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Abstract1

Telemetry data provide a rich source of information on animals use of space, habitat pref-2

erences and movement behaviour. Yet habitat models fit to these data are blind to the3

underlying behavioural context. Conversely, behavioural models accounting for individual4

variability are too slow for meaningful analysis of large telemetry datasets. Applying new5

fast-estimation tools, we show how a model incorporating mixed effects within a flexible6

random walk movement process rapidly infers among-individual variability in environment-7

movement behaviour relationships. We demonstrate our approach using southern elephant8

seal (Mirounga leonina) telemetry data. Seals consistently reduced speed and directional-9

ity (move persistence) with increasing sea ice coverage, had variable responses to chloro-10

phyll concentration and consistently reduced move persistence in regions where circum-11

polar deep water shoaled. Our new modelling framework is extensible and substantively12

advances analysis of telemetry data by allowing fast and flexible mixed effects estimation13

of potential drivers of movement behaviour processes.14
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Introduction17

Understanding animals’ use of geographical and environmental space (i.e., where animals18

are and why they are there) is one of the central aims of ecology (Rosenzweig, 1981). Move-19

ment is the key process that defines space-use at spatial and temporal scales relevant to20

individual animals and telemetry is the predominant approach to observe this process21

(Kays et al., 2015; Hussey et al., 2015). Inferences about the behavioural context of ani-22

mal movements, such as foraging, resting or predator avoidance, are often made by relat-23

ing movement behaviour to physical habitat features (e.g., Breed et al., 2017).24

Various spatial habitat modelling approaches are used to infer animals’ space-use and25

habitat preferences, through combining telemetry and environmental information, e.g.,26

from remotely sensed data (Aarts et al., 2008; Thurfjell et al., 2014; Raymond et al., 2015).27

Most habitat models infer animals’ habitat preference or selectivity from a combination28

of observed (presence) and simulated (pseudo-absence) tracking locations (Aarts et al.,29

2008) but are generally blind to the behavioural context (e.g., whether animals are mi-30

grating, foraging or resting) underlying those inferred preferences. Hidden Markov mod-31

els (HMMs) and state-space models (SSMs) can provide this context by inferring (un-32

observed) behavioural states, and relating state-switching probabilities to environmental33

features (Morales et al., 2004; Patterson et al., 2009; Bestley et al., 2013; Michelot et al.,34

2016).35

Both HMMs and SSMs offer great flexibility in modelling movement behaviour as a36

function of extrinsic and/or intrinsic drivers (Bestley et al., 2015; Michelot et al., 2017).37

Although high individual variation is a commonly reported feature in telemetry analyses,38

methods to account for individual variability in movement-environment relationships (e.g.,39

using random effects, Pinheiro & Bates, 2000; Bolker et al., 2009) have been implemented40

in a limited way to date (Langrock et al., 2012; Bestley et al., 2015). A fully flexible ap-41

proach where any sensible combination of fixed and random terms can be considered, that42

allows different environmental responses across individuals, has yet to be implemented.43
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This is mainly because complex mixed effects models (Thorson & Minto, 2015) applied to44

large time-series can be computationally demanding.45

Here we present a modelling approach that takes advantage of fast, powerful estimation46

tools provided by the relatively new R package Template Model Builder (TMB, Kristensen47

et al., 2016). We illustrate a mixed effects modelling approach for animal tracking data48

that takes advantage of TMB’s fast estimation (Albertsen et al., 2015; Auger-Méthé et al.,49

