple facets [1, 4, 8], we investigate two games which are 52

traditionally used for studying two different forms of cooperation [6, 8, 25,26]: the iterated Prisoner’s dilemma 53

(iPD) [6] and the iterated Bach-or-Stravinsky game (iBoS, also known as Battle of the Sexes and as Hero) [27]. 54

The two games encourage two distinct types of cooperative behaviour [28,29], since the competitive setting in iPD 55

requires “trust” between partners for cooperation to emerge, i.e. a social concept with an inherent longer-term 56

perspective. In the less competitive iBoS, instead, cooperation of players in form of simple coordination of their 57

actions can be beneficial even in one-shot situations. Our hypothesis is that transparency should have differential 58

effects on long-term optimal strategies in these two types of games. We show with the help of evolutionary 59

simulations that this is indeed the case: transparency enhances cooperation in the generally cooperative iBoS, 60

but disrupts cooperation in the more competitive iPD. 61

Results 62

We investigated the success of different behavioural strategies in the iPD and iBoS games by using evolutionary 63

simulations. These simulations allow evaluating long-term optimal strategies using principles of natural selection, 64

where fitness of an individual is defined as the achieved payoff compared to the population average (see 65

“Methods”). The payoff matrices, specifying each player’s payoff conditional upon own and other’s choice, are 66

shown in Fig. 2 for both games. 67

Fig 2. Payoff matrices for Prisoner’s Dilemma and Bach-or-Stravinsky game. (A) In Prisoner’s
Dilemma, players adopt roles of prisoners suspected of committing a crime and kept in isolated rooms. Due to
lack of evidence, prosecutors offer each prisoner an option to minimize the punishment by making a confession.
A prisoner can either betray the other by defecting (D), or cooperate (C) with the partner by remaining silent.
The maximal charge is five years in prison, and the payoff matrix represents the number of years deducted from
it (for instance, if both players cooperate (CC, upper left), each gets a two-year sentence, because three years of
prison time have been deducted). The letters R,T ,S and P denote payoff values and stand for Reward,
Temptation, Saint and Punishment, respectively. (B) In Bach-or-Stravinsky game two people are choosing
between Bach and Stravinsky music concerts. Player 1 prefers Bach, Player 2 – Stravinsky; yet, both prefer
going to the concert together. To make the game symmetric we convert musical tastes to the behavioural
descriptions: insisting (I) on own preference or accommodating (A) the preference of the partner. Here
cooperation is achieved when players choose different actions, letting them end up in the socially rewarding
result of attending the same concert: either (I, A) or (A, I). Thus, the aim of the game consists in coordinating
the choices, which assures maximal joint reward for the players.
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Our evolutionary simulations show that the probability of seeing the partner’s choice had a considerable 68

effect on the likelihood of acting cooperatively in both games (Fig. 3, Supplementary Fig. 4). Further, the 69

transparency levels at which likelihood of cooperation was high, turned out to be largely complementary in both 70

games. 71
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  (B) iterated Bach-or-Stravinsky
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Fig 3. Frequency of establishing cooperation in the iterated Prisoner’s dilemma (iPD) and in
the iterated Bach-or-Stravinsky game (iBoS). We performed 80 runs of evolutionary simulations tracing
109 generations of iPD and iBoS players. Agents with successful strategies reproduced themselves (had higher
fraction in the next generation), while agents with unsuccessful strategies died out, see “Methods” for details.
We considered a run as “cooperative” if the average payoff across the population was more than 0.9 times the
pay-off of 3 units for cooperative behaviour in iPD (Nowak and Sigmund 1993), and more than 0.95 times the
pay-off of 3.5 units for cooperative behaviour in the iBoS (i.e., 90% and 95% of the maximally achievable
pay-off on average over both players). For iBoS we set a higher threshold due to the less competitive nature of
this game. (A) In iPD cooperation was quickly established for low probability to see the partner’s choice psee,
but it took longer to develop for moderate psee and it drastically decreased for high psee. (B) In contrast, for
iBoS frequent cooperation emerges only for high visibility. The small drop in cooperation at psee = 0.4 is caused
by a transition between two coordination strategies (see main text).

In the following, we analyse in more detail what is behind the effect of transparency on the cooperation 72

frequency that is seen in our simulations. First, we provide analytical results for non-iterated (one-shot) 73

transparent versions of Prisoner’s Dilemma (PD) and Bach-or-Stravinsky (BoS) games. Second, after briefly 74

explaining the basic principles adopted in our evolutionary simulations, we describe the strategies that emerge 75

in these simulations for the iPD and iBoS games. 76

Transparent games without memory: analytical results 77

In game theory, the Nash Equilibrium (NE) describes optimal behaviour for the players [7]. In dyadic games, 78

NE is a pair of strategies, such that neither player can get a higher payoff by unilaterally changing its strategy. 79

Both in PD and in BoS, players choose between two actions, A1 or A2 (see Fig. 2): They cooperate or defect in 80

PD and insist or accommodate in BoS according to their strategies. In a one-shot transparent game, strategy 81

is represented by a vector (s1; s2; s3), where s1 is the probability of selecting A1 without seeing the partner’s 82

choice, s2 the probability of selecting A1 while seeing the partner also selecting A1, and s3 the probability of 83

selecting A1 while seeing partner selecting A2, respectively. The probabilities of selecting A2 are equal to 1− s1, 84

1 − s2 and 1 − s3, correspondingly. For example, strategy (1; 1; 0) in transparent PD means that the player 85

cooperates unless seeing that the partner defects. 86

For one-shot transparent PD we show (Proposition 2 in “Methods”) that all NE are comprised by defecting 87

strategies (0;x; 0) with 0 ≤ x ≤ 1−psee

psee

P−S
R−S , where P, S and R are the elements of the payoff matrix (Fig. 2A). 88

At a population level, this means that cooperation does not survive in transparent one-shot PD, similar to the 89

classic PD. However, when a finite population of agents is playing PD, cooperators have better chances in the 90

transparent PD with high psee than in the classic simultaneous setting (Proposition 3). 91

For the one-shot transparent BoS we show that NE depend on psee (Proposition 4). For psee <
T−R

T+S−2R 92

there are three NE: (a) Player 1 uses (0; 0; 1), Player 2 uses (1; 0; 1); (b) vice versa; (c) both players use strategy 93

(x; 0; 1) with x = (S−P )−psee(T+S−2P )
(1−2psee)(T+S−P−R) . Note that for the limiting case of psee = 0 one gets the three NE known 94

from the classic one-shot simultaneous BoS [27]. However, for psee ≥ T−R
T+S−2R the only NE is provided by 95

(1; 0; 1). In particular, for BoS defined by the payoff matrix in Fig. 2B, there are three NE for psee < 1/3 and 96

one NE otherwise. This means that population dynamics is considerably different for the cases psee < 1/3 and 97

psee > 1/3, and as we show below this is also true for the iterated BoS. 98
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In summary, introducing action transparency influences optimal behaviour already in simple one-shot games. 99

Transparent games with memory: evolutionary simulations 100

Iterated versions of PD and BoS games (iPD and iBoS) differ from one-shot games in that prior experience affects 101

current choice. We focus on strategies taking into account own and partner’s choices in one previous round of the 102

game (“memory-one” strategies) for reasons of tractability. A strategy without memory in transparent games 103

is described by a three-element vector. A memory-one strategy additionally conditions current choice upon 104

the outcome of the previous round of the game. Since there are four (2× 2) possible outcomes, a memory-one 105

strategy is represented by a vector s = (sk)12k=1, where k enumerates the twelve (4× 3) different combinations of 106

previous outcome and current probability of choice. The entries sk of the strategy thus represent the conditional 107

probabilities to select action A1, specifically 108

s1, . . . , s4 are probabilities to select A1 without seeing partner’s choice, given that in the previous round 109

the joint choice of the player and the partner was A1A1, A1A2, A2A1, and A2A2 respectively (the first 110

action specifies the choice of the player, and the second – the choice of the partner); 111

s5, . . . , s8 are probabilities to select A1, seeing partner selecting A1 and given the outcome of the previous 112

round (as before). 113

s9, . . . , s12 are probabilities to select A1, seeing partner selecting A2 and given the outcome of the previous 114

round. 115

Probabilities to select A2 are given by (1− sk), respectively. 116

We used evolutionary simulations to investigate which strategies evolve in the transparent iPD and iBoS 117

(see “Methods” and [9,24] for more detail), since an analytical approach would require solving systems of 12 118

differential equations. We studied an infinite population of players to avoid stochastic effects associated with 119

finite populations [30]. For any generation t the population consisted of n(t) types of players, each defined by a 120

strategy si and relative frequency xi(t) in the population with
n(t)∑
i=1

xi(t) = 1. To account for possible errors in 121

choices and to ensure numerical stability of the simulations (see “Methods”), we assumed that no pure strategy 122

is possible, that is ε ≤ sik ≤ 1− ε, with ε = 0.001 [9, 24]. Frequency xi(t) in the population increased with t 123

for strategies getting higher-than-average payoff when playing against the current population and decreased 124

otherwise. This ensured “survival of the fittest” strategies. In both games, we assumed players to have equal 125

mean reaction times (see “Methods” for the justification of this assumption). Then the probability psee to see 126

the choice of the partner was equal for all players, which in a dyadic game resulted in psee ≤ 0.5. We performed 127

evolutionary simulations for various transparencies with psee = 0.0, 0.1, . . . , 0.5. 128

In the two following sections we discuss the simulation results for both games in detail and describe 129

the strategies that are successful for different transparency levels. Since the strategies in the evolutionary 130

simulations were generated randomly (mimicking random mutations), convergence of the population onto 131

the theoretical optimum may take many generations and observed successful strategies may deviate from the 132

optimum. Therefore, when reporting the results below we employ a coarse-grained description of strategies using 133

the following notation: symbol 0 for sk ≤ 0.1, symbol 1 for sk ≥ 0.9, symbol * is used as a wildcard character to 134

denote an arbitrary probability. 135

To exemplify this notation, let us describe the strategies that are known from the canonical simultaneous 136

iPD [9], affecting exclusively s1, . . . , s4, for the transparent version of this game, i.e. including s5, . . . , s12. 137

