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Abstract1

Like many species, movement patterns of southern elephant seals (Mirounga leonina) are2

being influenced by long-term environmental change. These seals migrate up to 4000 km3

from their breeding colonies, foraging for months in a variety of Southern Ocean habi-4

tats. Understanding how movement patterns vary with environmental features and how5

these relationships differ among individuals employing different foraging strategies can pro-6

vide insight into foraging performance at a population level. We apply new fast-estimation7

tools to fit mixed effects within a random walk movement model, rapidly inferring among-8

individual variability in southern elephant seal environment-movement relationships. We9

found that seals making foraging trips to the sea-ice on or near the Antarctic continen-10

tal shelf consistently reduced speed and directionality (move persistence) with increasing11

sea ice coverage and had variable responses to chlorophyll a concentration, whereas seals12

that foraged pelagically reduced move persistence in regions where circumpolar deep water13

shoaled. Given future climate scenarios, pelagic foragers may encounter more productive14

habitat but sea-ice foragers may see reduced habitat availability. Our approach is scalable15

to large telemetry data sets and allows flexible combinations of mixed effects to be evalu-16

ated via model selection, thereby illuminating the ecological context of animal movements17

that underlie habitat use.18

Key Words: correlated random walk; habitat; latent variable; telemetry; Template Model19

Builder; random effects; southern elephant seals; spatial ecology20

Introduction21

Long-term environmental change is influencing southern elephant seal (Mirounga leonina)22

populations, with their trajectories linked to the success of individuals’ foraging migra-23

tions (Hindell et al., 2017). These seals migrate long distances from breeding colonies to24

forage, encountering a range of environmental conditions during many months at sea (Hin-25

dell et al., 2017). Foraging strategies vary among seals and are often associated with open26

ocean or Antarctic continental shelf habitats, with individuals showing fidelity to these27
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over several years (Authier et al., 2012). Quantifying how individuals differently respond28

to their environment is a challenge due to a paucity of accessible analytical tools that can29

account for among-individual differences in movement patterns.30

Spatial habitat modelling approaches often are used to infer habitat usage and prefer-31

ence from animal movement data (Aarts et al., 2008). Most of these approaches infer pref-32

erence or selectivity from a combination of observed (presence) and simulated (pseudo-33

absence) locations (Aarts et al., 2008) but are blind to the ecological mechanisms, such34

as density dependence (McLoughlin et al., 2010) and individual behaviour (Bestley et al.,35

2013; Auger-Méthé et al., 2017), underlying those preferences.36

Although high individual variation is common in studies of animal movement, models37

that account for among-individual variability in inferred movement - environment relation-38

ships are rare (e.g., McClintock et al., 2013). These random effects or hierarchical models39

can be computationally demanding, inhibiting realistic analysis of ever-growing animal40

movement data sets. There is a need for efficient movement modelling approaches, accessi-41

ble to ecologists, where responses to environmental, physiological and/or social predictors42

can be inferred using flexible combinations of fixed and random terms (mixed effects) to43

account for variability among moderate to large numbers (10’s - 100’s) of individuals.44

We present a mixed-effects modelling approach for animal movement data that takes45

advantage of new fast-estimation tools. Our model estimates time-varying movement per-46

sistence (autocorrelation in speed and directionality) along animal movement trajectories.47

We focus here on showing how the approach can be used to infer relationships between an-48

imal movement patterns and the environmental features they encounter. The model can49

be fit rapidly and flexibly with single or multiple random effects, enabling inference across50

individuals and assessment of the extent to which relationships may differ among them.51

We apply our approach to infer how southern elephant seals engaging different foraging52

strategies, ice-bound versus open ocean (pelagic) trips, may respond differently to their en-53

vironment. This represents a step towards bridging models of animal movement and habi-54
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tat preference, which in future may converge in a more complete framework.55

Methods56

We build our modelling approach in three steps. First, we define a basic model that can57

be used to estimate changes in move persistence along an animal’s observed trajectory.58

Second, we expand the model to infer how these changes may be related to environmen-59

tal variables. Any combination of other extrinsic or intrinsic variables could be modelled,60

provided they are measured at locations and/or times consistent with the telemetry data.61

Third, we add random effects to the model to enable inference about how these movement62