2017) to parametrize movement behaviour using a time-varying term for movement persis-50

tence. Our primary aim is to show how the approach can be used to infer relationships be-51

tween animals’ movement behaviour and the environmental features they encounter. These52

models can be fit flexibly with single or multiple random effects, enabling inference across53

multiple individuals and assessment of the extent to which relationships differ among in-54

dividuals. We illustrate our approach using southern elephant seal (Mirounga leonina)55

telemetry data, with cases demonstrating both sea-ice and oceanic foraging trips, to show56

how seals engaging in different foraging tactics may respond differently to their environ-57

ment.58

Materials and methods59

Here we describe our mixed effects modelling approach for inference of covariate relation-60

ships with movement behaviour. We divide the description of our approach into three sec-61

tions. First, we focus on a basic move persistence model that can be used to estimate be-62

havioural change along an animal’s observed movement trajectory. Second, we show how63

this basic model can be expanded to infer how these behavioural changes may be related64

to environmental features. We focus on relationships with environmental covariates but65

any combination of extrinsic or intrinsic covariates could be modelled provided they are66

measured at locations and/or times consistent with the telemetry data. Third, we add ran-67

dom effects to the model to enable inference about how these behaviour - environmental68

relationships may differ among individual animals.69
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Time-varying move persistence70

Our modelling approach focuses on estimation of the persistence (sensu Patlak, 1953) of71

consecutive pairs of animal relocations (move steps) along an entire movement trajec-72

tory. Move persistence, which captures autocorrelation in both speed and direction, has73

been modelled as an average across entire movement trajectories (Jonsen, 2016), indicating74

whether that trajectory is, on average, uncorrelated (i.e., a simple random walk or Brown-75

ian motion), correlated (i.e., a correlated random walk), or somewhere in between (Codling76

et al., 2008). Allowing move persistence to vary along a trajectory means it can be used77

as an index of behaviour, identifying segments of relatively low or high persistence. This78

model can be written as:79

dt = γtdt−1 + N(0,Σ) (1)

where dt and dt−1 are the changes in an animal’s location at times t and t − 1. Σ is a80

variance-covariance matrix specifying the magnitude of randomness in the 2-dimensional81

movements. γt is the time-varying move persistence (autocorrelation) between displace-82

ments dt and dt−1. γt is continuous-valued between 0 (low move persistence, Fig. 1a,c)83

and 1 (high move persistence, Fig. 1b,c). To avoid potential parameter identifiability is-84

sues between γt and Σ, we set the covariance term in Σ to 0 but note this constraint could85

be relaxed. We assume γt follows a simple random walk in logit space (to keep γt bounded86

between 0 and 1):87

logit(γt) = logit(γt−1) + N(0, σγ) (2)

where σγ is a scale parameter describing how much move persistence varies along an ani-88

mal’s observed movement track.89

This process model (Eqn’s 1 and 2) can be fit either directly to location data with min-90

imal error, such as GPS data, fit to SSM-filtered locations, or coupled with an observation91

model to fit to error-prone data, such as Argos or light-based geolocation data. We assume92
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the locations occur at regular time intervals, but other implementations can accommodate93

irregularly observed location data (Auger-Méthé et al., 2017).94

The time-varying move persistence model can be used to objectively identify changes95

in movement pattern. The γt’s are the behavioural index but unlike switching state-space96

models (e.g., Jonsen et al., 2005) or hidden Markov models (e.g., Langrock et al., 2012) of97

animal movement behaviour, these changes are modelled along a continuum (0 - 1) rather98

than as switches between a pre-specified number of discrete states.99

Move persistence in relation to environment100

To make inferences about the factors associated with these behaviours, we can model γt as101

a linear function of environmental predictors like proportion of ice cover, or other extrin-102

sic or intrinsic covariates measured at each location. With this approach, we replace the103

random walk on logit(γt) (Eqn 2) with a linear regression of covariates on logit(γt):104

logit(γt) = β0 + β1mt,1 + · · ·+ βnmt,n (3)

where β0, β1 · · · βn are the fixed intercept and regression coefficients and mt,1 · · ·mt,n are105

the predictor variables. This model can be fit to a single animal track, or multiple tracks106

could be pooled together. Typically, we wish to make inference across multiple individual107

tracks and assess the extent to which relationships may differ among individuals.108

Incorporating individual variability109

To account for variation among individual responses to environment, we can expand Eqn110