1. The Generous tit-for-tat (GTFT) strategy is encoded by (1a1c;1***;****), where 0.1 < a, c < 0.9. Indeed, 138

GTFT is characterized by two properties [9]: it cooperates with cooperators and forgives defectors. To 139

satisfy the first property, the probability to cooperate after the partner cooperated in the previous round 140

should be high, thus the corresponding entries of the strategy s1, s3, s5 are encoded by 1. To satisfy 141

the second property, the probability to cooperate after the partner defected should be between 0 and 1. 142

We allow a broad range of values for s2 and s4, namely 0.1 ≤ s2, s4 ≤ 0.9. We accept arbitrary values 143

for s6, . . . , s12 since for low values of psee these entries have little influence on the strategy performance, 144

meaning that their evolution towards optimal values may take especially long. For instance, the strategy 145

entry s7 is used only when the player has defected in previous round and is seeing that the partner is 146

cooperating in the current round. But GTFT player defects very rarely, hence the s7 is almost never used 147

and its value has little or no effect on the overall behaviour of a GTFT player. 148

2. Similarly, Firm-but-fair (FbF) by (101c;1***;****), where 0.1 < c < 0.9. 149

3. Tit-for-tat (TFT) is a “non-forgiving” version of GTFT, encoded by (1010;1***;****). 150
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4. Win–stay, lose–shift (WSLS) is encoded by (100c;1***;****) with c ≥ 2/3. Indeed, in the canonical 151

simultaneous iPD WSLS repeats its own previous action if it resulted in relatively high rewards of R = 3 152

(cooperates after successful cooperation, thus s1 ≥ 0.9) or T = 5 (defects after successful defection, 153

s3 ≤ 0.1), and switches to another action otherwise (s2 ≤ 0.1, s4 = c ≥ 2/3). Note that the condition for 154

s4 is relaxed compared to s2 since payoff P = 1 corresponding to mutual defection is not so bad compared 155

to S = 0 and may not require immediate switching. Additionally, we set s5 ≥ 0.9 to ensure that WSLS 156

players cooperate with each other in the transparent iPD as they do in the simultaneous iPD. 157

We also consider a relaxed (cooperative) version of WSLS, which we term “generous WSLS” (GWSLS). It 158

follows WSLS principle only in a general sense and is encoded by (1abc;1***;****) with c ≥ 2/3, a, b < 2/3 159

and either a > 0.1 or b > 0.1. 160

5. The Always Defect strategy (AllD) is encoded by (0000;**00;**00), meaning that the probability to 161

cooperate when not seeing partner’s choice or after defecting is below 0.1, and other behaviour is not 162

specified. 163

Note that here we selected the coarse-grained descriptions of the strategies, covering only those strategy variants 164

that actually persisted in the population for our simulations. 165

Transparency suppresses cooperation in Prisoner’s Dilemma 166

Results of our simulations for the transparent iPD are presented in Table 1. Most of the effective strategies are 167

known from earlier studies on non-transparent games [9]. They rely on the outcome of the previous round, not on 168

the immediate information about the other player’s choice. But for high transparency (psee → 0.5) a previously 169

unknown strategy emerged, which exploits the knowledge about the other player’s immediate behaviour. We 170

dub this strategy “Leader-Follower” (L-F) since when two L-F players meet for psee = 0.5, the player acting 171

first (the Leader) defects, while the second player (the Follower) sees this and makes a “self-sacrificing” decision 172

to cooperate. Note that when mean reaction times of the players coincide, they have equal probabilities to 173

become a Leader ensuring balanced benefits of exploiting sacrificial second move. We characterized as L-F 174

all strategies with profile (*00c;****;*11d) with c < 1/3 and d < 2/3. Indeed, for psee = 0.5 these entries are 175

most important to describe the L-F strategy: after unilateral defection the Leader always defects (s2, s3 ≤ 0.1) 176

and the Follower always cooperates (s10, s11 ≥ 0.9). Meanwhile, mutual defection most likely takes place when 177

playing against a defector, thus both Leaders and Followers have low probability to cooperate after mutual 178

defection (s4 = c < 1/3, s12 = d < 2/3). Behaviour after mutual cooperation is only relevant when a player 179

with L-F is playing against a player with a different strategy, and success of each L-F modification depends on 180

the composition of the population. For instance, (100c;111*;100d) is optimal in a cooperative population. 181

Table 1. Relative frequencies of strategies that survived for more than 1000 generations in the
iterated Prisoner’s Dilemma. The frequencies were computed over 109 generations in 80 runs. The
frequency of the most successful strategy for each psee value is shown in bold.

Strategy psee
name description 0.0 0.1 0.2 0.3 0.4 0.5

WSLS (100c;1***;****) 62.9 79.8 80.3 56.3 12.6 3.8
GWSLS (1abc;1***;****) 0.0 1.0 6.6 22.4 16.3 6.0
GTFT (1a1c;1***;****) 36.5 0.1 0.1 0.3 0.7 0.5
TFT (1010;1***;****) 0.0 0.0 0.0 1.9 1.6 1.5
FbF (101c;1***;****) 0.0 0.0 0.1 1.0 6.0 1.8
AllD (0000;**00;**00) 0.1 0.0 0.0 0.0 2.4 1.9
L-F (*00c;****;*11d) 0.0 0.2 0.0 0.0 0.6 17.8
Rare transient strategies 0.5 18.9 12.9 18.1 59.8 66.7

In summary, as in the simultaneous iPD, WSLS was predominant in the transparent iPD for low and 182

moderate psee. This is reflected by the distinctive WSLS profiles in the final strategies of the population 183

(Fig. 4). Note that GTFT, another successful strategy in the simultaneous iPD, disappeared for psee > 0. For 184

psee ≥ 0.4, the game resembled the sequential iPD and the results changed accordingly. Similar to the sequential 185

iPD [10,31,32], the frequency of WSLS waned, the FbF strategy emerged, cooperation became less frequent 186

and took longer to establish itself (Fig. 3A). For psee = 0.5 the population was taken over either by L-F, by 187

WSLS-based strategies or (rarely) by FbF or TFT, which is reflected by the mixed profile in Fig. 4. Note that 188

the share of distinctly described strategies decreased with increasing psee, which indicates that iPD becomes 189

unstable for high transparency, see Supplementary Fig. 1. This instability means that most strategies appear in 190

the population only transiently and rapidly replace each other; in these circumstances, relative frequency of L-F 191

(17.8% of the population across all generations) is quite high. 192
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Fig 4. iPD strategies in the final population. Strategies are taken for the 109-th generation and
averaged over 80 runs. (A) Strategy entries s1, . . . , s4 are close to (1001) for psee = 0.1, . . . , 0.3 demonstrating
the dominance of WSLS. Deviations from this pattern for psee = 0.0 and psee = 0.4 indicate the presence of the
GTFT (1a1b) and FbF (101b) strategies, respectively. For psee ≥ 0.4 strategy entries s1, . . . , s4 are quite low
due to the extinction of cooperative strategies. (B) Entries s5, . . . , s8 are irrelevant for psee = 0.0 (resulting in
random values around 0.5) and indicate the same WSLS-like pattern for psee = 0.1, . . . , 0.3. Note that s6, s7 > 0
indicate that in transparent settings WSLS-players tend to cooperate seeing that the partner is cooperating
even when this is against the WSLS principle. The decrease of reciprocal cooperation for psee ≥ 0.4 indicates
the decline of WSLS and cooperative strategies in general. (C) Entries s9, . . . , s12 are irrelevant for psee = 0.0
(resulting in random values around 0.5) and are quite low for psee = 0.1, . . . , 0.3 (s12 is irrelevant in a
cooperative population). Increase of s9, . . . , s11 for psee ≥ 0.4 indicates that mutual cooperation in the
population is replaced by unilateral defection.

To better explain the results of our simulations, we analytically compared strategies that emerged most 193

frequently in simulations. Pairwise comparison of strategies (Fig. 5) helps to explain the superiority of WSLS for 194

psee < 0.5, the disappearance of GTFT for psee > 0.0, and the abrupt increase of L-F frequency for psee = 0.5. 195

Although cooperation in the transparent iPD is rare for psee ≥ 0.4, L-F is in a sense also a cooperative 196

strategy for iPD: In a game between two L-F players with equal mean reaction times, both players alternate 197

between unilateral defection and unilateral cooperation in a coordinated way, resulting in equal average payoffs 198

of (S + T )/2. Such alternation is generally sub-optimal in iPD since R > (S + T )/2; for instance, in our 199

simulations R = 3 > (S + T )/2 = 2.5. To check the influence of the payoff on the strategies predominance, we 200

have varied values of R by keeping T , S and P the same as in Fig. 2 as it was done in [24] for simultaneous iPD. 201

Fig. 6 shows that for R > 3.2, evolution in the transparent iPD favours cooperation, but R ≤ 3.2 is sufficiently 202

close to (S + T )/2 to make L-F a safe and efficient strategy. 203

Cooperation emergence in the transparent Bach-or-Stravinsky game 204

Our simulations revealed that four memory-one strategies are most effective in iBoS for various levels of 205

transparency. In contrast to iPD there exist only few studies of strategies in non-transparent iBoS [29, 33], 206

therefore we describe the observed strategies in detail. 207

1. Turn-taker aims to enter a fair coordination regime, where players alternate between IA (Player 1 208

insists and Player 2 accommodates) and AI (Player 1 accommodates and Player 2 insists) states. In 209

the simultaneous iBoS, this strategy takes the form (q01q), where q = 5/8 guarantees maximal reward 210

in a non-coordinated play against a partner with the same strategy for the payoff matrix in Fig. 2B. 211