- environment relationships may differ among individual animals.63

Time-varying move persistence64

We focus on estimating the persistence (sensu Patlak, 1953) of consecutive pairs of animal65

relocations (steps) along an entire movement trajectory. Move persistence, which captures66

autocorrelation in both speed and direction, has been modelled as an average across entire67

movement trajectories (Jonsen, 2016), indicating whether that trajectory is, on average,68

uncorrelated (i.e., a simple random walk), correlated (i.e., a correlated random walk), or69

somewhere in between. Allowing move persistence to vary along a trajectory means it can70

be used as an index of behaviour (Breed et al., 2012), identifying segments of relatively71

low or high persistence:72

dt = γtdt−1 + ηt (1)

where displacements dt = xt − xt−1 and dt−1 = xt−1 − xt−2 are the changes in an ani-73

mal’s location x at times t and t − 1. The random variable ηt = N(0,Σ), with variance-74

covariance matrix Σ specifying the magnitude of variability in the 2-dimensional move-75

ments. γt is the time-varying move persistence between displacements dt and dt−1. γt is76

continuous-valued between 0 (low move persistence, Appendix S1: Figure S1a,c) and 177

(high move persistence, Appendix S1: Figure S1b,c). To avoid potential parameter identi-78

fiability issues between γt and Σ, we set the covariance term in Σ to 0 but this constraint79

could be relaxed to better account for correlation in movements in the E-W and N-S direc-80
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tions. We assume γt follows a simple random walk in logit space:81

logit(γt) = logit(γt−1) + εt (2)

where the random variable εt = N(0, σγ) represents variability in move persistence along an82

animal’s track.83

This process model (Eqn’s 1 and 2) can be fit: 1) to location data with minimal error;84

2) to state-space filtered location data; or 3) coupled with an observation model for error-85

prone data. We focus on the second case with locations occurring at regular time intervals,86

but this could be relaxed (e.g., Auger-Méthé et al., 2017).87

The time-varying move persistence model can be used to objectively identify changes88

in movement pattern. Here γt forms the behavioural index but unlike switching models89

(e.g., Michelot et al., 2017), these changes occur along a continuum (0 - 1) rather than as90

switches between discrete states.91

Move persistence in relation to environment92

To make inferences about the factors associated with move persistence, we can model γt93

as a linear function of environmental predictors measured at each location or time. With94

this approach, we replace the random walk on logit(γt) (Eqn 2) with a linear regression of95

covariates on logit(γt):96

logit(γt) = β0 + β1mt,1 + · · ·+ βnmt,n + εt (3)

where β0, β1, . . . , βn are the fixed intercept and regression coefficients, mt,1, . . . ,mt,n are97

the predictor variables and εt = N(0, σγ) are the random errors. This model can be fit to a98

single animal track, or to multiple tracks pooled together. Typically, we wish to make in-99

ference across multiple individual tracks and assess the extent to which relationships may100

differ among individuals.101
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Incorporating individual variability102

To account for variation among individual responses to environment, we can expand Eqn 3103

to a mixed-effects regression of covariates on logit(γt), within the behavioural model:104

logit(γt,k) = (β0 − b0,k) + (β1 − b1,k)mt,1,k + · · ·+ (βn − bn,k)mt,n,k + εt (4)

where k indexes individual animals, the β’s are the fixed intercept and slope terms as in105

Eqn 3, b0,k is a random deviation for the intercept of the k-th individual, b1,k, . . . , bn,k are106

random deviations for the slopes of the k-th individual and mt,1,k, . . . ,mt,n,k are the covari-107

ates measured along the k-th individual’s track. As in Eqn 3, the random variable εt are108

the fixed effects errors. We use an unstructured covariance matrix for the random effects.109

Estimation110

In principle, any combination of fixed and random effects can be specified within the move-111

ment model described in equations 1 and 4. Here we use TMB to fit the move persistence112

models (Auger-Méthé et al., 2017). The TMB package allows complex latent variable mixed113

effects models to be specified in C++ and fit efficiently via maximum likelihood using114

reverse-mode auto-differentiation and the Laplace approximation (Kristensen et al., 2016).115