3 to a mixed-effects regression of covariates on logit(γt), embedded directly in the be-111

havioural model:112

logit(γt) = (β0 − b0,k) + (β1 − b1,k)mt,1,k + · · ·+ (βn − bn,k)mt,n,k (4)
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where the β’s are the fixed-effect intercept and slope terms as in Eqn 3, b0,k is a random113

deviation for the intercept of the k-th individual, b1,k through bn,k are random deviations114

for the slopes of the k-th individual and mt,1,k through mt,n,k are the covariates measured115

along the k-th individual’s track.116

Estimation117

In principle, any combination of fixed and random effects can be specified within the move-118

ment model described in equations 1 and 4. However, estimation of multiple random ef-119

fects can be extremely computationally demanding and this has limited the use of such120

models for animal telemetry data. Here we use TMB to fit the move persistence models121

(Auger-Méthé et al., 2017). The TMB package allows complex latent variable mixed ef-122

fects models, such as SSMs (Albertsen et al., 2015), to be specified in C++ and fit effi-123

ciently via maximum likelihood using reverse-mode auto-differentiation and the Laplace124

approximation (Kristensen et al., 2016). The Laplace approximation avoids the need for125

high-dimensional integration by using a second-order Taylor expansion that massively126

speeds the calculation of the marginal likelihood (e.g., Albertsen et al., 2015). Compar-127

ing Bayesian and TMB versions of the same location-filtering model fit to individual Argos128

location datasets, Auger-Méthé et al. (2017) found a 30-fold decrease in computation time129

for the TMB fit with no apparent loss of accuracy.130

All code for fitting these models in R is available at https://github.com/ianjonsen.131

This code draws on the lme4 (Bates et al., 2015) and glmmTMB (Brooks et al., 2017) R132

packages to specify the mixed effects models in a general and flexible manner.133

Data application134

We demonstrate our move persistence models with 24 adult female southern elephant seal135

tracks. The seals were captured at Iles Kerguelen (49.35◦ S, 70.22◦ E) between late Jan-136

uary and mid-March in 2009 and 2013-2015, at the end of their annual moult. Animal137
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handling and instrument attachment details can be found elsewhere (McMahon et al.,138

2000; Field et al., 2012; McMahon et al., 2008). These data were sourced from the Aus-139

tralian Integrated Marine Observing System (IMOS) deployments at Iles Kerguelen and140

are publicly available (http://imos.aodn.org.au). The tracks comprise a mixture of sea141

ice foraging trips on or near the Antarctic continental shelf (12 seals; Appendix S1.1a) and142

entirely pelagic foraging trips in sub-Antarctic waters (12 seals; Appendix S1.1b). Prior143

to fitting the move persistence models, we used a TMB implementation of a state-space144

model (Jonsen et al., 2005; Auger-Méthé et al., 2017) to filter the observed locations, ac-145

counting for error in the Argos telemetry, and to regularize the filtered locations a 12-h146

time interval (see Appendix S1 for details).147

We fit the move persistence model (mpm; Eqn’s 1 and 2) to the SSM-filtered seal tracks.148

To ascertain whether γt adequately captures changes in the seals’ movement patterns, we149

compare the γt-based behavioural index from the mpm to discrete behavioural states es-150

timated from a behavioural switching state-space model (SSSM; Jonsen, 2016) fitted us-151

ing the bsam R package. Details on how we fit the bsam model are in Appendix S2. We152

then fit the move persistence mixed effects model (mpmm; Eqn’s 1 and 4) to the same SSM-153

filtered seal tracks to infer how the seals’ movement behaviour may be influenced by envi-154

ronmental features encountered during their months-long foraging trips. In both analyses,155

we fitted separate models to the ice and pelagic foraging trips. For the mpmm’s, we specified156

mixed effects models with random intercept and slopes to account for variability among157

individual seals. We fit all possible combinations of fixed and random effects and use AIC158

and likelihood ratios to find the best supported model for each set of tracks.159

We examined 3 potential environmental correlates of elephant seal movement behaviour:160

sea ice cover (the proportion of time the ocean is covered by ≥ 85% ice; ice), chlorophyll161

a concentration (near-surface summer climatology in mg m−3; chl) and the salinity differ-162

ence between 600 and 200 m depths (based on winter climatology averaged over 1955-2012163

in psu, saldiff). Sea ice and chl a data were obtained from the Australian Antarctic164
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Data Centre (Raymond, 2014). Salinity data were obtained from the World Ocean Atlas165