Turn-taking was shown to be successful in the simultaneous iBoS for a finite population of agents with 212

pure strategies (i.e., having 0 or 1 entries only, with no account for mistakes) and a memory spanning 213

three previous rounds [29]. Here in our transparent iBoS, we classify as Turn-takers all strategies encoded 214

by (*01*;*0**;**1*). 215

2. Challenger takes the form (1101) in the simultaneous iBoS. When two players with this strategy meet, 216

they initiate a “challenge”: both insist until one of the players makes a mistake (that is, accommodates). 217

Then, the player making the mistake (loser) submits and continues accommodating, while the winner 218

continues insisting. This period of unfair coordination beneficial for the winner ends when the next mistake 219
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Fig 5. Analytical pairwise comparison of iPD strategies. For each pair of strategies the maps show if
the first of the two strategies increases in frequency (up-arrow), or decreases (down-arrow) depending on
visibility of the other player’s action and the already existing fraction of the respective strategy. The red lines
mark the invasion thresholds, i.e. the minimal fraction of the first strategy necessary for taking over the
population against the competitor second strategy. A solid-line invasion threshold shows the stable equilibrium
fraction which allows coexistence of both strategies (see “Methods”). Dashed-line invasion thresholds indicate
dividing lines above which only the first, below only the second strategy will survive. (A) WSLS
(100 9

10 ; 1001; 0000) has an advantage over GTFT (11
31 1

3 ; 1 1
31 1

3 ; 0000): the former takes over the whole population
even if its initial fraction is as low as 0.25. (B) GTFT coexists with (prudent) AllC (1111; 1111; 0000), which is
more successful for psee ≥ 0.1. (C,D) L-F (13000; 2

3000; 111 1
3 ) performs almost as good as GTFT and WSLS, (E)

but can resist the AllD strategy (0000; 0000; 0000) only for high transparency. (F) Note that WSLS may lapse
into its treacherous version, (100 9

10 ; 0000; 0000). This strategy dominates WSLS for psee > 0 but is generally
weak and cannot invade when other strategies are present in the population. Notably, when treacherous WSLS
takes a part of the population, it is quickly replaced by L-F, which partially explains L-F success for high psee.

of either player (the winner accommodating or the loser insisting) triggers a new “challenge”. Challenging 220

strategies were theoretically predicted to be successful in simultaneous iBoS [33,34]. In our transparent 221

iBoS, the challenger strategy is encoded by (11b*;****;*1**) and has two variants: Challenger “obeys 222

the rules” and does not initiate a challenge after losing (b ≤ 0.1), while Aggressive Challenger may 223

switch to insisting even after losing (0.1 < b ≤ 1/3). 224

3. The Leader-Follower (L-F) strategy s = (1111; 0000; 1111) relies on the visibility of the other’s action and 225

was not considered previously. In the iBoS game between two players with this strategy, the faster player 226

insists and the slower player accommodates. In a simultaneous setting, this strategy lapses into inefficient 227

stubborn insisting since all players consider themselves leaders, but in transparent settings with high psee 228

this strategy provides an effective and fair cooperation if mean reaction times are equal. In particular, for 229

psee > 1/3 the L-F strategy is a Nash Equilibrium in a one-shot game (see Proposition 4 in “Methods”), 230

and is an evolutionary stable strategy for psee = 0.5. 231

When the entire population adopts an L-F strategy, most strategy entries become irrelevant since in a 232

game between two L-F players the faster player never accommodates and the outcome of the previous 233

round is either IA or AI. Therefore, we classify all strategies encoded by (*11*;*00*;****) as L-F. 234

4. Challenging Leader-Follower is a hybrid of the Challenger and L-F strategies encoded by (11b*;0c0*;*1**), 235

where 1/3 < b ≤ 0.9, c ≤ 1/3. With such a strategy a player tends to insist without seeing the partner’s 236

choice, and tends to accommodate when seeing that the partner insists; both these tendencies are stronger 237

than for Aggressive Challengers, but not as strong as for Leader-Followers. 238

The results of our simulations for iBoS are presented in Table 2. The entries of the final population average 239

strategy (Fig. 7) show considerably different profiles for various values of psee. Challengers, Turn-takers, and 240

Leader-Followers succeeded for low, medium and high probabilities to see partner’s choice, respectively. Note 241

that due to the emergence of Leader-Follower strategy, cooperation thrives for psee = 0.5 and is established 242

much faster than for lower transparency (Fig. 3B). 243
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Fig 6. Frequencies of strategies that survived for more than 1000 generations after they
emerged in the iterated Prisoner’s Dilemma population as function of reward R for mutual
cooperation. Data exemplified for psee = 0.3 and for psee = 0.5. Values of T , S and P are the same as in
Fig. 2, values of R are in range (S + T )/2 < R < T that defines the Prisoner’s Dilemma payoff. The frequencies
were computed over 109 generations in 40 runs. We describe as “other cooperative” all strategies having a
pattern (1*1*;1***;****) or (1**1;1***;****) but different from WSLS, TFT and FbF. While for psee = 0.3
population for low R mainly consists of defectors, for psee = 0.5 L-F provides an alternative to defection. For
R ≥ 3.2 mutual cooperation becomes much more beneficial, which allows cooperative strategies to prevail for all
transparency levels.

Table 2. Relative frequencies of strategies that survived for more than 1000 generations in the
Bach-or-Stravinsky game. The frequencies were computed over 109 generations in 80 runs. The frequency
of the most successful strategy for each psee value is shown in bold.

psee
Strategy name 0.0 0.1 0.2 0.3 0.4 0.5

Turn-taker 37.5 41.2 37.5 37.5 24.9 0.0
Challenger 62.5 42.7 3.4 0.5 0.0 0.0
Aggressive Challenger 0.0 14.4 30.7 3.3 0.0 0.0
Challenging Leader-Follower 0.0 1.1 25.2 31.8 0.0 0.0
Leader-Follower 0.0 0.1 2.5 26.1 74.6 100.0
Rare transient strategies 0.0 0.5 0.7 0.8 0.5 0.0

To provide additional insight into the results of the iBoS simulations, we studied analytically how various 244

strategies perform against each other (Fig. 8). As with the iPD, this analysis helps to understand why different 245

strategies were successful at different transparency levels. A change of behaviour for psee > 1/3 is in line with 246

our theoretical results (Corollary 7) indicating that for these transparency levels L-F is a Nash Equilibrium. 247

Population dynamics for iBoS with a payoff different from the presented in Fig. 2B also depends on the Nash 248

Equilibria of one-shot game, described by Proposition 4 in “Methods”. 249

Discussion 250

In this paper, we introduced the concept of transparent games which integrates the visibility of the partner’s 251

actions into a game-theoretic settings. As model case for transparent games, we considered iterated dyadic 252

games where players have probabilistic access to the information about the partner’s choice in the current round. 253

When reaction times for both players are equal on average, the probability psee of accessing this information 254

can vary from psee = 0.0 corresponding to the canonical simultaneous games, to psee = 0.5 corresponding to 255

sequential games with random order of choices. Note that in studies on the classic sequential games [10, 31] 256

players were bound to the same strategy regardless of whether they made their choice before or after the partner. 257

In contrast, transparent games allow different sub-strategies (s1, . . . , s4), (s5, . . . , s8) and (s9, . . . , s12) for these 258

situations. 259
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Fig 7. iBoS strategies in the final population. Strategies are taken for the 109-th generation and
averaged over 80 runs. (A): Strategy entries s1, . . . , s4. The decrease of the s2/s3 ratio reflects the transition of
the dominant strategy from challenging to turn-taking for psee = 0.0, . . . , 0.4. For psee = 0.5 the dominance of
the Leader-Follower strategy is indicated by s2 = s3 = 1. (B) Entries s5, . . . , s8 are irrelevant for psee = 0.
Values of s6, s7 decrease as psee increases, indicating an enhancement of cooperation in iBoS for higher
transparency (s8 is almost irrelevant since mutual accommodation is a very rate event, and s5 is irrelevant for a
population of L-F players taking place for psee = 0.5). (C) Entries s9, . . . , s12 are irrelevant for psee = 0. The
decrease of the s10/s11 ratio for psee = 0.1, . . . , 0.4 reflects the transition of the dominant strategy from
challenging to turn-taking.
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Fig 8. Analytical pairwise comparison of iBoS strategies. For each pair of strategies the maps show if
the first of the two strategies increases in frequency (up-arrow), or decreases (down-arrow) depending on
visibility of the other player’s action and the already existing fraction of the respective strategy. The red lines
mark the invasion thresholds, i.e. the minimal fraction of the first strategy necessary for taking over the
population against the competitor second strategy. Solid-line invasion thresholds show the stable equilibrium
fraction which allows coexistence of both strategies (see “Methods”). Dashed-line invasion thresholds indicate
dividing lines above which only the first, below only the second strategy will survive. In all strategies, 1 stands
for 0.999 and 0 – for 0.001, the entries s9 = . . . = s12 = 1 are the same for all strategies and are omitted. (A)
Turn-taker (q01q; 0000) with q = 5/8 for psee > 0 outperforms Aggressive Challenger (111

51; 1
2
1
2
1
5
1
2 ), (B) but not

Challenger ( 9
10101; 1

2
1
20 1

2 ). (C) Challenger can coexist with Aggressive Challenger for low transparency, but is
dominated for psee > 1/3. (D) Leader-Follower (1111; 0000) clearly outperforms Turn-taker for psee > 0.4 and
(E,F) other strategies for psee > 1/3.
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We showed that even a small probability psee of seeing the partner’s choice before one’s own decision changes 260

the long-term optimal behaviour in the iterated Prisoner’s Dilemma (iPD) and Bach-or-Stravinsky (iBoS) games. 261