The Laplace approximation avoids the need for high-dimensional integration, which mas-116

sively speeds calculation of the marginal likelihood. Comparing Bayesian and TMB ver-117

sions of a location-filtering model, Auger-Méthé et al. (2017) found a 30-fold decrease in118

computation time for the TMB fit with no loss of accuracy. All code for fitting these mod-119

els in R is available at https://github.com/ianjonsen.120

Data & analysis121

We use Argos telemetry data collected from 24 adult female southern elephant seals. The122

seals were captured at Iles Kerguelen (49.35◦ S, 70.22◦ E) between late January and mid-123

March in 2009 and 2013-2015, at the end of their annual moult. Animal handling and in-124

strument attachment details can be found elsewhere (McMahon et al., 2008). These data125

were sourced from the Australian Integrated Marine Observing System (IMOS) deploy-126
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ments at Iles Kerguelen and are publicly available (http://imos.aodn.org.au). The127

tracks comprise a mixture of sea ice foraging trips on or near the Antarctic continental128

shelf (12 seals; Appendix S2: Figure S1a) and entirely pelagic foraging trips in sub-Antarctic129

waters (12 seals; Appendix S2: Figure S1b). Prior to fitting the move persistence models,130

we used a TMB implementation of a state-space model (Auger-Méthé et al., 2017) to filter131

the observed locations, accounting for error in the Argos telemetry, and to regularise the132

filtered locations to a 12-h time interval (see Appendix S2 for details).133

We fit the move persistence model (mpm; Eqn’s 1 and 2) to the state-space filtered seal134

tracks. Fitting to filtered tracks accounts for some of the uncertainty inherent in teleme-135

try data but potential effects of residual location uncertainty should be examined post-136

analysis. To ascertain whether γt adequately captures changes in the seals’ movement pat-137

terns, we compare the γt-based behavioural index to discrete behavioural states estimated138

from a switching state-space model (Jonsen, 2016) fitted using the bsam R package. De-139

tails on how we fit the bsam model are in Appendix S3. We then fit the move persistence140

mixed effects model (mpmm; Eqn’s 1 and 4) to the same state-space filtered seal tracks to141

infer how the seals’ movement behaviour may be influenced by environmental features en-142

countered during their months-long foraging trips. In both analyses, we fitted separate143

models to the ice and pelagic foraging trips. For the mpmm’s, we specified mixed effects144

models with random intercept and slopes to account for variability among individual seals.145

We fit all possible combinations of fixed and random effects and use AIC and likelihood146

ratios to find the best supported model for each set of tracks.147

We examined 3 potential environmental correlates of elephant seal move persistence: sea148

ice cover (the proportion of time the ocean is covered by ≥ 85% ice; ice), chlorophyll a149

concentration (near-surface summer climatology in mg m−3; chl) and the salinity differ-150

ence between 600 and 200 m depths (based on winter climatology averaged over 1955-2012151

in psu; saldiff). These variables are known predictors of elephant seal habitat preference152

(Hindell et al., 2017) and foraging (McMahon et al. unpublished data). Data sources and153
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processing details are provided in Appendix S3. The environmental data values were ex-154

tracted at each state-space filtered location. As saldiff is only calculated in areas where155

the bathymetry is deeper than 600 m this covariate is only relevant to the pelagic foragers156

(Appendix S4: Figure S1). Similarly, ice was excluded from the models fit to seals making157

pelagic foraging trips as they spent little time in regions with sea-ice cover (Appendix S3:158

Figure S1; Appendix S4: Figure S1). R code for the model selection is in Appendix S5.159

Results160

Time-varying move persistence (mpm)161

The ice-bound seals exhibited similar movement patterns (Fig. 1a), with high move per-162

sistence on their outbound migrations and lower move persistence near the Antarctic con-163

tinent in areas of higher sea-ice coverage. Return migrations to Iles Kerguelen were more164

variable, with some individuals moving persistently and others meandering, possibly for-165

aging en route. Pelagic foraging seals (Fig. 1b) migrated approximately 2000 km either166

east or west of Iles Kerguelen in relatively persistent fashion. Less persistent movements167

occurred at the distal ends of these migrations, although seals travelling to the west of Iles168