(Zweng et al., 2013). All three covariates were spatially interpolated to the same 0.1 x 0.1166

degree grid covering the spatial domain of the 24 elephant seal tracks (Appendix S3.1).167

The environmental data values were then extracted at each seal location from the SSM-168

filtered track data. As saldiff could not be calculated in areas where the bathymetry was169

shallower than 600 m, we did not include this variable in the models fit to the seals mak-170

ing ice-bound foraging trips as several of them spent considerable time in waters shallower171

than 600 m (Appendix S2.2). Similarly, ice was excluded from the models fit to seals172

making pelagic foraging trips as they spent relatively little time in regions with sea-ice173

cover.174

R code for the model selection exercise is in Appendix S4.175

Results176

Time-varying move persistence (mpm)177

The ice-bound seals all exhibited similar movement patterns (Fig. 2a), with high move178

persistence on their outbound migrations and lower move persistence near the Antarctic179

continent in areas of higher sea-ice coverage. Return migrations to Iles Kerguelen were180

more variable, with some individuals travelling back in a persistent fashion and others tak-181

ing meandering routes, possibly to forage en route. Pelagic foraging seals (Fig. 2b) mi-182

grated approximately 2000 km either east or west of Iles Kerguelen in relatively persis-183

tent fashion. Less persistent movements occurred at the distal ends of these migrations,184

although seals travelling to the west of Iles Kerguelen had markedly less persistent and185

slower movements, suggestive of more intense search and foraging, compared to those trav-186

elling to the east (Fig. 2b).187

The γt-derived behavioural index is comparable but not identical to the discrete be-188

havioural states estimated from the bsam SSSM (Fig. S2.1). The γt index captured the189
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same changes in movement behaviour but the magnitudes of those changes generally were190

smaller. Fitting the move persistence model, including the SSM filtering step, was almost191

500 times faster than fitting the bsam SSSM (Appendix S2.1).192

Individual variability in move persistence - environment relationships (mpmm)193

Sea-ice foragers. The best supported model for elephant seals foraging in the sea-ice zone194

included fixed and random coefficients for both the proportion of ice cover and chlorophyll195

a concentration (Table 1). On average, seals had movements that became less persistent196

or directed as sea-ice cover and chlorophyll a concentration increased (Fig. 3a,b). Among197

individuals, the relationship with ice was consistently negative but the degree to which198

move persistence declined differed markedly (Fig. 3a), whereas the relationship with chl199

was highly variable with 4 individuals having strong negative relationships and the rest200

weak to moderately positive relationships (Fig. 3b). Unsurprisingly, the chl fixed-effect201

was not significant (Z-value = -1.04, p = 0.3). Using the fixed-effects from the best sup-202

ported model, the spatial prediction of γt over the entire spatial domain implies that the203

best foraging habitat generally lies south of 65◦ S (south of the black contour line, Fig.204

3d).205

Pelagic foragers. The best supported model for elephant seals foraging pelagically in-206

cluded fixed and random coefficients for the salinity difference between 600 and 200 m207

depths (saldiff, Table 2). On average, seals had movements that became strongly less208

persistent as the salinity difference decreased (Fig. 3c). Among individuals, this relation-209

ship was moderately variable with two individuals exhibiting relatively small changes in210

move persistence over the full range of saldiff (Fig. 3c). The spatial prediction of γt211

over the entire spatial domain implies that animals generally adopt a movement behaviour212

indicative of search or forage south of 65◦ S (south of the black contour line, Fig. 3e) or213

north in the vicinity of the Subantarctic Front (north of the black contour line, Fig. 3e).214
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Discussion215