When this probability is high, its effect is pronounced: transparency enhances cooperation in the generally 262

cooperative iBoS, but disrupts cooperation in the more competitive iPD. Different transparency levels also 263

bring qualitatively different strategies to success. In particular, in both games for high transparency a new 264

class of strategies, which we termed “Leader-Follower” strategies, evolves. Although frequently observed in 265

humans and animals (see, for instance, [5, 13], these strategies have up to now remained beyond the scope of 266

game-theoretical studies, but naturally emerge in our transparent games framework. Note that here we focused 267

on memory-one strategies for the reasons of better tractability, results for strategies with longer memory can 268

differ considerably [35]. 269

Our approach is similar to the continuous-time approach suggested in [36]. However, in that study a game is 270

played continuously, without any rounds at all, while here we suppose that the game consists of clearly specified 271

rounds, although the time within each round is continuous. This assumption seems to be natural, since many 272

real world interactions and behaviours are episodic, have clear starting and end points, and hence are close 273

to distinct rounds [4, 14, 37, 38]. Transparent games to some degree resemble random games [39, 40] since in 274

both concepts the outcome of the game depends on a stochastic factor. However in random games randomness 275

immediately affects the payoff, while in transparent games it determines the chance to learn the partner’s choice. 276

While this chance influences the payoff of the players, the effect depends on their strategies, which is not the 277

case in random games. 278

The value of probability psee strongly affects the evolutionary success of strategies. In particular, in the 279

transparent iBoS even moderate psee helps to establish cooperative turn-taking, while high psee brings about a 280

new successful strategy, Leader-Follower (L-F). For the transparent iPD we have shown that for psee > 0 the 281

Generous tit-for-tat strategy is unsuccessful and Win–stay, lose–shift (WSLS) is an unquestionable evolutionary 282

winner for 0 < psee ≤ 0.4. However, WSLS is not evolutionary stable (see the caption of Fig. 5); our results 283

indicate that in general there are no evolutionary stable strategies in the transparent iPD, which was already 284

known to be the case for the simultaneous iPD [9]. Moreover, if reward for mutual cooperation R ≤ 3, for high 285

transparencies (psee ≥ 0.4) all strategies become quite unstable and cooperation is hard to establish (Fig. 6). 286

Finally, for psee = 0.5, L-F becomes successful in iPD and is more frequent than WSLS for R ≤ 3.2. For such 287

a payoff, mutual cooperation is not much more beneficial than the alternating unilateral defection resulting 288

from the L-F strategy. It brings a payoff of (S + T )/2 = 2.5, but is generally less susceptible to exploitation by 289

defecting strategies. This explains the abrupt drop of cooperation in the transparent iPD with psee ≥ 0.4 for 290

R = 3.0 (Supplementary Fig. 4), while there is no such drop for R > 3.2 (Fig. 6). Note that R > 3.2 strongly 291

promotes mutual cooperation over other options, therefore this case is slightly less interesting than the classic 292

payoff matrix with R = 3. 293

Although resulting in a lower payoff than the explicit cooperation, L-F can be also seen as a cooperative 294

strategy for iPD. While the choice of Leaders (defection) is entirely selfish, Followers “self-denyingly” cooperate 295

with them. Importantly, the L-F strategy is not beneficial for some of the players using it in any finite perspective, 296

which distinguishes this strategy from most cooperative strategies. Let us explain this point by comparing L-F 297

with WSLS. In a game between two WSLS-players, neither benefits from unilaterally switching to defection 298

even in a short term for R ≥ (T + P )/2. While the defecting player gets T = 5 in the first round, its payoff in 299

the next round is P = 1, which makes the average payoff over two rounds less than or equal to the reward for 300

cooperation R. Thus for the iPD with standard payoff R = 3 = (T + P )/2 WSLS players do not benefit from 301

defecting their WSLS-partners already for the two-round horizon. (Note that for R < (T + P )/2 defection is 302

effective against WSLS, which explains the low frequency of WSLS for R < 3 in Fig. 6). Now, assume that one 303

is playing the transparent iPD with psee = 0.5 against a partner with a pure L-F strategy (0000;1111;1111) and 304

has to choose between L-F and AllD strategies. In a single round using AllD is (strictly) better with probability 305

p = 1/2 (probability of being a Follower). From the two-round-perspective using AllD is beneficial with p = 1/4 306

(the probability of being a Follower in both rounds). For n = 6 rounds, AllD is still better than L-F with 307

p = 7/64 (the probability of being a Follower in 5 or 6 rounds out of 6, which results in an average payoff equal 308

to either 5/6 or 0). In general, for any finite number n of rounds, there is a risk to suffer from using the L-F 309

strategy instead of AllD, and the probability of this is given by
dnP/Te∑
k=0

Cn
k , where dnP/T e is the integer part of 310

nP/T and Cn
k = n!

k!(n−k)! is a binomial coefficient. That is adhering to L-F is not beneficial for some of the L-F 311

players in any finite horizon, which makes their behaviour in a sense altruistic. Our results for the transparent 312

iPD demonstrate that such “altruistic-like” behaviour may evolve in a population even without immediate 313

reciprocation. The inherently unequal payoff distribution among L-F players for a final number of rounds opens 314

interesting perspectives for research, but is outside the scope of this manuscript. 315

The lack of stability in the transparent iPD turns the analysis of the strategy dynamics for this game into 316

a non-trivial problem. Therefore we do not provide here an exhaustive description of strategies in iPD and 317

content ourselves with general observations and explanations. An in-depth analysis of strategy dynamics in the 318
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transparent iPD will be provided elsewhere as a separate, more technical paper [41]. 319

Despite the clear differences between the two games, predominant strategies evolving in iPD and iBoS have 320

some striking similarities. First of all, in both games, L-F appears to be the most successful strategy for high 321

psee (although for iPD with R ≤ 3 the share of Leader-Followers in the population across all generations is 322

only about 20%, other strategies are even less successful as most of them appear just transiently and rapidly 323

replace each other). This prevalence of the L-F strategy can be explained as follows: in a group where the 324

behaviour of each agent is visible to the others and can be correctly interpreted, group actions hinge upon agents 325

initiating these actions. In both games these initiators are selfish, but see Supplementary Note 2 for an example 326

of an “altruistic” action initiation. For low and moderate values of psee the similarities of the two games are less 327

obvious. However, the Challenger strategy in iBoS follows the same principle of “Win–stay, lose–shift” as the 328

predominant strategy WSLS in iPD, but with modified definitions of “win” and “lose”. For Challenger winning 329

is associated with any outcome better than the minimal payoff corresponding to the mutual accommodation. 330

Indeed, Challenger accommodates until mutual accommodation takes place and then switches to insisting. Such 331

behaviour is described as “modest WSLS” in [33,42] and is in-line with the interpretation of the “Win–stay, 332

lose–shift” principle observed in animals [43]. 333

The third successful principle in the transparent iPD is “Tit-for-tat”, embodied in Generous tit-for-tat 334

(GTFT), TFT and Firm-but-fair (FbF) strategies. This principle also works in both games since turn-taking in 335

iBoS is nothing else but giving tit for tat. In particular, the TFT and FbF strategies, which occur frequently in 336

iPD for psee ≥ 0.4, are partially based on taking turns and are similar to the Turn-Taker strategy in iBoS. The 337

same holds to a lesser extent for the GTFT strategy. 338

The success of specific strategies for different levels of psee makes sense if we understand psee as a species’ 339

ability to signal intentions and to interpret these signals when trying to coordinate (or compete). The higher 340

psee, the better (more probable) is the explicit coordination. This could mean that a high ability to explicitly 341

coordinate actions leads to coordination based on observing the leader’s behaviour. In contrast, moderate 342

coordination ability results in some form of turn-taking, while low ability leads to simple strategies of WSLS-type. 343

In fact, an agent utilizing the WSLS principle does not even need to comprehend the existence of the second 344

player, since WSLS “embodies an almost reflex-like response to the pay-off” [24]. The ability to cooperate may 345

also depend on the circumstances, for example, on the physical visibility of partner’s actions. In a relatively 346

clear situation, following the leader can be the best strategy. Moderate uncertainty requires some (implicit) 347

rules of reciprocity embodied in turn-taking. High uncertainty makes coordination difficult or even impossible, 348

and may result in a seemingly irrational “challenging behaviour” as we have shown for the transparent iBoS. 349

However, when players can succeed without coordination (which was the case in iPD), high uncertainty about 350

the other players’ actions does not cause a problem. 351

By taking the visibility of the agents’ actions into account, transparent games may offer a compelling 352

theoretical explanation for a range of biological, sociological and psychological phenomena. One potential 353

application of transparent games is related to experimental research on social interactions, including the emerging 354

field of social neuroscience that seeks to uncover the neural basis of social signalling and decision-making using 355

neuroimaging and electrophysiology in humans and animals [44–47]. So far, most studies have focused on 356

sequential [48, 49] or simultaneous games [50]. One of the main challenges in this field is extending these studies 357

to direct real-time interactions that would entail a broad spectrum of dynamic competitive and cooperative 358

behaviours. In line with this, several recent studies also considered direct social interactions in humans and 359

non-human primates [12–14,38,51–55] during dyadic games where players can monitor actions and outcomes 360

of each other. Transparent games allow modelling the players’ access to social cues, which is essential for the 361

analysis of experimental data in the studies of this kind [8]. This might be especially useful when behaviour is 362

explicitly compared between “simultaneous” and “transparent” game settings, as in [12,14,51,55]. In particular, 363

the enhanced cooperation in the transparent iBoS for high psee provides a theoretical explanation for the empirical 364

observations in [14], where humans playing an iBoS-type game demonstrated a higher level of cooperation and a 365

fairer payoff distribution when they were able to observe the actions of the partner while making their own 366

choice. In view of the argument that true cooperation should benefit from enhanced communication [8], the 367

transparent iBoS can in certain cases be a more suitable model for studying cooperation than the iPD (see 368

also [56,57] for a discussion of studying cooperation by means of iBoS-type games). 369