Kerguelen had markedly less persistent and slower movements, suggestive of more intense169

search and foraging, compared to those travelling to the east (Fig. 1b).170

The γt-derived behavioural index is comparable but not identical to the discrete be-171

havioural states estimated from the bsam SSSM (Appendix S3: Figure S1). The γt index172

captured the same changes in movement pattern but the magnitudes of those changes gen-173

erally were smaller. Fitting the move persistence model, including the SSM filtering step,174

was almost 500 times faster than fitting the bsam SSSM (Appendix S3: Table S1).175

Individual variability in move persistence - environment relationships (mpmm)176

Sea-ice strategy. The best supported model for elephant seals foraging in the sea-ice zone177

included fixed and random coefficients for both the proportion of ice cover and chlorophyll178

a concentration (Table 1). On average, seals had movements that became less persistent179
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or directed as sea-ice cover and chlorophyll a concentration increased (Fig. 2a,b). Among180

individuals, the relationship with ice was consistently negative but the degree to which181

move persistence declined differed markedly (Fig. 2a), whereas the relationship with chl182

was highly variable with 4 individuals having strong negative relationships and the rest183

weak to moderately positive relationships (Fig. 2b; Z-value = -1.04, p = 0.3). Using the184

fixed effects from the best model, the prediction of γt over the spatial domain implies that185

seal move persistence changes, suggestive of search and foraging behaviours, south of 65◦ S186

(south of the black contour line, Fig. 2d).187

Pelagic strategy. The best supported model for elephant seals foraging in the open ocean188

included fixed and random coefficients for the salinity difference between 600 and 200 m189

depths (saldiff, Table 1). On average, seals had movements that became strongly less per-190

sistent as the salinity difference decreased (Fig. 2c). Among individuals, this relationship191

was moderately variable with two individuals exhibiting relatively small changes in move192

persistence over the full range of saldiff (Fig. 2c). The spatial prediction of γt implies that193

animals generally adopt a movement pattern suggestive of search or forage once beyond194

the mid-latitudes near Kerguelen Island where saldiff is largest (i.e. south of the black con-195

tour line, in oceanic waters, or north in the vicinity of the Subantarctic Front; Fig. 2e).196

Discussion197

Southern elephant seals employing specific foraging strategies respond to different environ-198

mental factors. Our modelling approach clearly identifies these responses, including strong199

decreases in move persistence associated with increasing ice coverage (sea-ice foragers) and200

decreasing salinity difference (pelagic foragers). Move persistence responses were relatively201

consistent among seals adopting either a sea-ice or a pelagic foraging strategy, but sub-202

stantial individual variability in foraging location was evident.203

Those animals whose forage migrations went towards the Antarctic continent showed low204

move persistence once in areas of higher sea ice coverage. Some individuals also showed205

positive responses to elevated chlorophyll a concentrations, targeting productive coastal206
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polynya areas (Labrousse et al., 2018); however this was not a consistent response with207

many others foraging farther offshore in the marginal sea-ice zone where chlorophyll a208

concentrations are lower (Appendix S4: Figure S1). This pattern might be suggestive of209

density-dependent habitat selection, whereby seals distribute themselves so that foraging210

success is consistent across habitats of differing value (Morris, 2011).211

For the pelagic foraging animals, our results indicated seals moved persistently away212

from the region in which salty Circumpolar Deep Water was confined to depths (i.e., where213

the salinity difference was highly positive). The majority then adopted a lower move per-214

sistence in areas where the Circumpolar Deep Water shoaled (salinity difference closer to215

zero, southern areas) with four animals targeting the vicinity of the Subantarctic Front216

(salinity difference negative) where cold, fresh Antarctic Intermediate Water subducts217

saline Subantarctic surface waters (northwestern areas, Appendix S4: Figure S1).218

Future climate scenarios project stronger westerly winds, leading to intensified ocean219

overturning circulation (Gao et al., 2018, and references therein). With increased upwelling220

of nutrient-rich Circumpolar Deep Water, we might expect enhanced near-surface ocean221

productivity to benefit pelagically foraging southern elephant seals in future. Expectations222

for sea-ice foraging seals are highly uncertain due to complex physical processes occurring223

over the Antarctic continental shelf. However, projections of reduced sea-ice extent and224

duration may lead to reduced availability of foraging and/or resting habitat.225

While the ultimate source of observed individual differences in movement - environment226

relationships is often unclear, three non-exclusive explanations seem likely. First, we often227

use relatively few predictors and these may indirectly or imperfectly represent the proxi-228

mate influences to which predators are actually responding (i.e., prey density and/or dis-229

tribution). This may inflate apparent individual differences in predator movement. Mod-230

elling more direct indices of prey, and/or reducing error within covariates by accounting231

for location uncertainty, may help to reduce apparent variation among individuals.232