Animal telemetry data obtained at the level of individual animals poses a challenge to216

scale from individual to population ecology. While correlative statistical analyses using217

mixed effects models have been widely applied to behavioural datasets (e.g., marine ani-218

mal diving and bird migration ecology analyses, Hassrick et al., 2010; Mandel et al., 2008),219

individual variability currently is incorporated into process-based models of movement be-220

haviour in a relatively limited way. This is partly due to the extra complexity required for221

building random effects into a process-oriented approach (i.e., the temporal nature of the222

data are taken into account explicitly) though primarily due to the significant computa-223

tional overhead entailed. Our method uses TMB estimation for a process model describ-224

ing animal movement behaviour in direct relation to environmental features. Our results225

show this enables multiple fixed and random effects in movement-environment relation-226

ships to be fit simply and efficiently. Taking advantage of TMB’s speed and power, this227

approach provides a feasible solution to analysing increasingly large and detailed telemetry228

datasets, and for harnessing individual-to-population level information on animal move-229

ment responses to environment.230

Environmental responses231

Our analyses revealed relatively consistent responses by individual animals to environmen-232

tal variables we tested, however substantial individual variability was also a persistent fea-233

ture of the telemetry data. Comparisons of model structures allowed these individual-level234

effects to be directly evaluated. Those animals whose forage migrations went towards the235

Antarctic continent showed low move persistence once in areas of higher sea ice coverage.236

Some individuals also showed positive responses to elevated chlorophyll a concentrations,237

targeting productive coastal polynya areas (Malpress et al., 2017; Labrousse et al., 2018);238

however this was not a persistent response with many others foraging farther offshore in239

the marginal ice zone (Labrousse et al., 2015) where chlorophyll a concentrations are lower240
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(Appendix S3.1). For the pelagic foraging animals, our results indicated seals moved per-241

sistently away from the region in which salty Circumpolar Deep Water was confined to242

depths (i.e., where the salinity difference was highly positive). The majority then adopted243

a lower move persistence in areas where the CDW shoaled (salinity difference closer to244

zero, southern areas) with four animals targeting the vicinity of the Subantarctic Front245

(salinity difference negative) where cold fresh Antarctic Intermediate Water subducts un-246

der saline Subantarctic surface waters (northwestern areas, Appendix S3.1).247

Substantial variability among individuals is a persistent feature reported from animal248

telemetry data (e.g., Block et al., 2011). Understanding this variability is essential for249

scaling from data collected on individuals up to inferences of population-level processes250

(Morales et al., 2010) and for predicting future responses to a changing environment. For251

example, within the Southern Ocean climatic changes are impacting the sea-ice extent and252

duration, the location of major oceanic frontal features, and potentially the meridional253

overturning circulation (whereby water masses sink and rise as governed by density gradi-254

ents) with large-scale consequences for marine ecosystem structure, function and produc-255

tivity (Constable et al., 2014).256

We used environmental climatologies to demonstrate our data application, however257

for many analyses relevant covariates may be extracted from time-varying environmen-258

tal fields. Many automated options for this exist via websites such as ZoaTrack (http:259

//www.zoatrack.org/) managed by the Atlas of Living Australia or Xtractomatic (http:260

//coastwatch.pfel.noaa.gov/xtracto/) managed by the US National Oceanic and261

Atmospheric Administration. We also note here the need to incorporate location uncer-262

tainty when sampling environmental covariates from spatially gridded remote-sensing data.263

This can be done using multiple imputation methods as implemented in momentuHMM R264

package (McClintock & Michelot, 2018), i.e., drawing realizations of the locations from the265

uncertainty of the location-filtering SSM estimates.266
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Individual variation267

Although the ultimate source of observed individual differences in behaviour - environ-268

ment relationships is often unclear, two non-exclusive explanations seem likely. First, we269

often use relatively few predictors and these may represent the proximate influences which270

predators are actually responding to (i.e., prey density and/or distribution) indirectly or271

imperfectly. This may inflate apparent individual differences in predator movement be-272

haviour. Modelling more direct indices of prey availability, and/or reducing error within273

covariates by accounting for location uncertainty as discussed above, may help to reduce274

apparent variation among individuals.275

Second, individual variation is likely a real feature of foraging ecology (Magurran, 1993),276

where individual quality and personality (Dall et al., 2004; Stamps, 2007) may confer real277

differences in foraging behaviour with relatively little difference in fitness (Mangel & Stamps,278