In summary, transparent games provide a theoretically attractive link between classical concepts of simulta- 370

neous and sequential games, as well as a computational tool for modelling real-world interactions. This approach 371

allows integrating work on sensorimotor decision-making under uncertainty with economic game theory. We thus 372

expect that the transparent games framework will help to establish a deeper understanding of social behaviour 373

in humans and animals. 374
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Methods 375

Transparent games between two players 376

In this study, we focus on iterated two-player (dyadic) two-action games: in every round both players choose 377

one of two possible actions and get a payoff depending on the mutual choice according to the payoff matrix 378

(Fig. 2). A new game setting, transparent game, is defined by a payoff matrix and probabilities pisee (i = 1, 2) of 379

Player i to see the choice of the other player, 0 ≤ p1see, p2see ≤ 1. Note that p1see + p2see ≤ 1, and (1− p1see − p2see) 380

is the probability that neither of players knows the choice of the partner because they act sufficiently close in 381

time so that neither players can infer the other’s action prior to making their own choice. The probabilities pisee 382

can be computed from the distributions of reaction times for the two players, as shown in Supplementary Fig. 2 383

for reaction times modelled by exponentially modified Gaussian distribution [58, 59]. In this figure, reaction 384

times for both players have the same mean, which results in symmetric distribution of reaction time differences 385

(Supplementary Fig. 2B) and p1see = p2see ≤ 0.5. Here we focus only on this case since for both games considered 386

in this study, unequal mean reaction times provide a strong advantage to one of the players (see below). However, 387

in general p1see 6= p2see. 388

To illustrate how transparent, simultaneous and sequential games differ, let us consider three scenarios for a 389

Prisoner’s Dilemma (PD): 390

1. If prisoners write their statements and put them into envelopes, this case is described by simultaneous PD. 391

2. If prisoners are questioned in the same room in a random or pre-defined order, one after another, this case 392

is described by sequential PD. 393

3. Finally, in a case of a face-to-face interrogation where prisoners are allowed to answer the questions of 394

prosecutors in any order (or even to talk simultaneously) the transparent PD comes into play. Here 395

prisoners are able to monitor each other and interpret inclinations of the partner in order to adjust their 396

own choice accordingly. 397

While the transparent setting can be used both in zero-sum and non-zero-sum games, here we concentrate 398

on the latter class where players can cooperate to increase their joint payoff. We consider the transparent 399

versions of two classic games, the PD and the Bach-or-Stravinsky game (BoS). We have selected PD and BoS as 400

representatives of two distinct types of symmetric non-zero-sum games [28, 29]: maximal joint payoff is awarded 401

when players select the same action (cooperate) in PD, but complementary actions in BoS (one insists, and 402

the other accommodates). The games of PD type are known as synchronization games; other examples of 403

synchronization games include Stag Hunt and Game of Chicken [29]. Games such as BoS with two optimal 404

mutual choices are called alternation games [28,29]; as one of these choices is more beneficial for Player 1, and 405

the other for Player 2, to achieve fair cooperation players should alternate between these two states. 406

Another important difference between the two considered games is that in BoS a player benefits from acting 407

before the partner, while in PD it is mostly preferable for a player to act after the partner. Indeed, in BoS the 408

player acting first has good chances to get the maximal payoff of S = 4 by insisting: when the second player 409

knows that the partner insists, it is better to accommodate and get a payoff of T = 3, than to insist and get 410

R = 2. In PD, however, defection is less beneficial if it can be discovered by the opponent and acted upon 411

(for details, see Subsection “One-shot transparent Prisoner’s Dilemma with unequal reaction times” below). 412

Therefore, in PD most players prefer acting later: defectors to have a better chance of getting T = 5 for a 413

successful defection, and cooperators to make sure that the partners are not defecting them. The only exception 414

from this rule is the Leader-Follower strategy, but as we show in Supplementary Note 1 this special case does 415

not change the overall situation for the simulations. Therefore, the optimal behaviour in PD is generally to 416

wait as long as possible, while in BoS a player should act as quickly as possible. Consequently, when the time 417

for making choice is bounded from below and from above, evolution in these games favours marginal mean 418

reaction times: maximal allowed reaction time in PD and minimal allowed reaction time in BoS. Player types 419

with different behaviour are easily invaded. Therefore we assumed in all simulations that the reaction times 420

have a constant and equal mean. We also assumed that reaction times for all players have an equal non-zero 421

variance and that the difference of the reaction time distributions for two types of players is always symmetric 422

(see Supplementary Fig. 2). This results in pisee being the same for all types, thus all players have equal chances 423

to see the choices of each other. 424

Analysis of one-shot transparent games 425

Consider a one-shot transparent game between Player 1 and Player 2 having strategies s1 = (s11; s12; s13) and 426

s2 = (s21; s22; s23), and probabilities to see the choice of the partner p1see and p2see, respectively. An expected payoff 427
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for Player 1 is given by 428

E(s1, s2) = (1− p1see − p2see)
(
s11s

2
1R+ s11(1− s21)S + (1− s11)s21T + (1− s11)(1− s21)P

)
+ p2sees

1
1

(
s22R+ (1− s22)S

)
+ p2see(1− s11)

(
s23T + (1− s23)P

)
(1)

+ p1sees
2
1

(
s12R+ (1− s12)T

)
+ p1see(1− s21)

(
s13S + (1− s13)P

)
,

where the first line describes the case when neither player sees partner’s choice, the second line describes the 429

case when Player 2 sees the choice of Player 1, and the third – when Player 1 sees the choice of Player 2. 430

Let us provide two definitions that will be used throughout this section. 431

Definition 1. Strategies s1 and s2 are said to form a Nash Equilibrium if neither player would benefit from 432

unilaterally switching to another strategy, that is E(s1, s2) ≥ E(r1, s2) and E(s2, s1) ≥ E(r2, s1) for any 433

alternative strategies r1 and r2 of Players 1 and 2, respectively. 434

Definition 2. Let us denote Eij = E(si, sj). Strategy s1 is said to dominate strategy s2 if using s1 would give 435

better outcome for both players, that is E11 ≥ E21 and E12 ≥ E22. If both inequalities are strict, s1 strongly 436

dominates s2. Strategies s1 and s2 are said to be bistable when E11 > E21 and E12 < E22. Strategies s1 and s2 437

co-exist when E11 < E21 and E12 > E22. 438

Some intuition on these notions is provided below in subsection “Evolutionary dynamics of two strategies”. 439

We refer to [9] for details. 440

For the sake of simplicity, we assume for the rest of this section that 0 < p1see, p
2
see < 1, otherwise the game is 441

equivalent to the classic sequential or simultaneous game. First we consider the one-shot transparent Prisoner’s 442

dilemma (PD), and then – Bach-or-Stravinsky (BoS) game. 443

One-shot transparent Prisoner’s Dilemma with equal reaction times. Here we assume that p1see = 444

p2see = psee to simplify the discussion. Similar to the classic one-shot PD, in the transparent PD all Nash 445

Equilibria (NE) correspond to mutual defection. To show this we make an important observation: in the 446

one-shot PD it is never profitable to cooperate when seeing the partner’s choice. 447

Lemma 1. In one-shot transparent PD with psee > 0 any strategy (s1; s2; s3) is dominated by strategies (s1; s2; 0) 448

and (s1; 0; s3). The dominance of (s1; s2; 0) is strong when s1 < 1, the dominance of (s1; 0; s3) is strong when 449

s1 > 0. 450

Proof. The lemma follows immediately from (1). Since in PD R < T , expected payoff E of strategy (s11; s12; s13) 451

is maximized when s12 = 0. Similarly, from S < P it follows that the payoff is maximized for s13 = 0. 452

Now we can describe the NE strategies in transparent PD: 453

Proposition 2. In one-shot transparent PD all the Nash Equilibria are comprised by pairs of strategies (0;x; 0) 454

with 0 ≤ x ≤ 1 and 455

x ≤ 1− psee
psee

P − S
R− S

. (2)

Proof. First we show that for any x, y satisfying (2), strategies (0;x; 0) and (0; y; 0) form a Nash Equilibrium.
Assume that there exists a strategy (s1; s2; s3), which provides a better payoff against (0;x; 0) than (0; y; 0).
According to Lemma 1, expected payoff of a strategy (s1; 0; 0) is not less than the payoff of (s1; s2; s3). Now it
remains to find the value of s1 maximizing the expected payoff E of (s1; 0; 0). From (1) we have:

E = (1− 2psee)
(
s1S + (1− s1)P

)
+ psees1(xR+ (1− x)S) + psee(1− s1)P + pseeP

= P + s1
(
pseex(R− S)− (1− psee)(P − S)

)
= P + s1

(
x− 1− psee

psee

P − S
R− S

)
psee(R− S)

Thus the expected payoff is maximized by s1 = 0 if inequality (2) holds and by s1 = 1 otherwise. In the former 456

case the strategy (s1; 0; 0) results in the same payoff P as the strategy (0; y; 0), which proves that a pair of 457

strategies (0;x; 0), (0; y; 0) is an NE. If (2) does not hold, strategy (0;x; 0) is not an NE, since switching to 458

(1; 0; 0) results in a better payoff. 459

Let us show that there are no further NE. Indeed, according to Lemma 1 if an alternative NE exists, it 460

can only consist of strategies (1; 0; z) or (u; 0; 0) with 0 ≤ z ≤ 1 and 0 < u < 1. In both cases switching to 461

unconditional defection is preferable, which finishes the proof. 462

The one-shot transparent PD has two important differences from the classic game. First, the unconditional 463

defection (0; 0; 0) dominates the cooperative strategy (1; 1; 0) only for psee <
T−R
T−P . Indeed, when both players stick 464

to (1; 1, 0), their payoff is equal to R, while when switching to (0; 0; 0) strategy, a player gets pseeP + (1− psee)T . 465
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However, (1; 1, 0) is dominated by a strategy (1; 0; 0) that cooperates when it does not see the choice of the 466

partner and defects otherwise. This strategy, in turn is dominated by (0; 0; 0). 467