Second, individual variation is likely a real feature of foraging ecology (Magurran, 1993),233
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where individual quality and personality may confer real differences in foraging behaviour234

with relatively little difference in fitness (Stamps, 2007). For example, consistent bold-235

ness in foraging can generate important ecological trade-offs, effecting increases in growth236

and/or mortality rates (Stamps, 2007).237

Third, the inclusion of multiple random effects raises the possibility of over-fitting, espe-238

cially when the number of individual tracks is low. Artificial variability, propagating from239

uncertainty in the locations and/or environmental covariates, could lead to spurious in-240

ference of strong individual differences in foraging behaviour. A study design with repeat241

tagging of the same individuals would help resolve the issue. Ultimately, researchers must242

take care to address potential sources of error in their data and to use prior knowledge of243

their study species to guide model selection and interpretation.244

Interpreting among-individual variability in movement - environment responses can be245

aided by considering established ecological theory. For example, density-dependent habi-246

tat selection and functional responses to prey availability likely underpin inferred relation-247

ships (Mason and Fortin, 2017). Accounting for such effects when fitting and interpreting248

resource selection functions and habitat preference models can clarify understanding and249

thereby assist forecasting of species’ distributions (McLoughlin et al., 2010).250

Modelling approach and extensions251

Our model is composed of a linear mixed effects regression embedded within a correlated252

random walk process model for animal movement behaviour. While the linear mixed ef-253

fects approach allows flexible combinations of fixed and random effects, there is scope for254

further enhancement. In many cases parametric, linear fixed effects may not adequately255

capture the complexity of movement - environment relationships and a nonparametric ap-256

proach using penalised splines may improve inference (Langrock et al., 2017). Given the257

serial dependence structure of telemetry data, the unstructured covariance matrix we used258

for the random effects could be replaced with a first-order autoregressive covariance struc-259

ture (Brooks et al., 2017). Diagnosing lack of fit in latent variable models can be problem-260

11

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/314690doi: bioRxiv preprint 

https://doi.org/10.1101/314690
http://creativecommons.org/licenses/by-nc/4.0/


atic as there is no observed response variable. One-step-ahead prediction residuals pro-261

vide a useful validation tool and can be estimated when fitting the model (Thygesen et al.,262

2017). Finally, there is a need to incorporate location uncertainty when sampling environ-263

mental covariates from spatially gridded remote-sensing data. This can be done using mul-264

tiple imputation methods as implemented in momentuHMM R package (McClintock and265

Michelot, 2018), i.e., random draws of the environmental variables from the uncertainty of266

the state-space filtered location estimates.267

Recent advances in habitat modelling methods (e.g., Avgar et al., 2016) hold promise268

for capturing the currently missing behavioural context in species’ habitat preferences269

and space-use. Here we model animal movement as a mixed effects function of environ-270

mental variables to gain deeper insight into how individuals and populations may actually271

use habitat. Our approach does not account for availability/accessibility of habitat in any272

way but this clearly must be considered when inferring habitat preferences. A reasonable273

approach for this might be to simulate animal tracks from our movement process model,274

examining implications of including/excluding environmental covariates. Pseudo-absence275

tracks can be combined into a habitat accessibility surface to condition spatial prediction276

of animal behaviour from our process model (e.g., Raymond et al., 2015).277

Our results show that TMB allows fast estimation of multiple fixed and random effects278

in an animal movement process model. Dramatically faster computation times allow anal-279

yses of movement - environment relationships in large telemetry data sets (100’s of ani-280

mals). This computation speed also opens up possibilities for more realistic models of ani-281

mal movement, where warranted, perhaps by incorporating the third dimension for diving282

or flying animals and/or high-volume accelerometry data.283

The process model used here differs markedly from the state-space model used by Best-284

ley et al. (2013). Bestley et al. (2013) used discrete behavioural state Markov-switching285

embedded in a correlated random walk process model (Jonsen, 2016). Here, we used time-286