2001). For example, consistent boldness in foraging can generate important ecological279

trade-offs, effecting increases in both growth and mortality rates (Stamps, 2007; Bergvall280

et al., 2011; Chapman et al., 2011). Research into behavioural syndromes along axes, such281

as boldness-shyness or proactiveness-reactiveness (Sih et al., 2004), may provide insight282

into the functional connection between individual behavioural traits and physiological con-283

sequences (e.g. via metabolic rates, reproductive success or mortality rates), and hence the284

evolutionary significance for ecological patterns and processes. Individual differences likely285

represent yet another characteristic contributing to survival and resilience in a complex286

and variable environment.287

Modelling approach and extensions288

Our model is composed of a linear mixed effects regression embedded within a correlated289

random walk process model for animal movement behaviour. While the linear mixed ef-290

fects approach allows flexible combinations of fixed and random effects, there is scope for291

further enhancement. In many cases parametric, linear fixed effects may not adequately292
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capture the complexity of movement behaviour - environment relationships and a nonpara-293

metric approach using penalised splines may yield improved inference (Langrock et al.,294

2017). Our random effects currently use an unstructured covariance matrix that may be295

less appropriate given the serial dependence structure typical of telemetry data. A first-296

order autoregressive covariance structure may better account for this dependence (Pinheiro297

& Bates, 2000). Finally, diagnosing lack of fit in latent variable models can be problematic298

as there is no ”observed response” variable. One-step-ahead prediction residuals provide a299

useful model validation tool and can be estimated when fitting the model (Thygesen et al.,300

2017).301

This work addresses a key improvement in the quantitative integration of animal move-302

ment behaviour and environment. Habitat models are presently the dominant method for303

inference of environmental drivers of species’ habitat preferences and space-use but largely304

ignore the behavioural context underlying observed animal locations. By modelling ani-305

mal movement behaviours as a mixed effects function of environmental variables, we gain306

deeper insight into how individuals and populations actually use habitat. Additional ef-307

fort is required to converge movement behaviour and habitat modelling approaches. For308

example, our behavioural models do not account for availability/accessibility of habitat in309

any way but this clearly must be considered when inferring habitat preferences (Wakefield310

et al., 2011). A reasonable approach for this might be to use the movement process param-311

eters to simulate animal tracks and examine implications of including/excluding environ-312

mental covariates. These pseudo-absence tracks may be used as the basis for developing a313

habitat accessibility surface and generating spatial predictions of animal behaviour condi-314

tional on this (e.g., Raymond et al., 2015).315

Our results show that TMB facilitates the fast estimation of multiple random effects316

by using the Laplace approximation to calculate the marginal likelihood of a movement317

behaviour process model. The model selection we conducted on the 24 southern elephant318

seal tracks took a total of 8 minutes to complete. This includes the time required to SSM319
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filter the original Argos tracks and to fit the mpmm’s and is approximately 1500 times faster320

than a more limited hierarchical Bayesian model selection exercise, using Markov chain321

Monte Carlo simulation (Bestley et al., 2013). The dramatically faster computation times322

achieved by our TMB-enabled approach means that similar analyses of movement be-323

haviour - environmental relationships can be scaled up to very large telemetry datasets.324

This computation speed also opens up possibilities for far more realistic models of animal325

movement, incorporating the third dimension for diving or flying animals and/or high-326

volume accelerometry data.327

The process model used here differs markedly from SSM used by Bestley et al. (2013).328

They used discrete behavioural state Markov-switching (Patterson et al., 2009; Langrock329

et al., 2012) embedded in a correlated random walk process model (Jonsen, 2016). Here,330

we used a time-varying move persistence parameter γt as a behavioural index that varied331

continuously between 0 and 1. This continuous behavioural index provides another tool for332

characterising animal movement patterns and for making inferences about the possible en-333

vironmental drivers of animal movement behaviour. In some cases, a continuous index may334

offer more nuanced insight into variable behavioural sequences (Gurarie et al., 2009; Breed335

et al., 2012), whereas a discrete state approach may offer more flexibility in capturing the336

known structure of animal movement patterns (e.g., Michelot et al., 2017).337
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Table 1: Model rankings by ∆AIC and likelihood ratios (LR) for the MPMM’s fit to the
12 ice foraging seals. Absolute AIC and deviance values for the best ranked model are
displayed on the first row, under the ∆AIC and LR headings. All other ∆AIC and LR
values are relative to the best ranked model. Computation time to convergence is also
reported. Random effects are included in parentheses in the model formulas, following the
lme4 convention (Bates et al., 2015).