Second, in transparent PD unconditional defection (0; 0; 0) is not evolutionary stable as players can switch 468

to (0;x; 0) with x > 0 retaining the same payoff. This, together with Proposition 3 below, makes possible a 469

kind of evolutionary cycle: (1; 0; 0)→ (0; 0; 0)↔ (0;x; 0)→ (1; 1; 0), (1; 0; 0)→ (1; 0; 0). In summary, although 470

transparency does not allow cooperation to persist when evolution is governed by deterministic dynamics, it 471

would increase chances of cooperators for the stochastic dynamics in a finite population. 472

Proposition 3. In transparent PD strategies (1; 0; 0) and (0;x; 0) have the following relations: 473

1. if condition (2) and the following condition 474

x ≤ 1

psee
− 2 +

P − S
T −R

(3)

are satisfied, then (0;x; 0) dominates (1; 0; 0); 475

2. if neither (2) nor (3) are satisfied, then (1; 0; 0) dominates (0;x; 0); 476

3. if (2) is satisfied but (3) is not, then the two strategies coexist; 477

4. if (3) is satisfied but (2) is not, then the two strategies are bistable. 478

Proof. We prove only the first statement since the proof of the others is almost the same. 479

Let Player 1 use strategy (1; 0; 0) and Player 2 – strategy (0;x; 0). To prove that (0;x; 0) dominates (1; 0; 0)
we need to show that Player 2 has no incentive to switch to (1; 0; 0) and that Player 1, on the contrary, would
get higher payoff if using (0;x; 0). The latter statement follows from Proposition 3. To show that the former
also takes place we simply write down expected payoffs E11 and E21 of strategies (1; 0; 0) and (0;x; 0) when
playing against (1; 0; 0):

E11 = (1− 2psee)R+ pseeT + pseeS = R+ psee(T − 2R) + pseeS,

E21 = (1− 2psee)T + psee
(
xR+ (1− x)T

)
+ pseeP = T − pseeT + pseeP − xpsee(T −R).

Now it can be easily seen that E11 ≤ E21 holds whenever inequality (3) is satisfied. 480

One-shot transparent Prisoner’s Dilemma with unequal reaction times. Here we consider the case 481

when players have unequal probabilities to see partner’s choice. We focus on a simple example showing why 482

waiting is generally beneficial in the transparent iPD. Assume that all players in population act as quickly as 483

they can, but cooperation takes on average longer than defection. Assume further that a player preparing to 484

cooperate may see the partner defecting and then it is still possible for this player to change decision and defect. 485

Finally let us consider only pure strategies that is s1, s2, s3 ∈ {0, 1}. The question now is, which strategy would 486

win in this case. 487

From Lemma 1, we know that it is sufficient to consider two strategies: “cooperators” s1 = (1; 0; 0) and 488

“defectors” s2 = (0; 0; 0) since they dominate all other strategies. Note that the probability p12see of cooperative 489

players to see the choice of defectors is higher than the probability p21see of defectors to see the choice of 490

cooperators, resulting in 0 ≤ p21see < p12see ≤ 1. Probabilities of a player to see the choice of another player with 491

the same strategy is not higher than 0.5 (since these probabilities are equal for both players and the sum of 492

these probabilities is not higher than 1), therefore it holds 0 ≤ p11see, p22see ≤ 0.5. 493

Then the expected payoff matrix for these two strategies in the one-shot transparent PD is given by

E =

(
(1− 2p11see)R+ p11see(S + T ) p12seeP + (1− p12see)S

p12seeP + (1− p12see)T P

)
=

(
R− p11see(2R− S − T ) p12seeP + (1− p12see)S
T − p12see(T − P ) P

)
.

Since p12seeP + (1− p12see)S < P for p12see < 1, three variants are possible: 494

1. cooperative strategy s1 dominates for p12see = 1; 495

2. s1 and s2 are bistable for E11 > E21, that is for 496

p12see >
T −R
T − P

+
2R− S − T
T − P

p11see; (4)

3. defecting strategy s2 dominates otherwise. 497
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For the standard Prisoner’s Dilemma payoff matrix (Fig. 2), inequality (4) turns into p12see >
1
2 + 1

4p
11
see. Since 498

p11see ≤ 0.5, cooperative strategy s1 acting with a delay has a chance to win over defectors if it can see their 499

actions with probability p12see > 5/8. This example demonstrates that cooperation can survive in one-shot 500

Prisoner’s dilemma under certain (artificial) assumptions. More importantly, this example shows the importance 501

of seeing partner’s choice in transparent Prisoner’s Dilemma in general, illustrating the incentive of players to 502

wait for partner’s action. 503

One-shot transparent Bach-or-Stravinsky game. Recall [60] that in the classic one-shot BoS game there 504

are three Nash Equilibria: two pure (Player 1 insists, Player 2 accommodates, or vice verse) and one mixed 505

(each player insists with probability S−P
S+T−P−R ). The latter NE is weak and suboptimal compared to the pure 506

NE; yet it is fair in the sense that both players receive the same payoff. The Nash Equilibria for the transparent 507

BoS game are specified by the following proposition. 508

Proposition 4. Consider one-shot transparent BoS between Players 1 and 2 with probabilities to see the choice 509

of the partner p12see and p21see, respectively. Let p12see ≤ p21see, then this game has the following pure strategy NE. 510

1. Player 1 uses strategy (0; 0; 1), Player 2 uses strategy (1; 0; 1) – for 511

p21see
1− p12see

≤ T −R
S −R

; (5)

2. Player 1 uses strategy (1; 0; 1), Player 2 uses strategy (0; 0; 1) – for 512

p12see
1− p21see

≤ T −R
S −R

(6)

(note that this inequality holds automatically if (5) holds); 513

3. Both players use strategy (1; 0; 1) – when (6) is not satisfied. 514

Additionally, if inequality (5) is satisfied, there is also a mixed-strategy NE: Player i uses strategy (si1; 0; 1) with 515

s11 =
(1− p21see)(S − P )− p12see(T − P )

(1− p12see − p21see)(T + S − P −R)
, s21 =

(1− p12see)(S − P )− p21see(T − P )

(1− p12see − p21see)(T + S − P −R)
. (7)

Thus when (5) holds, there are two pure-strategy and one mixed-strategy NE. Otherwise there is only one 516

pure-strategy NE: Player 1 uses strategy (1; 0; 1), Player 2 uses strategy (0; 0; 1) when (6) holds, and both Players 517

use (1; 0; 1) when (6) does not hold. 518

To prove the Proposition, we need two lemmas. First, similar to the Prisoner’s dilemma, for the transparent 519

BoS we have: 520

Lemma 5. In one-shot transparent BoS any strategy (s1; s2; s3) is dominated by strategies (s1; s2; 1) and 521

(s1; 0; s3). The dominance of (s1; s2; 1) is strong when s1 < 1, the dominance of (s1; 0; s3) is strong when s1 > 0. 522

The proof is identical to the proof of Lemma 1. 523

Lemma 6. In one-shot transparent BoS, when Player 1 uses strategy (1; 0; 1), the best response for Player 2 is 524

to use strategy (0; 0; 1) for
p12
see

1−p21
see
≤ T−R

S−R and to use (1; 0; 1) otherwise. 525

Proof. By Lemma 5 the best response for Player 2 is a strategy (s1; 0; 1) with 0 ≤ s1 ≤ 1. When Player 2 uses 526

this strategy against (1; 0; 1), the expected payoff of Player 2 is given by 527

E21 = (1− p12see − p21see)
(
s1R+ (1− s1)T

)
+ p12see

(
s1S + (1− s1)T

)
+ p21seeT

= T + s1
(
p12see(S −R) + p21see(T −R)− (T −R)

)
.

Thus the payoff of Player 2 depends linearly on the value of s1 and is maximized by s1 = 0 if 528

p12see(S −R)− (1− p21see)(T −R) < 0 (8)

and by s1 = 1 otherwise. Inequality (8) is equivalent to (6), which completes the proof. 529

Using Lemmas 5 and 6, we can now compute NE for the one-shot transparent BoS: 530
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Proof. Pure strategy NEs are obtained immediately from Lemma 6. To compute the mixed-strategy NE, recall 531

that Player 1 achieves it when the expected payoff obtained by Player 2 for insisting and accommodating is 532

equal: 533

(1− p12see − p21see)(s11R+ (1− s11)S) + p12seeS = (1− p12see − p21see)(s11T + (1− s11)P ) + p12seeT.

By computing s11 from this equation and applying the same argument for Player 2, we get the strategy entries 534

given in (7). 535

Corollary 7. Consider one-shot transparent BoS with S = 4, T = 3, R = 2, P = 1, where both players have 536

equal probabilities psee to see the choice of the partner. In this game there are three NE for psee < 1/3: (a) 537

Player 1 uses strategy (1; 0; 1), Player 2 uses strategy (0; 0; 1); (b) vice versa; (c) both players use strategy 538

(x; 0; 1), with x = 3
4 + psee

4−8psee
. For psee ≥ 1/3, (1; 0; 1) is the only NE. 539

Analysis of iterated transparent games 540

For the analysis of iterated games we use the techniques described in [9,24]. Since most of results for simultaneous 541

and sequential iPD were obtained for strategies taking into account outcomes of the last interaction (“memory-one 542

strategies”), here we also focus on memory-one strategies. Note that considering multiple previous round results 543

in very complex strategies. To overcome this, one can, for instance, use pure strategies (see, for instance, [29]), 544

but we reserve this possibility for future research. 545

Consider an infinite population of players evolving in generations. For any generation t = 1, 2, . . . the 546

population consists of n(t) player types defined by their strategies si = (sik)12k=1 and their frequencies xi(t) in 547

the population,
n(t)∑
i=1

xi(t) = 1. Besides, the probability of a player from type i to see the choice of a partner from 548

type j is given by pijsee ∈ [0, 1] (in our case pijsee = psee for all types i and j, but in this section we use the general 549

notation). 550

Consider a player from type i playing an infinitely long iterated game against a player from type j. Since 551

both players use memory-one strategies, this game can be formalized as a Markov chain with states being the 552

mutual choices of the two players and a transition matrix M given by 553

M = (1− pijsee − pjisee)M0 + pijseeM1 + pjiseeM2, (9)

where the matrices M0, M1 and M2 describe the cases when neither player sees the choice of the partner, 554