varying move persistence γt as a behavioural index that varied continuously between 0 and287
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1. This continuous index provides another tool for characterising animal movement pat-288

terns and for making inferences about their environmental drivers. In some cases, a con-289

tinuous index may offer more nuanced insight into variable but unknown behavioural se-290

quences (Breed et al., 2012), whereas discrete states may offer more flexibility in capturing291

the known structure of animal movement patterns (Michelot et al., 2017).292

Telemetry data obtained at the level of individuals poses a challenge to scale up to pop-293

ulations (Morales et al., 2010). Our approach enables multiple fixed (population) and294

random (individual) effects in movement - environment relationships to be fit simply and295

quickly. This provides a feasible solution to analysing increasingly large and detailed data296

sets, and for harnessing individual-to-population level information on animal movement297

responses to environment.298
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Table 1: Model rankings by ∆AIC and likelihood ratios (LR) for the mpmm’s fit to the 24
foraging seals, split by foraging strategy (sea-ice or pelagic). Absolute AIC and deviance
values for the best ranked model are displayed on the first row, under the ∆AIC and LR
headings. All other ∆AIC and LR values are relative to the best ranked model. Compu-
tation time to convergence is also reported. Random effects are included in parentheses in
the model formulas.

Foraging
strategy

Model formula df ∆AIC LR Time (s)

sea-ice ∼ ice + chl + (ice + chl | id) 12 -9954.21 -9978.21 4.76
∼ ice + chl + (chl | id) 9 0.78 6.78 3.61
∼ ice + chl + (1 | id) 7 21.06 31.06 4.17

∼ ice + (1 | id) 6 21.08 33.08 2.63
∼ ice + chl + (ice | id) 9 23.59 29.59 5.76

∼ ice + (ice | id) 8 24.14 32.14 4.55
∼ chl + (chl | id) 8 219.74 227.74 4.09
∼ chl + (1 | id) 6 245.16 257.16 3.48
∼ 1 + (1 | id) 5 339.28 353.28 2.79

pelagic ∼ saldiff + (saldiff | id) 8 -13897.26 -13913.26 3.87
∼ saldiff + chl + (saldiff | id) 9 1.68 -0.32 4.96
∼ saldiff + chl + (chl | id) 9 3.25 1.25 3.97
∼ saldiff + chl + (1 | id) 7 29.81 31.81 4.04

∼ saldiff + (1 | id) 6 36.35 40.35 3.21
∼ chl + (chl | id) 8 51.37 51.37 4.54
∼ chl + (1 | id) 6 107.41 111.41 4.19
∼ 1 + (1 | id) 5 129.93 135.93 2.34

∼ saldiff + chl + (saldiff + chl | id) 12 NA* NA* 6.02

*model failed to converge
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Figure Captions382

Figure 1. Maps of SSM-filtered southern elephant seal tracks originating from Iles Ker-383

guelen. Ice-bound foraging trips (a) were predominantly directed to locations south of384

60◦S, whereas pelagic foraging trips (b) are predominantly north of 60◦S. Each location385

is coloured according to its associated move persistence (see γt scale bar) estimated from386

the move persistence model.387

Figure 2. Fixed (red) and random (blue) effects relationships between move persistence388

γt and the proportion of ice cover (a) and chlorophyll a concentration (b) for ice forag-389

ing seals, and between γt and the salinity difference between 600 and 200m (c) for pelagic390

foraging seals. All three panels display both random intercept and slopes, as per the best391

ranked models in Table 1. Spatial predictions of γt based on the fixed effect coefficients for392

the best fitting models for ice foraging seals (d) and pelagic foraging seals (e). The γt =393

0.75 contour (black line) is displayed to aid delineation of predicted high move persistence394

(γt > 0.75; green - yellow) and low move persistence regions (γt ≤ 0.75; green - blue). The395

southern boundaries of the Antarctic Circumpolar Current (d) and the Subantarctic Front396

(e) are displayed for reference (white lines).397

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/314690doi: bioRxiv preprint 

https://doi.org/10.1101/314690
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1:

19

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/314690doi: bioRxiv preprint 

https://doi.org/10.1101/314690
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2:

20

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/314690doi: bioRxiv preprint 

https://doi.org/10.1101/314690
http://creativecommons.org/licenses/by-nc/4.0/