Model formula df ∆AIC LR Time (s)
∼ ice + chl + (ice + chl | id) 12 -9954.21 -9978.21 4.76

∼ ice + chl + (chl | id) 9 0.78 6.78 3.61
∼ ice + chl + (1 | id) 7 21.06 31.06 4.17

∼ ice + (1 | id) 6 21.08 33.08 2.63
∼ ice + chl + (ice | id) 9 23.59 29.59 5.76

∼ ice + (ice | id) 8 24.14 32.14 4.55
∼ chl + (chl | id) 8 219.74 227.74 4.09
∼ chl + (1 | id) 6 245.16 257.16 3.48
∼ 1 + (1 | id) 5 339.28 353.28 2.79
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Table 2: Model rankings by ∆AIC and likelihood ratios (LR) for the MPMM’s fit to the
12 ice foraging seals. Absolute AIC and deviance values for the best ranked model are
displayed on the first row, under the ∆AIC and LR headings. All other ∆AIC and LR
values are relative to the best ranked model. Computation time to convergence is also
reported. Random effects are included in parentheses in the model formulas, following the
lme4 convention (Bates et al., 2015).

Model formula df ∆AIC LR Time (s)
∼ saldiff+ (saldiff | id) 8 -13897.26 -13913.26 3.87

∼ saldiff + chl + (saldiff | id) 9 1.68 -0.32 4.96
∼ saldiff + chl + (chl | id) 9 3.25 1.25 3.97
∼ saldiff + chl + (1 | id) 7 29.81 31.81 4.04

∼ saldiff + (1 | id) 6 36.35 40.35 3.21
∼ chl + (chl | id) 8 51.37 51.37 4.54
∼ chl + (1 | id) 6 107.41 111.41 4.19
∼ 1 + (1 | id) 5 129.93 135.93 2.34

∼ saldiff + chl + (saldiff + chl | id) 12 NA* NA* 6.02
*model failed to converge
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Figure 1: Example tracks simulated from the move persistence model with γt set to a
constant 0.01 (low persistence) (a), γt set to a constant 0.99 (high persistence) and a
time-varying γt (c). Locations in c are coloured by γt values with the random walk time-
evolution of γt displayed inset in c. Note the substantially different scales of movement
across panels a - c, despite sharing the same process covariance matrix (Σ). See Appendix
S1 for simulation code.
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Figure 2: Maps of SSM-filtered southern elephant seal tracks originating from Iles Ker-
guelen. Ice-bound foraging trips (a) were predominantly directed to locations south of
60◦S, whereas pelagic foraging trips (b) are predominantly north of 60◦S. Each location is
coloured according to its associated move persistence (see γt scale bar) estimated from the
move persistence model.
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Figure 3: Fixed (red) and random (blue) effects relationships between move persistence
γt and the proportion of ice cover (a) and chlorophyll a concentration (b) for ice foraging
seals, and between γt and the salinity difference between 600 and 200m (c) for pelagic
foraging seals. All three panels display both random intercept and slopes, as per the best
ranked models in Tables 1 and 2. Spatial predictions of γt based on the fixed effect co-
efficients for the best fitting models for ice foraging seals (d) and pelagic foraging seals
(e). The γt = 0.75 contour (black line) is displayed to aid delineation of predicted high
move persistence (γt > 0.75; green - yellow) and low move persistence regions (γt ≤ 0.75;
green - blue). The southern boundary of the Antarctic Circumpolar Current (d) and the
Subantarctic Front (e) are displayed for reference (white lines).
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