Player 1 sees the choice of the partner before making own choice, and Player 2 sees the choice of the partner, 555

respectively. These matrices are given by 556

M0 =


si1s

j
1 si1(1− sj1) (1− si1)sj1 (1− si1)(1− sj1)

si2s
j
3 si2(1− sj3) (1− si2)sj3 (1− si2)(1− sj3)

si3s
j
2 si3(1− sj2) (1− si3)sj2 (1− si3)(1− sj2)

si4s
j
4 si4(1− sj4) (1− si4)sj4 (1− si4)(1− sj4)

 , 557

558

M1 =


si5s

j
1 si9(1− sj1) (1− si5)sj1 (1− si9)(1− sj1)

si6s
j
3 si10(1− sj3) (1− si6)sj3 (1− si10)(1− sj3)

si7s
j
2 si11(1− sj2) (1− si7)sj2 (1− si11)(1− sj2)

si8s
j
4 si12(1− sj4) (1− si8)sj4 (1− si12)(1− sj4)

 , 559

560

M2 =


si1s

j
5 si1(1− sj5) (1− si1)sj9 (1− si1)(1− sj9)

si2s
j
7 si2(1− sj7) (1− si2)sj11 (1− si2)(1− sj11)

si3s
j
6 si3(1− sj6) (1− si3)sj10 (1− si3)(1− sj10)

si4s
j
8 si4(1− sj8) (1− si4)sj12 (1− si4)(1− sj12)

 . 561

The gain of type i when playing against type j is given by the expected payoff Eij , defined by 562

Eij = yRR+ ySS + yTT + yPP, (10)

where R,S, T, P are the entries of the payoff matrix (R = 3, S = 0, T = 5, P = 1 for standard iPD and 563

R = 2, S = 4, T = 3, P = 1 for iBoS, see Fig. 2), and yR, yS , yT , yP represent the probabilities of getting to the 564

states associated with the corresponding payoffs by playing si against sj . This vector is computed as a unique 565

left-hand eigenvector of matrix M associated with eigenvalue one [9]: 566

(yR, yS , yT , yP ) = (yR, yS , yT , yP )M. 567
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The evolutionary success of type i is encoded by its fitness fi(t): if type i has higher fitness than the average 568

fitness of the population f(t) =
n(t)∑
i=1

xi(t)fi(t), then xi(t) increases with time, otherwise xi(t) decreases and the 569

type is dying out. This evolutionary process is formalized by the replicator dynamics equation, which in discrete 570

time takes the form 571

xi(t+ 1) = xi(t) +
fi(t)− f(t)

f(t)
xi(t) =

fi(t)

f(t)
xi(t). (11)

The fitness fi(t) is computed as the average payoff for a player of type i when playing against the current 572

population: 573

fi(t) =

n(t)∑
j=1

xj(t)Eij , 574

where Eij is given by (10). 575

Evolutionary dynamics of two strategies. To provide an example of evolutionary dynamics and introduce 576

some useful notation, we consider a population consisting of two types playing iPD with strategies: s1 = 577

(1, 0, 0, 1; 1, 0, 0, 1; 0, 0, 0, 0), s2 = (0, 0, 0, 0; 0, 0, 0, 0; 0, 0, 0, 0) (recall that we write 0 instead of ε and 1 instead 578

of 1 − ε for ε = 0.001; see Results, section Transparent games with memory: evolutionary simulations) and 579

initial conditions x1(1) = x2(1) = 0.5. That is, the first type plays the “Win–stay, lose–shift” (WSLS) strategy, 580

and the second type (almost) always defects (uses the AllD strategy). We set p11see = p12see = p21see = p22see = psee. 581

Note that since p11see, p
22
see ≤ 0.5 and p12see + p21see ≤ 1, it holds psee ≤ 0.5. Given psee we can compute a transition 582

matrix of the game using (9) and then calculate the expected payoffs for all possible pairs of players ij using 583

(10). For instance, for psee = 0 and ε = 0.001 we have 584

E11 = 2.995,E12 = 0.504,E21 = 2.999,E22 = 1.003. 585

This means that a player of the WSLS-type on average gets a payoff E11 = 2.995 when playing against a partner 586

of the same type, and only E12 = 0.504, when playing against an AllD-player. The fitness for each type is given 587

by 588

f1(t) = x1(t)E11 + x2(t)E12 = 2.995x1(t) + 0.504x2(t), 589

f2(t) = x1(t)E21 + x2(t)E22 = 2.999x1(t) + 1.003x2(t). 590
591

Since f2(t) > f1(t) for any 0 < x1(t), x2(t) < 1, the AllD-players take over the whole population after several 592

generations. Dynamics of the type frequencies xi(t) computed using (11) shows that this is indeed the case 593

(Fig. 9A). Note that since E21 > E11 and E22 > E12, AllD is garanteed to win over WSLS for any initial 594

frequency of WSLS-players x1(1). In this case one says that AllD dominates WSLS and can invade it for any 595

x1(1). 596

As we increase psee, the population dynamics changes. While for psee = 0.2 AllD still takes over the 597

population, for psee = 0.4 WSLS wins (Fig. 9A). This can be explained by computing the expected payoff for 598

psee = 0.4: 599

E11 = 2.995,E12 = 0.628,E21 = 2.500,E22 = 1.003. 600

Hence f1(t) > f2(t) for 0 ≤ x2(t) ≤ 0.5 ≤ x1(t) ≤ 0, which explains the observed dynamics. Note that here 601

E11 > E21, while E12 < E22, that is when playing with WSLS- and AllD-players alike partners of the same type 602

win more than partners of a different type. In this case one says that WSLS and AllD are bistable and there is 603

an unstable equilibrium fraction of WSLS players given by 604

h1 =
E22 − E12

E11 − E12 − E21 + E22
. (12)

We call hi an invasion threshold for type i, since this type takes over the whole population for xi(t) > hi, but 605

dies out for xi(t) < hi. To illustrate this concept, we plot in Fig. 9A the invasion threshold h1 as a function of 606

psee for WSLS type playing against AllD. 607

The third possible case of two-types dynamics is coexistence, which takes place when E11 < E21, E12 > E22, 608

that is when playing against a player of any type is less beneficial for a partner of the same type than for a 609

partner of a different type. In this case the fraction of a type given by (12) corresponds to a stable equilibrium 610

meaning that the frequency of the first type x1(t) increases for x1(t) < h1, but decreases for x1(t) > h1. 611
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Fig 9. Evolutionary dynamics of iPD-population consisting of two types of players: with WSLS
and AllD strategies. (A) Initially, both types have the same frequency, but after 40 generations the fraction
of WSLS-players x1(t) converges to 0 for probabilities to see partner’s choice psee = 0.0, 0.2 and to 1 for
psee = 0.4, 0.5. (B) This is due to the decrease of the invasion threshold h1 for WSLS: while h1 = 1 for psee = 0
(AllD dominates WSLS and the fraction of WSLS-players unconditionally decreases), AllD and WSLS are
bistable for psee > 0 and WSLS wins whenever x1(t) > h1. Arrows indicate whether frequency x1(t) of WSLS
increases or decreases. Interestingly, h1 = 0.5 holds for psee ≈ 1/3, which corresponds to the maximal
uncertainty since the three cases (“Player 1 knows the choice of Player 2 before making its own choice”;
“Player 2 knows the choice of Player 1 before making its own choice”; “Neither of players knows the choice of the
partner”) have equal probabilities.

Evolutionary simulations for transparent games. Theoretical analysis of the strategies in repeated 612

transparent games is complicated due to the many dimensions of the strategy space, which motivates using 613

of evolutionary simulations. For this we adopt the methods described in [9, 24]. We do not use here a more 614

modern adaptive dynamics approach [61,62] since for high-dimensional strategy space it would require analysis 615

of a system with many equations, complicating the understanding and interpretation of the results. 616

Each run of simulations starts with five player types having equal initial frequencies: n(1) = 5, x1(1) = . . . = 617

x5(1) = 0.2. Following [24], probabilities sik with k = 1, . . . , 12 for these types are randomly drawn from the 618

distribution with U-shaped probability density, favouring probability values around 0 and 1: 619

ρ(y) = π
(
y(1− y)

)−1/2
(13)

for y ∈ (0, 1). Additionally, we require sik ∈ [ε, 1− ε], where ε = 0.001 accounts for the minimal possible error 620

in the strategies [24]. The fact that players cannot have pure strategies and are prone to errors is also closely 621

related to the “trembling hand” effect preventing players from using pure strategies [24,63]. 622

The frequencies of strategies xi(t) change according to the replicator equation (11). If xi(t) < χ, the type is 623

assumed to die out and is removed from the population (share xi(t) is distributed proportionally among the 624

remaining types); we follow [9, 24] in taking χ = 0.001. Occasionally (every 100 generations on average to avoid 625

strong synchronization), new types are entered in the population. The strategies for the new types are drawn 626

from (13) and the initial frequencies are set to xi(t0) = 1.1χ [24]. 627
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Supplementary Figure 1. Distributions of total shares in the population over all generations for
80 most persistent player types over the 80 runs of evolutionary simulations (A) for iterated
Prisoner’s Dilemma (iPD) and (B) for iterated Bach-or-Stravinsky game (iBoS). The central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted
individually using the ’+’ symbol. The higher total shares of the types are, the more stable the dynamics in the
population is. While stability varies with transparency for both games, the drop of stability in iPD for
psee ≥ 0.4 is especially noticeable. Indeed, in highly transparent iPD any strategy is sufficiently “predictable”,
which allows a best-response strategy to replace it in a population. Such best-response strategies can be
generally weak and short-living, see for example treacherous WSLS described in Figure 5 (main text). Note that
stability increases considerably for psee ≥ 0.4 in iBoS, which reflects the fact that Leader-Follower strategy
becomes evolutionary stable for high transparency.
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Supplementary Note 1 760

In the Methods section we argue that evolution favours equal reaction times both in iPD and iBoS, since the 761

optimal behaviour in iPD is to wait as long as possible, and in iBoS – to act as quickly as possible. However, for 762

iPD there is a notable exception: the Leader-Follower (L-F) strategy is better of when acting fast and exposing 763

it’s choice to the partner. Consider, for instance, a population consisting of L-F players of two types, the first 764

acting fast and the second waiting. In all inter-type interactions, players of the first type have an upper hand 765

since they take the role of Leaders, maximizing own payoff. Thus the first type dominates the second and 766

finally takes over the population. The question then is, whether this contradiction to the general rule for the 767

transparent iPD (to wait as long as possible) changes the simulation results? 768

Additional simulations show that this is not the case. We have used the same evolutionary simulations as 769

before with one modification. Instead of using for all types a fixed probability to see the partner’s choice psee, 770

we computed this probability for each pair of types as shown in Supplementary Fig. 2: from the reaction times 771

(RT) modelled by exponentially modified Gaussian distributions and from the visibility threshold ∆T . 772
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Supplementary Figure 2. Distributions of reaction times (RT) of the players determine their
probability to see the partner’s choice. (A) RT distributions for two players modelled by exponentially
modified Gaussian distribution. (B) Distribution of RT difference ∆RT = RT2 − RT1 and probabilities to see
the partner’s choice given by p12see = Pr(∆RT < −∆T ) (Player 1 knows the choice of Player 2 before making
own choice, the blue area) and p21see = Pr(∆RT > ∆T ) (vice versa, the red area), where ∆T is a time interval
required for a player to interpret and act on the partner’s choice.

Exponentially modified Gaussian distribution has three parameters: mean of Gaussian component µ, standard 773

deviation of Gaussian component σ and relaxation time of exponential component τ . For each type of players a 774

random mean reaction time µ was selected from the set {2.0, 2.1, . . . , 3.0}. Since we were mainly interested in 775

the influence of the types’ mean RT on the results, we set other parameters to constants: σ = 0.1 and τ = 0.5. 776

For each two types i and j we computed probabilities to see partner’s choice as follows: 777

1. Using exponentially modified Gaussian distribution, we generated for each type samples of reaction times 778

RTi,k, RTj,k for k = 1, 2, . . . ,K with K = 106. 779

2. We computed reaction time differences between types i and j by ∆RTk = RTj,k − RTi,k. 780

3. We estimated probabilities to see partner’s choice by

pijsee =
1

K
]{k = 1, . . . ,K | ∆RTk < −∆T},

pjisee =
1

K
]{k = 1, . . . ,K | ∆RTk > ∆T},

where ]A stands for the number of elements in the set A. 781

We performed three series of evolutionary simulations for ∆T = 1.98, 0.478, 0.001. These values were selected 782

so that for any type i probability piisee was equal to 0.001, 0.2 and 0.499, respectively. Each series consisted of 80 783

runs of evolutionary simulations, we traced 109 generations in each run. Except the way the values of pijsee were 784

computed, the simulations were as described in the main text of the manuscript 785

As expected, results were similar to those with equal RT but more noisy since additional type variability 786

increases the number of generations necessary for the population to reach the equilibrium state. In Supplementary 787

Fig. 3A, for low (but non-zero) transparency WSLS wins with a total relative frequency above 85% (without 788

GWSLS), but as transparency increases the share of WSLS drops down. On the contrary, the Leader-Follower 789

strategy has the best performance for high transparency with a relative frequency 27% (Supplementary Fig. 3C). 790

Note that all successful types have marginal RT: WSLS-players mostly have maximal reaction times, while 791

L-F-players have minimal reaction times. 792
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Supplementary Figure 3. Fractions of the most frequent strategies in transparent iPD with
unequal reaction times (RT). RT were modelled by exponentially modified Gaussian distributions with µ
randomly selected from the set {2.0, 2.1, . . . , 3.0}, σ = 0.1 and τ = 0.5. WSLS is considered here together with
GWSLS, they have a strategy profile (1abc;1***;****) with a, b < 2/3, c ≥ 2/3. We characterized as L-F all
strategies with a profile (*00b;****;*11c), where b < 1/3 and c < 2/3. Finally, we considered a strategy as
defecting if it has entries s4, s12 < 0.2, s1, s2, s3 < 1/3 and s8 < 2/3. (A) For low transparencies WSLS is
predominate and WSLS-players clearly prefer waiting over fast action. (B) For moderate transparencies
population is controlled either by the waiting WSLS players or by the fast-acting defectors, though the latter
are successful only since many strategies may have si9, s

i
10, s

i
11, s

i
12 > 0, resulting in cooperation with apparent

defectors. (C) For high transparencies Leader-Follower outperforms defecting strategies. Note that in all cases
types with marginal RT prevail and the observed strategy frequencies are similar to those for equal RT.

The only principal difference from the simulations with fixed psee takes place for moderate transparencies, 793

in particular, for ∆T = 0.478 when probability to see the partner’s choice in intra-type interactions is given 794

by piisee = 0.2. Supplementary Fig. 3B shows that in this case defecting strategies have an unexpectedly high 795

relative frequency. However, this seems to be an artefact caused by the fact that for the most types added 796

to the population strategy entries si9, s
i
10, s

i
11, s

i
12 > 0 (meaning that players may cooperate even seeing that 797

partner defects). Playing against fast-acting defectors, these types take the role of Followers and become an 798

easy prey. Indeed, if a defecting strategy has µi = 2, its opponent with µj = 2.5 sees the choice of the defector 799

with probability pjisee > 0.5, and an opponent with µj = 3 with probability pjisee > 0.8. In this case probabilities 800

si9, . . . , s
i
12 are much more important than for the case when RT are equal and these entries are used only with 801

probability piisee = 0.2. Fast-acting defecting strategies can be only counteracted by TFT-like strategies with 802

si9, s
i
10, s

i
11, s

i
12 ≈ 0. Note that the L-F strategy is not successful against defecting strategies in this case, since 803

L-F can only survive for high piisee. 804
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Supplementary Note 2 805

Here we introduce a variant of transparent iterated Prisoner’s dilemma (iPD) with a restricted strategy space. 806

Note that in iPD a rational player in most cases would not cooperate seeing that partner defects. The only notable 807

exception is the Leader-Follower strategy. In general, one can see in Figure 4 (main text) that probabilities 808

s9, . . . , s12 to cooperate seeing that partner defects are quite low, especially for psee < 0.4 (note that this takes 809

place despite of the fact that defection for psee < 0.4 is rare, meaning that entries s9, . . . , s12 are not very 810

important for the strategy success). 811

Assuming that cooperation with a defecting partner is unnatural, we can set s9 = . . . = s12 = 0. A question 812

then is, whether such priors change the dynamics of the iPD-strategies. Supplementary Fig. 4 shows that 813

restricting strategy space results in the same drop of cooperation as in the non-restricted iPD. 814
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Supplementary Figure 4. Fraction of runs for which cooperation was established in iterated
Bach-or-Stravinsky game (iBoS) and in two versions of iterated Prisoner’s Dilemma (iPD). We
assumed that cooperation was established in the population if the average payoff was above 0.9 · 3 for iPD and
above 0.95 · 3.5 for iBoS (90% and 95% of maximal possible value). In iPD (for both non-restricted and
restricted strategy space) seeing the partner’s choice adversely affects cooperation as it increases the temptation
to exploit the partner. In iBoS, “evolution” results in more cooperative agents when they have a higher
probability of seeing the partner’s choice as this helps them to coordinate. The small drop in cooperation for
iBoS at psee = 0.4 is caused by a transition from turn-taking to leader-following.

There is however, one difference: Supplementary Fig. 5 shows that for high psee an “inverse Leader-Follower” 815

strategy (inverse L-F) emerges instead of Leader-Follower introduced for the non-restricted iPD. Inverse L-F 816

is theoretically represented by s = (1110; 0000; 0000), that is the player cooperates when it does not see the 817

choice of the partner and defects otherwise. In the simultaneous iPD (psee = 0) L-F behaves as unconditional 818

cooperator and is easily beaten, but it becomes predominant in restricted settings for psee = 0.5. Note that 819

inverse L-F is an extension of the strategy (1; 0; 0), which plays a special role in one-shot PD (see “Methods” 820

section). However, memory provides to inverse L-F an important advantage: it can distinguish unconditional 821

defectors AllD from conspecifics. Resistance to AllD is achieved by defecting after mutual defection (s4 = 0). 822

Spread of inverse L-F in the restricted iPD for high transparency illustrates pervasiveness of “Leader-Follower” 823

principle. It also shows that the role of initiators can vary: in some cases, these agents reap special benefits, but 824

in other cases they also carry the burden. Although counter-intuitive at first glance, the cooperativeness of 825

Leaders in the L-F strategy corresponds to the behaviour of individuals that agree to do a necessary but risky 826

or unpleasant job without immediate benefit. Examples include volunteering in human societies and acting as 827

sentries in animal groups. 828
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Supplementary Figure 5. Fractions of WSLS, GTFT, FbF and L-F strategies in transparent
iPD with non-restricted and restricted strategy space. The frequencies were computed over 109

generations in 80 runs. Note the striking similarities between two scenarios. The main differences include the
lower stability in the non-restricted iPD and emergence of inverse L-F instead of L-F for psee = 0.5 in restricted
iPD. We classified as inverse L-F all strategies with profile (*11*; *00*; 0000) since behaviour after mutual
cooperation or mutual defection is only relevant when inverse L-F is playing against another strategy, and
success for different types of behaviour depends on the composition of the population.
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